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MEASURES ON SEMILATTICES

SOLOMON LEADER

New definitions are given for positivity and bounded
variation of functions on a semilattice S so that such func-
tions extend to measures (respectively, signed measures) on
the s-algebra generated by some representation of S as a
semilattice of sets under intersection. All such representa-
tions lie in a Stone space determined by S. Functions on a
subsemilattice S of a distributive lattice L which extend to
isotone valuations on L are characterized in terms of a partial
ordering of finite sequences in S. Functions on a regulated
semilattice which correspond to regular Borel measures on
the associated locally compact space are characterized in terms
of inclusion-exclusion sums.

A semilattice is a commutative, idempotent semigroup (S,-) in
which we define the partial ordering @ < b to be ab = a. So all our
semilattices are meet-semilattices [6]. That is, the product of any pair
of elements in S is their greatest lower bound.

Every semilattice (S,:) can be represented as a semilattice (&, N)
of sets. In particular one can represent each s in S by its set C,
of all lower bounds of s. For s,¢ in S we have

(1.1) C,NC, = C,.

So we get a representation with & the set of all lower sets C..
Note that no lower set is a nontrivial union of lower sets. Indeed

{1.2) C,.cC,U---UC,, implies C, & C,, for some 1.

The existence of representations of semilattices suggests the
study of functions ¢ on S which can be extended under some repre-
sentation to measures (or signed measures) on the o-algebra generated
by the representation. Motivation for such a study comes from pro-
bability theory wherein each bounded measure @ on the Borel sets
in R" is represented by a distribution function ¢ on R" according to
the relation

(1.3) #(s) = 0(C,).

In this case R" is a semilattice relative to the coordinate-wise ordering.
That is, for s = (s;, »-+,s,) and ¢t = (t, *++, t,) in R*, st = (s, A &y, +=+,
s, A\ t,). Explicit characterization of distribution functions ¢ is given
essentially by two conditions. The first condition (positive definiteness,
usually defined in terms of iterated differences [3]) guarantees that

407
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the finitely additive extension whose existence is implied by (1.2) is
nonnegative. The second condition (upper continuity) yields the coun-

table additivity of the extension.
S. Newman [4] has defined positive definite functions and functions.

of bounded variation on a semilattice. We give several equivalent
definitions for these concepts below, avoiding combinatorial difficulties
by making use of certain structures and objects associated with a
semilattice S: ideals, characters, the semigroup ring Z(S) over the
integers, the boolean ring I(S) of idempotents in Z(S), the positive
cone Z(S)*, the transform representing Z(S) as a function ring on
the characters, and the Stone space X(S).

2. Algebraic structures associated with a semilattice. Given
a semilattice S let Z(S) be the semigroup ring of S over the ring Z
of integers. That is, Z(S) consists of all integer-valued functions
on S with finite support. Z(S) is a ring under functional addition
and the convolution product

(2.1) f+g(t) = 3. f(r)g(s)

where the summation runs through all nonzero terms given by ordered
pairs (r,s) in S with s = ¢. Since S is commutative, so is Z(S). S
is injected into Z(S) by defining for s,z in S

1 fx=s

(2.2) s@) = 0 if x #s.

Let S be the set of all functions of the form (2.2) with s in S.
For all »,s,¢t in S we have

2.3 rs =1t iff r«s = ¢.
So (S, *) is isomorphic to (S,-). In terms of (2.2) each f in Z(S) is

of the form
(2.4) f=> f(s)s

ses

where we ignore vanishing terms and sum only over the support of
f. In the form (2.4) the convolution (2.1) is the product induced by
the product in S through (2.3) and the distributive law. Since the
free commutative group generated by S is the additive group Z(S),
every function ¢ on S into an additive group (G, +) has (under identi-
fication (2.2) of S with S) a unique extension to an additive func-

tion on Z(S) into G given by
(2.5) 4, 1) = 5,(5) 6(5).
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If S has a unit 1 (i.e., semigroup identity), then 1 is a unit in Z(S).
A character p on a semilattice S is a function on S into {0, 1}
such that

(2.6) p(rs) = p(r)p(s) for all r,s in S. [5]

(Some authors call this a “semicharacter”.) The set T(S) of all charac-
ters on S is a semilattice (the dual of S) under the functional product

(2.7) pq(s) = p(s) q(s).
Each element s of S defines a character p, on S,

1 ifz=s

2.8 =
2-8) p.() 0 otherwise.

