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A GEOMETRIC APPROACH TO THE FIXED

POINT INDEX

ROGER D. NUSSBAUM

J. Leray defined a local fixed point index for functions
defined in what he called convexoid spaces. From the stand-
point of analysis, the most important example of a convexoid
space is a compact subset C c X, X a locally convex topologi-
cal vector space, such that C = U ?=1 d, where d are compact,
convex subsets of X or a homeomorphic image of such a C.
In this paper a simple geometric approach is given (see Lemma
2 below) by means of which a fixed point index can be defined
for functions with domain in a class of spaces ^ which con-
tains the spaces C mentioned above and also the compact
metric ANR's. The usual properties of the fixed point index
are established, and it is shown that they axiomatically deter-
mine the index for the class of spaces J^~.

As far as we know, none of the approaches to the fixed point index
which have been published since Leray's work have been shown to apply
to spaces C of the type above. For instance, A. Granas [9] has re-
marked that if a compact space C is r-dominated by an open subset
of an lctvs, then the Leray-Schauder index for compact maps on open
subsets of an lctvs gives a fixed point index for maps of open sub-
sets of C into C. But without metrizability the spaces considered here
are not necessarily r-dominated by open subsets of an lctvs. F. Browder
[3] has shown that if a compact Hausdorff space admits a ^semicom-
plex structure," then a fixed point index can be defined for functions
with domain in the space. However, to show that given topological
spaces admit semicomplex structures, the metrizability of the spaces
has almost invariable been used. Thus Browder has shown that com-
pact, metric ANR's admit semicomplex structures, and Thompson [19]
has established the same thing for metric HLC* spaces. But a finite
union of compact, convex sets in an lctvs need not be metrizable. In
any event, we shall avoid questions about semicomplex structure and
obtain our fixed point index from the classical one for compact, finite
dimensional polyhedra.

1* Let us begin with some notation. Let C be a compact sub-
set of a locally convex topological vector space (lctvs) X, always
assumed Hausdorff. We shall write C e ^ if there exists a finite
closed covering {d: 1 ̂  i ^ n) of C by compact, convex sets d c C,
ie if C = [Ji=ι Ci, Ci a compact convex subset of X. If C e ^ 9 G c C
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is an open subset of C, and f:G—*C is a continuous map such that
{xeG:f(x) = x) is compact (possibly empty), then we shall define in
this section a fixed point index ίc(f, G) for / .

We take as a starting point Dold's development of the classical
fixed point index [6] If Y is a compact Hausdorff space, Dold calls
Y a Euclidean neighborhood retract (ENR) if there exists an open sub-
set 0 of some Euclidean space R", a continuous map ί: Y—>0, and a
continuous map r: 0 —• Y such that roΐ = identity on Y. Notice that
since any finite dimensional lctvs F (always assumed Hausdorff) is
linearly homeomorphic to Rn for some n, we may as well assume that
Y is imbedded in F in the above definition of ENR. For our work
here, the most important example of an ENR will be a compact sub-
set C of a finite dimensional lctvs F such that C = U?=i Ci for some
compact, convex subsets C{ c F. The fact that C is an ENR follows
from two theorems. First, Dugundji has shown [7] that a closed,
convex subset of a Banach space X is an ANR (see [1] for definitions).
Since F is finite dimensional it can be taken to be a Banach space,
so any closed, convex subset of F is an ENR. Second, a classical
theorem states that if YΊ and Y2 are subsets of a metrizable space
Y and Yl9 Y2, and Yx Π F2 are ANR's then Y1 (J Γ2 is an ANR (see
[1] for a proof). In our case these results combine to show C is an
ENR.

Now let Y be a compact Hausdorίf ENR, G an open subset of Y,
and f:G—> Y a continuous map such that {xe G: f(x) = x} is compact.
Then there is a unique integer valued function iγ(ff G) having the
following properties. (O'Neill has shown uniqueness of the fixed point
index for compact poly topes [17]. Since for any ENR E, there exists
a polytope P, and continuous maps j : 2? —• P, r: P—> E such that roj =
identity on E, the methods of §2 show uniqueness for ENR's).

1. (The additivity property). Let F, /, and G be as above. If
S = {xe G: f(x) = x}, assume that S c Gx U G2, where Gλ and G2 are
disjoint open subsets of G. Then iγ{f, G) — iγ(f, G,) + iγ(f, G2). Fur-
ther, if iγ(f, G) Φ 0, / has a fixed point in G.

2. (The homotopy property). Let G be an open subset of a com-
pact, Hausdorff ENR Y. Let I = [0, 1] = the closed unit interval and
let F: G x /—• Y be a continuous map. Assume that S = {(a?, t)eG x
7: jP(a?, ί) = x) is compact. Then if we define Ft(x) = F(x, ί), iF(F 0, G) =

i, G).

3. (The normalization property). Let Y be a compact, Hausdorff
ENR and let / : Γ-> F be a continuous map. Then iγ(f, Y) =
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where Λ(f) is the Lefschetz number of /, using singular homology
with rational coefficients,

4. (The commutativity property). Let Y1 and Y2 be compact,
Hausdorff ENR's and let G^ and G2 be open subsets of Y1 and Y2 res-
pectively. Let f: GL—> Y2 and/2: C?2 —• ΪΊ be continuous maps. Setting
fζ = / r H Q and iϊ2 = fr'iGdf assume that Sί = {xeH,: (f2f)(x) = x) is
compact. Then S2 = {xe H2: (ff2)(x) = x) is compact and iYl(f2f, H,) =
ir2(ΛA H2).

Notice that if Y, /, and G are as in 1 and f(Y) aY' aY, Yf an
ENR, then iγ(f, (?) = iF,(/, GΠ Y'). This follows from 4 by using
the inclusion i: Yf —> Y.