Let P(S) be the set of all such functions (2.8) on S which we call
principal characters.
For f in Z(S) and p in T(S) define the transform

(2.9) f(v) = 3, 1) p(s)

which is (p, f) in terms of (2.5). Note that 8(p) = p(s). (2.9) defines
a ring homomorphism on Z(S) into a ring of bounded, integervalued
functions on T'(S). That is,

(2.10) £ 9(p) = £(p) + §(p) and
f+9(p) = f(p) 9(p)-

As will be shown in Propositions 2 and 8 below, this homomorphism
is injective.

Let I(S) be the set of idempotents in Z(S). Since Z(S) is a
commutative ring, I(S) is a Boolean ring with fA g = fxgand f\V g =
f + g — fxg. The isomorphism of (S, -) with (S, ) imbeds (S, -) as a
subsemilattice of I(S).

Let K(S) consist of all members of Z(S) of the form ¢ — s with
s<tin S. Let J(S) be the semigroup generated by K(S) under x.

LeMMA 1. Ewvery f in Z(S) has a representation of the form
f =21 ¢ef; where ;€ Z and f,e J(S) with f;+ 0 and f*f; =0 for
1 % j. Moreover, we may assume that the range of f is {g,, -++,¢,}.

Proof. Choose a nonempty finite subset F of S such that F
contains the support of £ and at least one zero of £ if f has zeros.
Let f,.--,f, be the atoms of the Boolean ring generated in I(S)
by F. These atoms belong to J(S) since S is a semilattice. Since
each s, for s in F, is a sum of some of these atoms we get our
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representation from (2.4).

Given p in T(S), either f(p) = 0 or by (2.10) there is some 7 in
our representation such that ?j(p) =1forj=¢and 0 for -4 In
either case f(p) = ¢; for some 7. On the other hand we can choose
principal p,, -+, p, such that fi(p) =1 for i =5 and 0 for = j.
Then f(pi) = &

An ideal in S is a subset I of S such that

(2.11) r,sel iff rsel.

(Some authors prefer the terms “filter” or “dual ideal”.) There is a
one-one correspondence between ideals I, in S and characters » on S
given by the relation

(2.12) I, =p Q).

Clearly, (2.11) is equivalent to (2.6) under (2.12). I, is nonempty iff
p# 0. I, is a principal (i.e., finitely generated) ideal iff p is a prin-
cipal character (2.8). In terms of (2.12) we can express (2.7) as I, =
I,N L.

3. Separation. A set H of ideals in S separates S if every
principal ideal I is the intersection of all members of H which contain
I. H amply separates S if for every principal ideal I and finite
subset F of S disjoint from I there is some J in H which contains I
and is disjoint from F. Using the correspondence (2.12) we can for-
mulate these definitions for H a set of characters on S. H separates
S if given 7 # s in S there exists p in H with p(r) = p(s). H amply
separates S if given s in S and F a finite subset of S with st <s
for all ¢ in F' there exists p in H with p(s) =1 and p(t) = 0 for all
t in F. Clearly, if H amply separates S then H separates S. The
converse holds if H is a semilattice under (2.7).

For each s in S let [s] be the set of all p in T(S) such that p(s) =
1. For H a subset of T(S) let [s]y = H N [s] and let 7, be the homo-
morphism on Z(S) defined by (2.9) with p restricted to H.

PROPOSITION 1. For any subset H of T(S) the following are
equivalent:

(i) H separates S.

(ii) The kernel of my on K(S) is trivial.

(iii) 7y is an isomorphism on (K(S), <).

(iv) 7y is an isomorphism on (S, )

(v) [slg = [t]lz implies s = t.

Proof. Clear.
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PROPOSITION 2. For any subset H of T(S) the following are equi-
valent: R

(i) FH) = F(T(S)) for every f in Z(S).

(ii) =my s a Boolean isomorphism on I(S).

(iii) 7, 1s a semilattice isomorphism on J(S).

(iv) 7y is a ring isomorphism on Z(S).

(v) The set w54(S) of functions on H is linearly independent over Z.

(vi) H amply separates S.

(vii) [s]lz S [s]g U +++ U [s,]z implies [s]y S [si]z for some <.