In order to generalize the above fixed point index to our context,
we need some lemmas. First, we introduce some further notation.
We shall denote subsets of {1, 2 , n} by J, K, L, M and we define
\J\ to be the number of elements in J. If C is a compact Hausdorff
space, and C = {J?=1 d, where C* is a compact subset of C for 1 ̂  i ^ n,
then for L c {1, 2 ••, n], we shall write CL = ΓlieL C*.

With the aid of this notation we can state our first lemma, which
is the basis of all our further work.

LEMMA 1. Let C be a compact, Hausdorff space such that C —
U?=i Cit C* a compact subset of C. Let ̂  be a finite open covering of
C. Then there exists a finite open covering Ύ* — {VJti: J a {1, 2 , n},
l^i-^kj} (i.e., indexed by ordered paris (J, i), J a subset of {1, 2, , n},
i an integer for which 1 ̂  i ^ kj, kj an integer depending on J) such
that (1) *JΓ is a refinement of %S (2) VJΛ is empty if Cj is empty
and VJti Π Cj is nonempty if VJΛ is nonempty. (3) If k$J, cl(VJti) Π
Ck is empty. (4) If \L\ ̂  \K\ but L "fi Kf VLΛ Π VK)j is empty.

Proof. We construct {VJΛ} by induction on | J | , starting with
\J\ — n. The inductive assumption at the (n~r)th step, 1 < r ^ n, is
that there exists a collection of open sets

{Vj9i:J<z {1, 2, . . . , n], \J\^r,l<^i^ K)

which satisfies 1-4 above and is such that Uuι*r U*=i Vj.i ̂  \J\J\ZTCJ.

The object is to define open sets VJΛ for Jc{l, 2, •••, n) for which
I J\ = r - 1 and 1 ̂  i ^ λv and such that {V^: \J\ ̂  r - 1, 1 ̂  i ^ ^}
satisfies 1-4 and gives an open covering of (Ji/i^-iC/.

1. If I J\ = n, let {FJ?i: 1 ̂  i ^ ^} be the collection of Ue <Zf
which have nonempty intersection with Cj. This collection may be
empty.
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Step 2. Assume for some r, 1 ̂  r ^ n, we have constructed
{VJti: \J\ ̂  r, 1 ̂  ί: 2g Λj} which satisfies the inductive hypothesis. If
r = 1, we are done, so assume r > 1. For each K c {1, 2, , w} with
I#I = r — 1, let A* = Cκ — \J\L^r Ui^fcL VLti and notice that if j$
if, Aκ and Cy are disjoint compact sets (since, for j $ K, Cκ f) Cό =
CK{j{j] and |if U {j}\ ̂  r). It is also clear that Aκ Π -4.jp/ is empty for
all if' such that if' Φ if, since Aκ, c C5 for i e if' - if and A* Π C,
is empty. It is thus not hard to see that there exist open neighbor-
hoods Oκ of Aκ for all if c {1, 2, , n] with | if | = r - 1 such that
cl(Otf) Π Cy is empty for j £ K and cl(Oκ) Π cl(Oκ,) is empty for all if,
if' with \K\ = \K'\ =r -Ihut KΦ K'.

Next, for a given if c {1, 2, , n} with | JBΓ| = r — 1, consider all
L c {1, 2, , n} such that \L\ > r — 1 but L z> if. For each such L,
select j e K such that j $ L. If (L, j) is such a pair, we know by in-
ductive assumption that cl (Uίίi VLti) Π Cd is empty so there exists an
open neighborhood W{Ltj) of Cs 3 Cπ such that cl (U*=i VKti) Π W{L,ά)

is empty. We set Wκ = Π(L,J) TF(Li), where the intersection is taken
over all ordered pairs (L, j) as above. We define Tκ = Oκ Π TΓjp, an
open neighborhood of A*.

Let {VKti: 1 ̂  i ^ kκ} be the collection of sets of the form Tκ Π
U, Ue %f, such that Aκ Π U is nonempty. This collection may be
empty. Clearly {VKti: 1 ̂  i ^ kκ} is an open covering of Aκ. Observe
also that {VJΛ: \ J\ ^ r — 1, 1 ̂  i ^ kj} gives an open covering of
U\j\zr-iCj. By induction we certainly have an open covering of
U\j\*r Cj. If xe Cκ for \K\ = r - 1 and #$ C7|jL|̂ r FL l ί, then by defi-
nition xe Aκ so that x e VK)i for some i.

It remains to check conditions 1-4 for the new covering. Since
Vκi, I if I = r — 1, was selected so Vκ 4 c ί7 for some Z7e ̂ , condition
1 holds. Condition 2 holds trivially: If Cκ is empty, Aκ is empty
and {y*,*: 1 ̂  i ^ kκ} is empty. If F^ < is nonempty, Vκ i = U f] Tκ

for some Ue^ such that ί/Π A^ is nonempty. If |L | ̂  |if| but
L Z) if, we want to show V^ Π F .̂y is empty. If |if| > r — 1, the
result is true by inductive hypothesis. If | if | = r — 1, and | L \ > r — 1,
select ke K such that A: $ L. By our construction we have Vκ.ό a Wκ c
W(L;k) and PΓ(Lfc, ΠclίZ/*^ VZίί) is empty, so that in particular VLtiΠ
Vκ,j is empty. If |if| = \L\ = r — 1, then again by our construction,
Vκ.j Π Fzί (Z Oκ f] OL is empty. In either event, 4 is satisfied. Final-
ly, to show 3 it suffices to show that if | if | =r-l and.? ί if, cl(F^ %) Π Cy

is empty. Since Vκ < c 0*, and cl(O^) Π C5 is empty, this follows im-
mediately from our construction.

This completes the inductive step. After n repetitions, the desired
covering is obtained.

Our next lemma provides the justification for proving Lemma 1.
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Lemma 2 is the basic result upon which all work in this section depends.

LeMMA 2. Let C be a compact subset of an Ictvs X and suppose
C = Ui=1 Ci9 Ci a compact, convex subset of X. Then given any con-
tinuous seminorm q and ε > 0, there exists a continuous, finite dimen-
sional map r:C—>C such that if xeCi for 1 ̂  i ̂  n, then r(x) e d
also and q(r(x) — x) ̂  β. (By finite dimensional we mean that the
range of r lies in some finite dimensional subspace of X).

Proof. For each xeC, let Ux = {ye C: q(y — x) < e/2}. This gives
an open covering of C, and by the compactness of C, there exists a
finite subcovering <%s - {UXl, UX2, , UXt}. Clearly, if Ue ^ and x,ye
U, then q(x — y) < s. By Lemma 1, there exists a refinement 3^ =
{Vj.ii J c {1, 2, , n}, 1 ̂  i ̂  kj} satisfying conditions 1-4 of Lemma
1. By condition 2, for each nonempty VJti select PJ}ie VJfiΠCj; also
define PJΛ = 0 if VJti is empty. Let {ψJtiι J c {1, 2, , n), 1 ̂  i ̂  kj}
be a partition of unity subordinate to VJΛ (with the convention that
φJti = 0 if TO,* is empty), so that supp (φJti) c F J f i and ΣJ,< ^,*(») = 1
for α G C. Define r(a?) = Σ/,i ΦJΛX)PJΛ I* ί s c l e a r t h a t r i s a contin-
uous, finite dimensional map. Also, it is easy to show that q{x—r(x)) ̂
ε. For q(x - r{x)) = g(Σ/^/^W(^ - iV. )) ̂  ΣJ,Λ,<(*)?(« - -PJ,<)»

 a n d
if ,̂4(0?) ̂  0, x e Vj,i, so that q(x - PJti) ^ ε and ΣJ,< ΦJΛX)Q(X ~ PJΛ) ^

The nontrivial statement (and the reason for introducing {VJΛ})
is that r(x) e C{ if x e Ct. Thus suppose x e C{. If for L a {1,2, , ^},
ΐ $ L , we know by property 3 of the covering that cl(VΊ,fi)ΠC4 is
empty, so that φLtί(x) — 0 (since supp φL>j c F^^ ). Thus we have r(x) =
Σ(L,ί),ίeL^L,i(̂ )-PL,i Since P ^ eCiCCί, this is just a convex combi-
nation of points in d and hence lies in C;.

Notice that the proof of Lemma 2 only uses properties 1-3 of the
covering {V^J.

Before proceeding with our main line of development, let us state
a proposition which indicates again the usefulness of Lemma 1. The
following proposition is standard if C is a compact metric ANR, and
it plays a key role in some developments of the fixed point index for
compact, metric ANR's Since we shall not need this result, we shall
not give a proof except to say that it follows straightforwardly from
Lemma 1. We refer the reader to Hanner's article [10], where theo-
rems along the the general lines of the following proposition are proved
for metric ANR's.

PROPOSITION. Let C be a compact subset of an Ictvs X and suppose
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C = U?=1 d, Ci compact, convex. Let a be a finite open covering of
C. Then there exists a finite open covering β of C which is refine-
ment of a and has the following property: If Nβ denotes the nerve
of β, then there exist continuous maps fβ: C —> Nβ and gβ: Nβ-+C such
that gβ ofβ is homotopic to the identity I on C. Furthermore the homo-
topy Ft: C—• C, O^ί^l , FQ = gβofβ, Fι = I, can be chosen so that for each
xeC,lUea for which Ft(x) e U for 0 ̂  t ^ 1.

With the aid of Lemma 2 we can define our fixed point index.
Let C be a compact subset of an lctvs X and G an open subset of C.
Suppose that C — \Jΐ=ι Ci9 C{ compact and convex. Let / : cl (G) —> C
be a continuous map such that f(x) Φ x for x e dG = cl (G) — G. Since
{x — f(x): xe dG} is a compact set not containing 0 and X is an lctvs,
there exists a continuous seminorm q such that q(f(x) — x) ̂  ε > 0
for x e dG. We shall say that a continuous map g: cl (G) —> C is an
admissible approximation with respect to < /, {CJ > (Ci as above) if
(1) There exists a continuous seminorm q such that q(f(x) — x)^>ε>0
for xe dG and q(f(x) - g(x)) < e for xe dG. (2) For all xe cl (G), if
f(x) e C^ then g(x) e Ci (3) g is finite dimensional map, i.e. the range
of g lies in a finite dimensional subspace of X. With the notation
above we take Cl, 1 ̂  i ^ m, to be any finite dimensional compact,
convex subset of C< such that #((?) c U^i C/ Ξ C' (K 0 is a s above
and F is any finite dimensional vector space containing the range of
g, we can define Cl — Ci Π V). By our previous remarks C" is a com-
pact ENR. Notice that g: cl (G) —> C", and by condition 1 on g9 g(x) Φ x
for xe dG. Thus we see that ic>(g, G Π C) is defined. We shall show
below that if we define ic(f, G) = v(#, G Π C), this gives a well de-
fined definition.