Proof. (i) = (ii). Let feI(S) and m,f = 0.

The latter condition means ?‘(I—I) = {0}, Hence f=0 by (i) and
Lemma 1.

(ii) = (iii) a fortiori.

(iii) = (iv). Consider f = 0 in Z(S). We contend 7,f==0. We
may assume in the representation of f given by Lemma 1 that ¢,f, #0.
Hence by (iii) there is some p e H with f (p) = 1. For such p Lemma
1 and (2.10) yield f(p) =¢ # 0. (iv) = (v) since S is a set of inde-
pendent generators for the additive group Z(S). (v) = (vi). Consider
8,8, *++,8, iIn S with ss; <s for 1 =1, +--,n. In J(S) define

3.1) f=(s—a)x---x(s— a,) with a; = ss,.
Expanding (3.1) we get
3.2 f=s+ > (-1 za

ac A
where A is the set of all subsequences & = {a;, +++,a;} (1=, <+ <%, =
n) of ay = {a, ---,a,}, k(@) is the number % of terms in «, and na
is the product of all terms in «.

By (v) f(p) cannot vanish identically on H since in (3.2) s has a
nonzero coefficient and is distinct from every mwa. So there exists pe
H with 0 = f(p) = p(s)[L — p(s)] +++ [L — p(s,)]. That is, p(s) = 1 and
ps)=0fort=1,.---,m

The equivalence of (vi) and (vii) is trivial.

(vi) implies (iii) since £ = 0 in (3.1) iff s = a; (that is, s < s;) for
some 1.

Finally, (iii) implies (i) by Lemma 1.

PROPOSITION 3. The set P(S) of principal characters amply se-
parates S.

Proof. Given se S and F' a finite subset of S with st < s for all
te F, take p, in (2.8) to separate s from F.
A character p is irreducible if gr = » in T(S) implies either
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g=1porr=np.
PROPOSITION 4. The irreducible characters separate S.

Proof. Given st < s in S let @ be the set of all ¢ in T(S) such
that ¢(s) =1 and ¢(f) = 0. @ is nonempty since p, in (2.8) belongs
to Q. By Zorn’s lemma @ has a maximal member relative to the
ordering p < q defined by » = pg in (2.7). For it is clear that the
functional maximum of any chain in @ is a character belonging to Q.
Now a maximal p in @ must be irreducible. For if »p = ¢r then 1 =
p(s) = q(s)r(s) and 0 = p(t) = q(t)r(t). So either ¢ or » belongs to Q,
hence equals p since p is maximal in Q.

4, The positive cone Z(S)*.

PROPOSITION 5. For any f in Z(S) the following are equivalent:

(i) esaf(s) = 0 for every ac S.

(i) Ser f(s) = 0 for every ideal I in S.

(iii) fA(p) = 0 for every character p.

(iv) There exists an amply separating set H of characters such
that f(p) =0 for all p in H.

(v) f has a representation given by Lemma 1 with all the coeffi-
cients &; monnegative.

Proof. (i) = (ii). Let a be the product of all the elements in
the support of £ which also belong to I. Then the sums in (i) and
(ii) are identical. (ii) implies (i) since (i) is (ii) restricted to principal
ideals. (ii) and (iii) are equivalent through (2.9) under the corres-
pondence (2.12).

(iii) implies (iv) a fortiori.

(iv) implies (v) by Lemma 1 and Proposition 2.

(v) implies (iii) by Lemma 1.

Define Z(S)* to be the set of all £ in Z(S) satisfying the condi-
tions in Proposition 5. Then Z(S) is a lattice-ordered ring with Z(S)+
as positive cone. In terms of the representation of Lemma 1 we have

4.1) f+=§e; f., f—:z:,e; f., |f|=§ l&;| F.
Finally,
(4.2) K(S) = J(S) = I(S) < Z(S)*.

5. Positive definite functions.
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PROPOSITION 6. For any real-valued function ¢ on S the following
are equivalent:
(i) Given s, +++,s, im S and €,+--,¢, in Z

(5.1) 2 &€; (sis;) = 0.

(il) (¢, F* = 0 for all f in Z(S).

(iii) (g, f) = 0 for all f in I(S).

@iv) (¢, F) = 0 for all f in J(S).

(v) (¢,F) =0 for all f in Z(S)".

(vi) Given a,a,, -+, a, in S with a; < a for 1 =1, +++, n then

(5.2) (= D () = 6(@)

i terms of motation introduced with (3.2).

Proof. (i) is equivalent to (ii) via the relation
(5.3) f=3es

for which (g, f?) is just the sum in (5.1) according to (2.5).

(ii) implies (iii) implies (iv) a fortiori.

To prove (iv) implies (v) apply Lemma 1, (v) of Proposition 5,
and additivity of (¢, ) on Z(S) to get (¢, f) = D%, & (¢, f;) with both
factors nonnegative in every term on the right.

(v) implies (ii) since f*¢ Z(S)* according to (iii) of Proposition 5
and (2.10).

We call ¢ positive definite if it satisfies the conditions of Proposi-
tion 6. Note that (iv) becomes Newman’s definition [4] if we take f
in (8.1) and distribute ¢ into (3.2).

6. Functions of bounded variation.

PROPOSITION 7. For ¢ a real-valued function on S the following

equivalent:
(i) There exists M< oo such that given s, +++,s, tn S and &, +--,
€, 1 Z satisfying

(6.1) Se; = {(1) for all se S

then |3} & §(s) | < M.

(ii) sup|(g,f)| < oo.
feI(S)
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(i) sup3 (@ )] < o
{fieJ(S)

((iii) s essemtially Newman’s definition of bounded variation [4].)

Proof. The equivalence of (i) and (ii) follows from the relation
(5.3). Under (6.1) f for f in (5.8) maps the set P of principal
characters into {0, 1}. By Proposition 3 and the equivalence (i) and
(iv) in Proposition 2 (6.1) is equivalent to fe I(S).

(i) = (iii). Given f£; in (iii) let F= 3, vf: and g = S <0 Fi
Then f, g € I(S).
Moreover,

(6.2) @ F) = 6,9) = 6, F— 9) = 3 (3, F) .

By (ii) the left side of (6.2) is bounded.

(iii) = (ii). Each £ in I(S) is of the form f = >7,f; in the re-
presentation given by Lemma 1. Hence [(¢,f)| = | D\, (4, F)) | < >om,
[(g. ).

Let V(¢) be the supremum in (iii) of Proposition 7. We call V()
the total variation of ¢ and call ¢ of bounded wvariation if its total
variation is finite., Note that

(6.3) V(g) =sup (8, F — g).
f,g¢I(S)
fxg=0.

For ¢ a real-valued function on S and r an element of S define

(6.4) #1(s) = #(rs) for all se S.

Then

(6.5) (67, F) = (3, r=f) for all fe Z(S).
Define

(6.6) l¢|(r) = Vi(gr) for all re S.

PROPOSITION 8. For ¢ real-valued on S the following are equi-
valent:

(i) |gl(r) < oo for all re8S

(ii) For each f in I(S)

sup (6,9 — h) < oo
g, he I(S)
g+h="7~F
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(iii)y For each f in I(S)

supil(sﬁ,f,-)l < oo
f, oo, F,eJ(S)
Sfi=f

(iv) For each f in Z(S)*

sup (¢, 9) <
g€ Z(S)
lgl=f

where |g| < f means there exist representations in Lemma 1 such that
f=>ref, and g = >."6.f; with |6;] < &;.

(v) ¢ s the difference of two positive definite functions. There
s a Jordan decomposition ¢t — ¢~ = ¢ with ¢*, ¢~ positive definite
and ¢t + ¢~ = |d|.

Proof. Setting f = r in (ii), (iii), or (iv) one sees that the supre-
mum there is just (6.6). So (i) is implied by (i), (iii), or (iv). The
converse holds because the supremum in (ii), (iii), (iv) is (¢], f).

Given (i) let ¢* = (|¢| + ¢)/2 and ¢~ = (]¢| — ¢)/2. These are
positive definite because | (4, F)| = (4|, f) for all FeI(S). Hence (i)
implies (v). The converse is trivial.

COROLLARY 8(a). ¢ s of bounded variation iff ¢ is the difference
of two positive definite functions of bounded variation.

7. Measures on the Stone space. Let (S,-) be a semilattice
with unit 1. (One can trivially adjoin a unit to a semilattice which
has none.) Let X(S) be the set of all characters p on S with p(1) =
1. In the notation introduced in §3, [s] = [1] = X(S) for all seS.
Since X(S) contains all the principal characters it amply separates S
by Proposition 3 and @ = [st] = [s] N [¢] for all s,¢ in S.