THEOREM 1. Let C be a compact subset of an lctvs X and assume
C = \J\=l Ei9 Ei a compact, convex set. Let G be an open subset of C
and f: cl (G)—>Ca continuous may such that f(x) Φ x for xe dG. Let
q be any continouous seminorm and ε > 0. Then there exists an ad-
missible approximation θ with respect to < /, {Ei} > such that q{θ(x) —
f{x)) < ε for all xecl(G). Furthermore, suppose C = \jT=iCi and
C = U^iDj, Ci and D5 compact and convex. If g is an admissible
approximation with respect to < /, {CJ >, h is an admissible approxi-
mation with respect to < /, {D3) >, Cl, 1 ̂  i ^ m, is a finite dimen-
sional compact, convex subset of Ci such that g(G) c \JT=ι C = C and
D'j, 1 ̂  j ^ n, is a finite dimensional compact, convex subset of Όά such
that h(G) c \JU D's = D', then ic,(g, Gn C) = iD,(h, G Π D').

Proof. Let q be as above and let p be a continuous seminorm
such that p(f(x) - x) ̂  8 > 0 for xe dG. Define q'(x) = max {p(x), q{(x)}
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and ε' = min {ε, δ}; of course q' is a continuous seminorm. By Lemma
2, there exists a continuous map r:C—*C such that

(1) q'(r(x) - x) < ε' for all xeC
(2) r(x) G E{ iΐ xeE{ for all a; e C and 1 ^ i ^ ί.
(3) r is a finite dimensional map.

We define θ(x) = r(f(x)). It is immediate that 0 is an admissible ap-
proximation with respect to < / , {Ei} >.

Now let g be an admissible approximation with respect to < / , {CJ >
and h an admissible approximation with respect to < / , {Dό} > . Thus
there exist continuous seminorms qι and q2 such that q^fix) — x) 5* εn

«i(/(&) ~ 0fa)) < εi, ?2(/(») - α) ̂  e2, and q2(f(x) - g(x)) < e2 for all
xe dG. We define q(x) = max {qι(x), #2(#)}> a continuous seminorm, and
e = min fo, ε2}. Notice that C = (J£i U?=i Ĉ  Π -Dy, C* Γί Z>y a compact,
convex subset of X. If we set Eitj = C* Π Zλ,, by the first part of this
theorem, there exists an admissible approximation θ with respect to
< / , {Ei}j} > such that q(f(x) - θ(x)) < ε for xe cl (G).

Before proceeding further, let us recall the elementary theorem
that if A and B are compact, convex subsets of a topologieal vector
space X, then {sx + (1 — s)y: 0 ^ s ^ 1, x e A, 7/ 6 J5} is a compact, con-
vex subset of X. In particular, if A and J5 are also finite dimensional,
this shows cocl (A U B) (cocl denotes convex closure) is compact, convex,
and finite dimensional. In our case let V and W be finite dimensional
subspaces of X such that range (g) c V and range (h) c W and de-
fine Cϊ = C* Π F and D? = J9y n TΓ. Let C7 be a finite dimensional
subspace of X such that range (θ) c U and define E'itj = Eitj Π U.
Now define F' - UΓ=i Ui=i [cod (C{ U CΓ U ί?ίfi) U cocl (2>J U I>7 US!,y)].
By our above remarks, JF7' is finite union of compact, convex, finite
dimensional sets, and hence an ENR. It is also easy to see that F' c C,
C ' U ΰ ' c Fr and Θ(G) U flr(G) U h(G) c F ' . We thus see that iF,{g, G Π
F')9 iF,(θ, GΠF'), and iF,(h, G f] F') are defined. Because g(G Π F') c C
and λ(G Π Fr) c D', it follows (by the commutativity property) that
ic>(g, Gf)C') = iF,(g, Gf)F') and similarly for h. Thus to show that
%'(g, GnC) = ίD,(h, G Π JO'), it suffices to show iF,(g, G Π F') =
if,(θ, GΠF') = iF,(h, GΠ F'). We prove that iF,{g, Gf)F') = iF>(θ, Gf]Ff),
the proof for h being the same. Consider the homotopy sg(x) +
(1 - s)θ(x), O^s^l,xecl(Gf) F'). For x e cl (G Π i77')^ we know that
f(x) e Ei y for some i, i, so 0(α;) G £7- , , g(x) e C", and sίjr(aj) + (1 — s)θ{x) e
cocl [£7; y U CΠ C F' . Also, since qx{f{x) - sg(x) -(l-s)θ (x)) ̂  sqι{f(x) ~
g(x)) + (1 — s)q1(f(x) — θ(x)) < ε, and since qx(f(x) — x) ̂  ε2 for
x e dG, sg(x) + (1 - s)θ(x) Φx for α? e cl (G Π F') - G Π F ' . Thus the
homotopy is permissible and v(#, G Π JF7') = v(^, G Π î O

DEFINITION. Suppose that C e ^ C c I an lctvs, G is an open
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subset of C, and F: cl (G) —> C is a continuous map such that f(x) Φ x
for α? e 3G. Let {Ĉ : 1 ̂  i ^ m} be a covering of C by compact, con-
vex sets da C and let g be an admissible approximation with respect
to < /, {d} >. Let Cl, 1 ̂  i ^ n, be any finite dimensional compact
convex sets such that C c C; and g{G) c (jΓ î C = C. Then we de-
fine ic(/ f G) = v(flr, G n CO-

Theorem 1 shows that g exists and that our definition does not
depend on the particular admissible approximation g or the particular
C . Notice that if C happens to be an ENR, so that ic(f, G) is already
defined, then our definition reduces to the usual To see this, just con-
sider the homotopy F(x, s) — (1 — s)f(x) + sg(x), xe cl (G), 0 ̂  s ^ l
Since g is an admissible approximation, if f(x) e Ci9 then #(&) e Ci9 so that
i77^, s) eCf Furthermore, condition 1 on g guarantees that F(x, S)ΦX for
xeG,0<,s^l. It follows that ic(f, G) = ic(g, G), and since g(G) c C,
the commutativity property implies ic(g, G) = ic(g, G Π CO

It is now easy to show that the various theorems about the fixed
point index for ENR's extend to our context,

THEOREM 2. Suppose Ce<β^, G is an open subset of C, and
f: cl (G) —> C is a continuous map such that f(x) Φ x for x e 3G. Then
if ic(f, G) Φ 0, / has a fixed point in G. If S = {xe G: f(x) = x} c
G1 U G2, where Gx and G2 are disjoint open subsets of G, then ic(f, G) —
V(/, GO + io(f, G2).

Proof. Suppose ίc(f, G) Φ O Since Ce^, there exist compact,
convex sets Cif 1 ̂  i ^ n, such that C = U£=i C«. By Theorem 1, for
any continuous seminorm p and ε > 0, there exists an admissible ap-
proximation g with respect to < /, {CJ > such that p(g(x) — f{x)) < ε
for x e cl (G); and furthemore ic,(g, G f) C) = ic(f, G) Φ 0, where C Ξ
U?-I C< and Cί are any compact, convex finite dimensional subsets of
Ci9 such that g(G) c C' By the usual additivity property there exists
xeGnC such that #(α;) = x, whence p(f(x) — x) < ε. It follows that
if, for any continuous seminorm p and ε > 0, we define Cε>p — {xe
cl (G): p(f(x) — x) ̂  ε}, Cε,p is a nonempty, compact set. Also, the
collection {Cε,p: p a continuous, seminorm ε > 0} has the finite inter-
section property, since Π?=i CH,pi c Ce,q, where ε = min {ε̂ : 1 ̂  i ^ n}
and q(x) = max{p, (cc): 1^ i ^ ri\. Thus there exists a;oe f]Cε,p, and
since p(f(x0) — x0) = 0 for all continuous seminorms, /(a?0) = xo

To prove the second part of the theorem, note that f(x) Φ x for
xe dG U 3GX U 3G2, so that exists a continuous seminorm p and ε > 0
such that p(f(x) - x) ̂  ε for a? e 3G U 3G: U 3G2. By Theorem 1, there
exists an admissible approximation g with respect to < /, {CJ > such
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that p(f(x) - x) < ε for x e cl (G), and we have ic(f, G) = io,(g, GflC),
ic(f, Gd = v(#> Gί Π C), as usual, i — 1, 2. By the additivity property
for ENR's, ic,(g, G Π CO = v ( & GI.Π CO + v(flf, G2 Π CO-

With the aid of Theorem 2 a slight, but useful generalization of
our previous definition can be given.

DEFINITION. Suppose that C e <β^, G is an open subset of C, and
/ : G —> C is a continuous map such that S = {#e G: f{x) = #} is com-
pact. Then we define v(/ , G) = ic(f, V), where V is any open neigh-
borhood of S such that cl (F) c G.

This definition makes sense, for if Vx and F 2 are two open neigh-
borhoods of S above such that cl (V*) c G, define F = Vt n F 2 . Then
if we set C/. = y, _ cl (V)io(f, F*) - i σ (/, C7*) - i σ (/, F), by Theorem
2. Also we have ic(f, Ui) = 0, since / has no fixed points in Ut and
Theorem 2 would imply / had fixed points in IT* if ic(f, Ui) Φ 0. This
shows ic(f, V,) = ΐ σ ( / , F2).

Henceforth we shall use this generalized definition. It is clear
that Theorem 2 immediately generalizes to this context, the only dif-
ference in hypotheses being that we only assume / is defined on G
and S = {xeG: f(x) — x} is compact.

THEOREM 3. Suppose that C e J^l, G is an open subset of C, I —
[0, 1], the closed unit interval, and F:Gx I—>C is a continuous map
such that S = {(#, t)eG x I: F(x, t) — x) is compact. Then if we de-
fine Ft:G-+C by Ft(x) - F(x, t), ic(F0, G) = ic(F19 G).

Proof. Define π: G x I—+G by π(x, t) — x. It is clear that π is
a continuous map, so π(S) = T is a compact subset of G. Let F be
an open neighborhood of T such that c l ( F ) c G . Since {F(x, t) —
α;: (a?, ί) G 3 F x /} is a compact set not containing 0, there exists a con-
tinuous seminorm p and ε > 0 such that p(F(x, t) — x) ̂  ε for (x, t) e
3 F x /. Suppose C = JJ?=i C<f C< compact and convex. By Lemma 2
there exists a continuous, finite dimensional map r:C—*C such that
for all xe C, p(r(x) — x) <ε and for all xeC and 1 ̂ i ^ w r(a?)e C< if
ίceCi. We set C = U?=i cocl r(Ci), an ENR, and we define H(x, t) =
r(F(α;, ί)) for x e cl (F), t e I. By definition we have ic(Ft, G) = ic(Ft, V)
and ίc(Ft, V) = ic>{Hu FnCO, since jE/ί is an admissible approximation
with respect to < Ft, {CJ > and Ht(G) c C, where C is of the re-
quired form. Now by the ordinary homotopy property for ENR's,

v(£Γo, Fin co = v(fli, Fnco.

COROLLARY. Suppose that C e ^ , G is an open subset of C, and
F: cl G x [0, 1] ΐs α continuous map such that F(x, t) Φ X for x e 3G,
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0 ^ t ^ 1. Then ic{Fu G) = ic(F0, G).

THEOREM 4. Suppose that C e ^ and f:C—*C is a continuous
map. Then Hn{C) (singular homology with rational coefficients) is a
finite dimentional vector space for all n and Hn(C) = 0 except for finite-
ly many n. Furthermore, if Λ(f) = Σ^o ( — ϊ)ntr(f#, w), the Lefschetz
number of /, then Λ(f) = ic(f, C).