X(S) is a subset of {0,1}5, the space of all {0, 1}-functions on S.
This space is compact since it is a product of finite spaces. The
product topology is determined by pointwise convergence of the func-
tions. So X(S) is a closed subspace of {0,1}5 since a limit of
characters with p(1) = 1 is again a character with p(1) = 1. So X(S)
is compact in the topology it inherits from {0,1}. For p in X(S)
and E a subset of X(S) we have pe E iff given any finite subset F
of S there exists ¢ in F with ¢() = p(t) for all ¢ in F. Applying
this characterization to [s] and its complement we conclude that [s]
is both open and closed. The topology is the smallest topology in
X(S) for which [s] is open-closed for every s in S.
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THEOREM I. Let ¢ be a real-valued function on a semilattice S
with unit 1. Define the set function

(7.1) O([s]) = ¢(s) for all seS.

Let &7 be the o-algebra generated in X(S) by the sets [s] with se S.
(@) @ extends to a bounded, countably additive measure on
iff ¢ 1is positive definite.
() @ extends to a bounded, countably additive, signed measure
on 7 iff ¢ is of bounded variation.

Proof. Since X(S) amply separates S, (ii) of Proposition 2 gives
through (2.5) a unique extension of @ in (7.1) to a finitely additive,
real-valued function @, on the Boolean algebra .%/ generated in 2%
by the sets [s] with se S. Since every [s] is compact-open and the
compact-open subsets of X(S) form a Boolean algebra, every member
of .7 is compact-open. So no member of .%7 can be a union of in-
finitely many, pairwise disjoint, nonempty members of .o%4. Therefore
(a) follows from Proposition 6 and the well-known extension theorem
for measures on Boolean algebras of sets.

Finally, (b) follows from (a) and Corollary 8(a).

THEOREM II. Let ¢ be a real-valued function on a semilattice S
with unit 1. Let H be any set of monmzero characters on S. Let
S (H) be the o-algebra generated in 27 by the sets [s]y with se S.
Define

(7.2) D([sl) = ¢(5)-
Then
(i) @ ewtends to a bounded, countably additive measure on &7 (H)
o
Given any sequence {f,} in Z(S) such that

73 f.(0) | 0 for all pe H, then (,f,) | 0.

(i) @ ewtends to a bounded, countably additive, signed measure
in S(H) off ¢ is of bounded variation and (7.3) holds for |g|.

Proof. The Daniell condition (7.3) implies (v) of Proposition 6
through monotoneity of convergence in (7.3) applied to the sequence
{f,0,0,--.} for any fe Z(S)*. So (7.3) implies ¢ is positive definite.
So (¢, —) is a finitely additive measure on the Boolean algebra I(S).
Define

(7.4) O(rcy f) = (¢, f) for feI(S).
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(7.4) is consistent with (7.2) under (2.2) and (2.5). Moreover, (7.4)
vanishes for 7 ,f=f|H = 0 by (7.3). So @ in (7.4) is a finitely addi-
tive measure on the Boolean algebra z,(I(S)) which is a subalgebra
of 2%, Since @ is continuous by (7.3), @ is countably additive and
hence extends to a countably additive measure on the o-algebra gen-
erated by 7,(I(S)) in 27. This oc-algebra contains .87 (H) because
[sle = (mxs)™ (). That is, wys is the indicator of [s]y.

The last statement implies 7,8 is measurable, hence integrable,
and therefore z,f is integrable for all fe Z(S). So the converse
(7.3) in (i) follows from continuity of the integral.

Finally (ii) follows from (i) applied to ¢*, ¢~ since these satisfy
(7.3) whenever |¢| does.

Note that (7.3) can be put in the explicit form

(7.5) Given sequences {s;} and {t;} in S and increasing sequences {M,}
and {N,} of positive integers such that

S p(s) — S p(t; )| 0 for all pe H,
then

M, Ny

S o) — 300 | 0.

8. Measures on distributive lattices. Let (L, A, V) be a
distributive lattice with distinet lower and upper bounds 0 and 1.
We shall usually write ab for a A b.

Each finite sequence «, = {a,, ---, a,} in L defines a mapping on
Z* into L, namely

lfork=0
< k<
8.1) ay(k) = { XA ta for 1<k<n

k(a)=k

0fork>n

(See (3.2) for explanation of notation.)
Note that a,(1) = a, V +++ V a, and a,(n) =a, ++- a,.

A measure ¢ on L is an isotone valuation [1] which vanishes at
0. That is, ¢ is a real-valued function on L such that

(1) ¢(0)=0
(8.2) (ii) ¢(a) < ¢(b) for a < b
(il) (@ V b) + s(ab) = é(a) + 6(b) for all a, b.

As is well-known (iii) in (8.2) extends by induction to the inclu-
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sion-exclusion formula

(8.3) ¢(a1 \VACERIAV/ an) = Z (_ 1)k(a)+1 ¢(7Z'a)

e A

in terms of the notation in (3.2). In terms of the injection of a
distributive lattice L into the Boolean algebra .97 (L) it generates,
the measures on L correspond to the finitely additive measures on
7 (L),

PROPOSITION 9. The function defined in (8.1) satisfies:

(i) ayk) = ak—1) for k>0

(ii) For k>0, n>1, and a, the sequence «, with last term
deleted,

(k) = a(k) V ane,(k — 1).

Proof. (i) holds because each term 7w« of the join in (8.1) defining
a,(k) is a lower bound of a similar term in the join defining a,(k — 1).
(ii) follows from (8.1) if we apply the distributive law to split the
join in (8.1) into those terms 7a with a a subsequence of «;, and
those with last term a,.

PropoOsITION 10. For ¢ a measure on L and o, = {a, +++, a,} @
finite sequence in L,

8.4) S5 () = 3 6()

Proof. Apply (iii) of (8.2) to (ii) of Proposition 9 and sum over
k so that, after deleting terms which cancel in pairs, one gets

®:5) S sla®) = 35 g(@ () + o(a,).

So (8.4), being trivial for » = 1, follows by induction from (8.5).

PROPOSITION. 11. For finite sequences oy = (@, -+, a,) and B, =
(b, +++, b,) in L we have ay(k) < By(k) for all k iff

(8.6) Zn‘, hla,) < ﬁ‘, nb;) for every measure h on L with range {0, 1}.

Proof. As is well-known [1] such lattice homomorphisms 7 se-
parate L, giving a representation of L as a lattice (L, N, U) of sets.
Hence the first condition in Proposition 11 is equivalent to

(8.7) May(k)) < h(By(k)) for all {0, 1}-measures & and all k.
Applying the lattice homomorphism % to (8.1) we conclude that
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May(k)) = 1 iff at least & terms a; have h(a;) = 1, equivalently
(8.8)

v

S h(a) = k.
So (8.7) is equivalent to k < >\™, h(b;) for all positive integers k
satisfying (8.8). This condition is equivalent to (8.6) since sums of
h-values are always nonnegative integers.

PropoSITION 12. A real-valued function ¢ on L is a measure iff
for all finite sequences a, = (a,, +++,a,) and B, = (b, +++, b,) in L

G ak) = gk for all I implies 3 6(a) < 3, 50).

Proof. (8.9) applied to sequences «,, B, of 0’s with m == n implies
#(0) = 0 since a,(k) = B,(k). (8.9) with m = n = 1 gives (ii) of (8.2).
Finally, (8.9) applied to «, = {a, b} and g, = {ab, a \V b} gives (iii) of
(8.2) since ay(k) = By(k).

Conversely, let ¢ be a measure on L. Then (8.9) follows from
(8.4) in Prop. 10 and (ii) of (8.2).

THEOREM III. Let L be a distributive lattice with 0,1. Let M
be any subset of L such that 1€ M. A real-valued function ¢ on M
extends to a measure on L iff (8.9) holds for all finite sequences «,
and B, in M.

Proof. By Proposition 12 we need only show that ¢ can be ex-
tended to L with (8.9) preserved. Since (8.9) is a property of finite
character the axiom of choice yields a maximal extension of ¢ to some
subset N of L containing M such that (8.9) holds. We contend N =L.