Proof. Since Ce <β^, suppose C = U?=i C;> C< compact and convex
By Lemma 2, there exists a continuous finite dimensional map r: C —* C
such that r(x)e d if cce C<. As before we define C = \jΐ=ιcocl r(Ci),
an ENR. Recall that for any ENR E (or in fact any compact, metric
ANR [1]) Hn(E) is a finite dimensional vector space and Hn(E) = 0
except for finitely many n. In our case let us view r as a map from
C to C" and let ί: C —*C be the inclusion map. Since ir is homotopic
to 7, the identity on C, by the homotopy s(ir) + (1 — s)7, 0 ^ s ^ 1,
(ir)*,n = i*,nr*,n = I*>n. It follows that i*>n: Hn(C)-> Hn(C) must be
onto, so Hn(C) is a finite dimensional vector space and 0 for almost
all %.

To show the second part of the theorem, note that irf is an ad-
missible approximation to < /, {CJ > so by definition we have ic(f9 C) =
ic>(rfi, C") — (by the normalization property for ENR's) Λ(rfi). Since
irf is homotopic to / (by the homotopy s(irf)(x) + (1 — s)f(x), 0 ^
s £ 1), Λ(f) = Λ(irf). However, we have tr(irf)*>n) = tr(ί*,n(rf)*tn) =
tH(rf)*,ni*,n) = M( r/Ό*,Λ by the commutativity property for the
trace operator tr on linear operators between finite dimensional vector
spaces. This shows Λ(rfi) = A(irf) — A(f).

The proof of the commutativity property is a little more involved
than that of Theorems 2-4. First, we need some simple lemmas.

LEMMA 3. Let K be a compact subset of an Ictvs X and f:K—+Y
a continuous map of K into an Ictvs Y. Then given any continuous
seminorm q on Y and ε > 0, there exists a continuous seminorm p on
X and δ > 0 such that for all x, ye K with p(x — y)<δ, q(f(x) — f(y))<ε.

Proof. For each x e K, there exists a seminorm px and δ > 0
such that if ye K and px(y - x) < δx, q(f(y) - f(x)) < ε/2. Let Nx =
{y e K: px(y — x) < δJ2} an open neighborhood of x in K. The open
sets Nx give an open covering of K, and since K is compact there
exists a finite subcovering NXl, •• ,ΛΓ

X%. Let p(x) — m a x l g ί ^ {pXi{
χ)}

and 2δ = m i n ^ ^ {δx.}; of course p is a continuous seminorm. For
convenience let Nx. = Ni9 px. = Pi, and δx. = δ{. If we take x, ye K
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with p(x — y) < δ, we can assume xe Nt for some i. Thus pt(x — xt) <
δJ2 and p{(y - α?,) ̂  ^(2/ - a?) + p<(α? - xt) ^ p(i/ - a?) + pt(x - α?<) < δt.
It follows that #(/(#) - f{x%)) < ε/2 and q(f(y) - f{x%)) < ε/2, so that
Q(f(y) - /(»)) > e.

LEMMA 4. Lei K be a compact subset of an Ictvs X. Let G be
an open subset of K. Then given any compact subset V c G, there
exists a continuous seminorm p and ε > 0 such that {yeK:xe V with
P(y -x)<e} = Np,ε(V) ΓίKcG.

Proof. For each xe V there exists a continuous seminorm px and
ε, > 0 such that {yeK: px(y-x) < εx] c G. Let Nx = {yeK: px(y-x)<
εx/2}. Since K is compact there exists a finite subcovering NXl, NX2, ,
Nx% of the open covering {Nx} of V. As before we define p(x) =
m a x ^ « n b*.(£)} and 2ε = min 1 S i ί Λ {ε*.}. Then if ye NPίt(V) Π K, so that
there exists xe V such that p(τ/ — x) < ε, select i such that xe Nx..
Then p(y — x) < ε implies px.(y — x) < eβ</2, and since p(x — »<) < εx./2,
pXi(y - »•) < s*»f whence i/eG.

THEOREM 5. (Commutativity property). Assume that
Ck c an Ictvs Xk, k = 1, 2. Lei Gfc c Cfc ί>e opew subsets of Ck and let

f: Gx —> C2 αraZ / 2 : G2 —• Cx δe continuous maps. Define Ht = frl(G2) and

H2 =/ 2 " 1 (G 1 ) cmd assume that St — {# 6 fli: (/2/i)(ί») = »} is compact. Then

S2 = {xeH2: {fj^(x) = α;} is compact and ictftf, Hx) = ΐ

proof. The fact that S2 is compact is immediate, since /2: Si -^ S2,
/.: S2 -> STX, (Λ/iXα?) = x for a; e Slf and (ΛΛ)^) - /̂ for y e S2.

Let G1 and G2 be open neighborhoods of Sx and S2 respectively
such that cl (G<) c G .̂ Let J^ = {x e Gλ: f(x) e G2} and similarly for
H2. It is clear that Ht is an open neighborhood of S»< and cl HidHi,
so that (/2/i)(aj) ^ a? for cceclffj — iSi and similarly (ff2)(x) Φ x for
^ e cl ^2 — S2. By Theorem 2, ic^f, HJ = iCl(f2/1, Hx) and similarly
for /i/g. Thus we may as well assume at the start that ft is defined
on cl (Gi), Si is a compact subset of iίi = {xe G^f^x) e G2}, S2 is a com-
pact subset of H2, (/8/i)(a?) ^ a, for O G cl fli. — St and (/i/2)(a?) 9̂  α? for
a? 6 cl H2 — S2. Let [7̂  be a compact neighborhood of S{ such that
UiCiHi and let Fi be an neighborhood of St such that cl F* c JET;,

/,(FJ c C72 and /2( F2) c ^ . Theorem 2 implies i^ίΛΛ, fΓJ - ^(ΛΛ, VΊ)
and i<72(/i/2, #2) = V2(/i/2, F2), so it is enough to show that iCl{f2fy FJ =