Suppose N %= L. Then we could choose 2 in L ~ N and define

(8.10) 4(w) = inf 3, (b)) — 3, 6(a)

where the infimum is taken over

(8.11) all {a, -+, a,), (b, -+, b) in N with
{CE, Ay ooy, ap} = {bl' ) bq}

in terms of the functions defined by (8.1) in L. Note that (8.11) is
nonvoid since {1}, {1, 1} € (8.11). Therefore ¢(x) < . On the other
hand the inequality in (8.11) implies by Proposition 11 that {a, ---,
a} = {b, ---, b}. Hence 4(x) =0 by (8.9). With the inequality in
(8.11) for the hypothesis of (8.9) the conclusion of (8.9) follows from
(8.10). On the other hand given
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(8'12) {ap+u tt an} = {:B, bq+u ) bm}

with the a/s and bjs in N we conclude from (8.11), (8.12) and Proposi-
tion 11 that {au ey Oy oy, an} = {bn t bq' ) bm}‘ So Z?:l ¢(a/z) =
>, é(b;) since (8.9) holds in N. That is,

=P+

(8.13) 3, 6@) — 3, 4lb,) = £ 46) - 3 6(a).

Hence by (8.10) the left side of (8.18) is a lower bound of ¢(x).
That is, the conclusion of (8.9) holds with the hypothesis (8.11).
Therefore, since (8.9) holds for (8.11) and (8.12) it must hold for all
sequences in {x, N} by Proposition 11. This contradicts the max-
imality of N. So N = L.

THEOREM IV. Let (L, A, V) be a distributive lattice with dis-
tinct 0.1. Let (S, \) be a subsemilattice of (L, \) such that 0,1¢ S.
Then a real-valued function ¢ on S extends to a measure on (L, A, V)
ioff both of the following conditions hold:

(i) #0) =0 and

(ii) For all finite sequences {a, -+-, a,} and {b, +++, b,} m S,
aV o eeVa, b Ve VD, tn L implies

(8.14) 5 (= DHO g(ra) < 3 (= 10 g(p)
in the notation of (3.2)

Proof. Every measure ¢ on L satisfies (i) by definition. ¢ satisfies
(ii) since (8.14) is just ¢(a, V +++ Va,) < ¢(b, \V +++ VV b,) which holds
because ¢'is isotone.

Conversely, let (i) and (ii) hold for ¢ on S. Consider an arbitrary
member f = ax(1l — a)x*-+++x(1 — a,) of J(S) with a,a, +-+,a, in S
and a; < a for all 2. In terms of the join in Z(S), f=a —a, V +--
V a,. So for (2.5) we have (¢,f) = ¢(a) — (¢, @, V +++ VV a,). With
b= ¢+ =b, =a in (ii), (8.14) becomes (g,a, V -++ V a,) < ¢(a).
Hence (¢, f) = 0. So (iv) of Proposition 6 holds. That is, ¢ is posi-
tive definite. This together with (i) implies that (¢, ) of (2.5) is a
measure on I(S).

To prove ¢ on S extends to a measure on L. we apply Theorem
III. We need only show that (8.9) holds for sequences in S. The
hypothesis of (8.9) implies V-1 7® < Viw=-x7B in L for all k.
Using these inequalities in the hypothesis of (ii) we get

(8.15) @V, =@ V )
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for all k£ for the conclusion (8.14). Summing (8.15) over k¥ and sub-
jecting both sides to Proposition 10 in terms of the measure (¢, ) on
I(S) we get the conclusion of (8.9) from (8.4).

9. Regular measures on a regulated semilattice. A regulated
semilattice [2] is a triple (S, -, ) where

(i) (S, +) is a semilattice with 0 in which a* = b* implies a = b,
where for E a subset of S the annihilator of E, consisting of all 2
in S such that ze = 0 for all ¢ in E, is denoted by E“.

(i) the regulator < is a binary relation on S satisfying:

(4)) a < b implies a < b,

(4,) 0K0,

(A;) If a € b and ¢ € d then ac K bd,
(4) If a € b=c¢ then a K¢,

(4;) Given p € g = 0 there exist a,, +++,a, and b, -+, b, such
that {a, -+, a,)t & p*, b; =0 for some 47, and a; < b; < ¢
for all 1,

(4,) Given a, b, ¢ with a € b there exist d,, ---,d, and ¢, -+, ¢,
such that {b,d,, ---, d,}* S c¢', ae; = 0 and d; € ¢; for all 7,
(4) If {a, +++, a,}t < p* and a; € ¢ for all 4, then » < q.