Since (f2fd(v) — x Φ 0 for XG cl (ίίL) — ΐ^ (a compact set), there
exists a continuous seminorm pλ on X : and εx > 0 such that Pi((/2/i)(#) —
α?) ^ Si for x e cl (flΊ) — Vx. Similarly, there exists a continuous semi-
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norm p2 on X2 and ε 2 >0 such that p*((fif%){x) — x)>e2 for xe c\(H2) — V2.
By Lemmas 3 and 4 there exist a continuous seminorm gx on Xλ and
δ, > 0 such that {# e Cλ: xeU, with g ^ - x) < δ j Ξ N^U,) D d c i ^
and for all y, zed (G,) such that ĝ ΐ/ — s)<Λ, ftί/id/) — /i(s)) < ^A
For the same reasons there exist a continuous seminorm q2 on X2 and
<ϊ2 > 0 such that Nq2,δ2(U2) Π d c iί 2 and for all ?/, 2G cl(G2) such that
Q2(y-z)<329p1(fi(y)-fi(z))<6ji. Because d , d e J ^ , d = UΓ=id.<andC2=
UJ= 1C 2 l J , d,; and d,i compact, convex sets. By Lemma 2 there
exists a continuous, finite dimensional map rj d —• d such that for all
a? G d , rL(x) eC^ if a? e d,», pjjr^x) — x)< ej2, and q^r^x) — x)< δλ. For
the same reason there exists a continuous finite dimensional map
r 2 : C2 —>C2 such t h a t for all x e C2, r2(x) e C2>j if x e C2fj, p2(r2(x) — x)< ε2/2

and g2(r2(α;) — x)<δ2. As usual we define C[ = \JT=icoclr^d,*) and
d = Ui=i cocl r2(C«,y).

We now define two supplementary functions, gt = r2fx \ Ht and
g2 - rj21H2. Since q^f^x) — fx{x)) < δ2, fx(x) e U2 for x e cl Fx, and
Nq2.s2(U2) ί l C 2 c Jϊ2, we see that ^(cl FJ c H2. For the same reasons
we observe that #2(clF2) c Hx. If we set 0λ = gTι{H2) and 02 — g^iHJ,
the above observations show that cl F x c 0λ and cl F 2 c 02. We claim
that {g2g?){x) Φ x for x e 0, — FL and (g&Xx) Φ x for a ; e θ 2 - F 2 . To
prove this for #2^, recall that for all x e (̂  (so r2fx{x) e H2 and /^a?) G GX),
Q2(r*f1(x) —fi(x))<(>2. By the assumption on <52 this implies Py{f2rzf2(x) —
fifi(x)) < εi/2> while the assumption on rγ guarantees that Pι(rJ2Ύ2fγ(x) —
fvrj^x)) < ej2. Thus we see that for x e 0l9 p^g^x) - f2fι{x)) < elf

and since Pi(/2/i(^) — x)^s1 for x e cl fli — F : , it follows that g2gx{x) Φ x
for x G Oi — Fi The proof for gr^ is the same. This observation shows
that ic^Qi, 0x) and iCl(g29i, VΊ) are defined and equal and similarly for gxg2.

Our next claim is that ic^gi, Fx) = iCί(fzfι9 VJ. To see this we
consider the homotopy F: cl Vx x I—>C1 defined by F(x, t) = (l — t)rJ2({l —
t)r%fx(x) + tA(x)) + ί/a((l - QrJ^x) + tf,{x)) and we apply Theorem 3.
We have to show that this homotopy is permissible. First note that
for all x e cl (FJ, fx{x) e U2 and q^rj^x) - f^x)) < δ2. It follows that
(1 - t)r2fx{x) + tUx) G Nq2,h{U2) n C2 c H2. (Of course (1 - t)r2Ux) +
ί/i(») G C2, since if fλ{x) e C%th r2fx{x) e C2fj and hence (1 — tfaf^x) +
tf,{x) G C 2 J for 0 ̂  t S 1). This shows that /2((1 - ί)r2Λ(α;) + ί/^a?)) is
defined for x e cl Vx and applying the usual reasoning we see that
F(x, ί )eCi for x e cl Vu 0 <̂  ί <; 1. It remains to show that î (α;, t) ̂  x
for a? G 3Fi, 0 ̂  ί ^ 1. We have seen above that q2(r%fλ(x) — f^x)) < δ2

and it follows that q2((l - tyrj^x) + t/^a?)) - Ux)) < (1 - t)δ2 ̂  δ2.
It follows that ^ ( ^ ( ( 1 - t)r2fx{x) + ί/^a?)) - fj^x)) < ejt and since
Pi(ri(y) — V) <εj* ^or yeCt we conclude that pι(F(x, t) — f2fάx)) <
(1 - t)ε, + tεjt or ̂ ( F ^ , ί) - f2fx{x)) < ex Since pί(fjι(x) — α?) ̂  e for
a? G SFn our homotopy is permissible and iGl(fifl9 Vt) = iCl(g%gi, VJ. By
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the same reasoning we also find iC2(ff2, V2) = iC2{QιQ^ V2).