It was shown in [2] that a regulated semilattice (S, -, ) is
characterized by the existence of a unique representation (&7, N, ©)
in which &” is a topological base of interiors of compact subsets of
a locally compact space X and A< B means the closure of A is in-
terior to B. We consider the following question here: Which functions
é on S can be extended, when transferred to .o under the represen-
tation, to regular Borel measures on the locally compact space X?

The regulator € can be extended to a binary relation on finite
sequences «,, B, in S by defining
(9.1) B, € a, to mean there exists a finite sequence ¢ in S such that
0t < B¢ and for each di in ¢ there is some «; in «, with d, € a,.
In terms of the representation it is easily seen that (9.1) means
U stea 4: € Usies B

THEOREM V. Let ¢ be a real-valued function on a regulated
semilattice S. Under the representation of (S, -, ) as (&, N, ©)
wm a locally compact space X the function ¢ has a umique extension
to a regular Borel measure on X iff the following conditions hold:

(i) #(0)=0

(ii) For every finite sequence o, = {a,, *++, a,} in S

9.2) (¢,a1\/---van)=ﬂsup (¢, b,V +++ \V b,)

o<
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where the left side of (9.2) is given explicitly by the left side of (8.14).

Proof. Let ¢ satisfy (i) and (ii). With b, = ++- = b, = 0 in (ii)
we conclude from (i) that (9.2) is nonegative. So ¢ is positive definite
since (vi) of Proposition 6 holds.

For each compact subset C of X define
(9.3) ¢(C) = inf (g,a,V -+ Va,)

A7U...U4,2C
where A; is the member of .&” representing the member a; of S. We
contend that ¢, is a regular content, hence is the restriction to com-
pact sets of a unique regular Borel measure on X. That is, we must
verify the following five conditions for compact sets C and D:

(m) 0= $o(C) < oo,
(m;) C< D implies ¢,(C) = ¢4(D),

(m;) ¢(C U D) = 64(C) + ¢o(D),

(m) CND=g¢ implies 4,(C) + ¢(D) = ¢,(C U D),
(m) $(C) = int 4(D).

(m,) and (m,) follow trivially from (9.3).

Given a,, +++, Ay, ***, @, in S such that

9.4) AU---DA,2Cand 4,,,D---DA, 2D

then

(95) ¢0(CUD)§(¢, alv e vam\/ e van)§(¢ya1v M \/am) +
) (¢’y iy V oo \/an)

since 4, U---UA4,U-+--UA,2CUD and ¢ is positive definite.
Taking infima on the right side of (9.5) we get (m,;). To verify (m,)
consider any B, ---, B, in . which cover C U D. Using properties
of the base .&” and the disjointness of C, D we can find A4, ---, 4,,
<+, A, in &7 such that (9.4) holds, each A; is contained in some B;,
and A;NA; =9 fori =<=m <j=<n.

So

(a, VvV -+ Va)(a,,V -+ Va,)=0 and

9.6
9.6) @\ -\ a, < b\ -e- Vb, in Z(S).

From (9.3) and (9.4) we get ¢,(C) < (¢,a,V +++ V a,) and ¢,(D) <
(4, @piy V +++ \V a,) which yield under addition

9.7 ¢(C) + (D)= (p,a,\V -+ Va,V--+a,) =(3,b V-V by
by (9.6). Taking an infimum on the right side of (9.7) we get (m,).
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To verify (m;) consider an arbitrary ¢ > 0. Choose a,, ---, a, in
(9.3) with ¢,(C) > (¢, @,V +-- VV @a,) — e. Choose a compact set D
such that Ce D A, U +-- UA,. Then by (9.3) ¢/(D) = (¢, @, \V/ +++
V a,) < ¢(C) + e. Hence (m;) holds. Thus ¢, is a regular content.

Let ¢ be the unique regular Borel measure that extends ¢,-¢,(C) =
#(C) = inf, ¢(A) where C is any compact set and the infimum is
taken over all finite unions A of members of .&¥ such that A 2 C.
So ¢, in (9.3) is the only content which extends ¢.

Conversely, if ¢ has an extension ¢ then (i) and (ii) must hold
since they state that ¢(®) = 0 and $(A) = sup-, ¢(B) for A, B finite
unions of members of .&~.
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