To complete our proof it only remains to show that V2(#2#i, VΊ) =
^2(#i02, V2). However notice that g2gx is an admissible approximation
with respect to < g2g19 {Cui} > and g^ VΊ) c C/, where C[ is of the re-
quired form. By our definition it follows that iCl(#2#i, V^) = ic'($%gγ, V^Γi
C[). By the same reasoning we also see that iOi(gi92, V2) = icj&ώ*, V2V[
C2') If we consider ht = gACl Π J9Ί and h2 = g2\C2 Π H2, it is easy to
see that ht: C[ n H, -> C2\ A,: C2' Π H2 -> C/, ^ ( C / Π # 2 ) = 0x Π d ' and
ftΓ^CY Π i?i) = Oi Π C2. Since we have already shown that g2g,(x) Φ x
for xeθ1— V1 and cl Vx c 0 lf we thus see that ic[(hjtu hτι{H2 Π CD) is
defined and equals ic[(h2hί9 Vx Π C/) For the same reasons we see that
ic'2(hJhi Kλ(Hι Π CD) = ic'βι>Jh, V2 Π C2') Since the ordinary commuta-
tivity property implies ic[(h2h2, h~\H2 Π C2')) = ^c'2(hh, hjι{Hx ΓΊ C/)), we
are done.

2* In this section we shall define a fixed point index for con-
tinuous maps defined in topological spaces which are homeomorphic to
retracts of spaces C e &l. The method we shall use is not new, and
we include this treatment for the sake of completeness. The basic
technique of this section seems first to have been explicitly stated in
its essentials by A. Deleanu [5]. A number of other authors, among
them Dold [6], Browder [4], Granas [9] and Nussbaum [16] have also
used variants of the same idea.

We begin with some notation. If D is a compact, Hausdorίf space,
we write D e ^ if there exists C e ^ , a continuous map j : D —> C,
and a continuous map r: C —» D such that rj = ID, the identity on D.
If G is an open subset of D and / : G —> D is a continuous map such that
S = {x e G: f(x) = x) is compact, it is clear that T={xe r-^G): (jfr)(x) =
x} c r~ι(S), and since r - 1(S) is a compact subset of r - 1(G), it follows
that T is a compact subset of r " 1 ^ ) . Thus ic(jfr9 r~\G)) is defined.
If we write jfr = (jf)(r) and formally try to apply the commutativity
property to r:C~->D and i / : G — C, we find that io(jfr, r~\G)) =
^D(ΌΎ, G) = ίz>(/, G). Thus it is natural to try to define ^ ( / , G) =
icUfr> r~ι(G)) Ch*r first theorem shows that this definition is well-
defined.

THEOREM 6. Suppose that D e &~ and for k = 1, 2 suppose that
Cke^7 and 3k* D—>Ck and rk: Ck~+ D are continuous maps such that
rkjk — ID, the identity on D. Let G be an open subset of D and f:G—>D
a continuous map such that S = {xeG: f(x) = x) is compact. Then

ly rτι(G)) =

Proof. Write j2fr2 = 0>i)(ii/n) and define ht — j2rλ: Cl —• C2 and
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h2 = jjr2: rς\G) -> C,. It is easy to check that h^{C,) = r?(G) and
Kι{rςι{G)) = r^(G), so it follows by Theorem 5 that iCl(JhK n"1(G)) =
ic2(Kh, r^ι{G)). However h2hγ = jίfr2j2r1 — jλfr19 so we have the desired
result.

Thus we can define ίD(f, G) = ic(jfr, r~ι(G)) (same notation as
before). As immediate consequences of Theorems 2 and 3 we obtain
the following theorems, whose proofs we omit.

THEOREM 7. Suppose that De^, G is an open subset of D, and
f:G—*D is a continuous map such that S — {xeG: f(x) = x} is com-
pact. If iD(f, G) Φ 0, then f has a fixed point in G. If S<zG1\J G2,
where Gx and G2 are disjoint open subsets of G, then ίc(f, G) — ic(f, Gλ) +
icif, G2)

THEOREM 8. Suppose that D e ^ , G is an open subset of D, I =
[0, 1], and F: G x I—* D is a continuous map such that S = {(x, t) e
G x /: F(x, t) = x) is compact. Then iD(F0, G) = iD(Fu G).

THEOREM 9. Suppose that D e ^ and f:D~>D is a continuous
map. Then Λ(f), the Lefschetz number off, (singular homology with
rational coefficients) is defined and Λ(f) = iD(f, D).

Proof. By definition there exist C e X and continuous maps
j : D —> C and r: C —• D such that rj = ID, the identity on D. Since
rj = ID, r*sΛ: Hn(C) —> Hn(D) is onto and Hn(D) is a finite dimensional
vector space and 0 for almost all n. Again by definition iD(f, D) =
ic(jfr, C); and since ic(jfr, C) = Λ(jfr), it suffices to show Λ(f) =
Λ(jfr). However we have Λ(jfr) = Σ.*> ( - I W t f / k . r * , . ) - (by the
properties of trace) Σ»*o (- l )"M^*, 0 7 ) * J = Σ ^ o ( - 1 ) " ^ / * n = Λ(f).

THEOREM 10. Assume that ΰ 1 5 D2e <β~', Gx and G2 are open subsets of
Dx and D2 respectively, f: Gι —> D2 and f2: G2 —+ Dλ are continuous maps.
Let Hx = fΓι{G2), H2 = f2~

ι{Gλ), and assume that S, = {xe H,: (f2f)(x) = x}
is compact. Then S2 = {x e H2: {fj^){x) = x] is compact and iDl(f2fl9 H^ =

H2).

Proof. The same proof as before shows Sz is compact. Since
Dk e ^ , k = 1, 2, there exist Ck e ^ and continuous maps j k : Dk —> Ck

and rk: Ck —> k such that rkjk = /Ojfe, fc = 1, 2. We have to show that
^(ii/s/iΛ, rr^fli)) - ic2(J2ffr2y rς\H2)). Define ^x - j j ^ : rr^G,) -> C2

and g2 = jj2r2: r2

ι{G2) —* C,. It is easy to check that g7γ{r7ι{G2)) =
a n ( i Qϊ'^T'iG,)) = r2

ι{H2y, also we see that s ^ = jj2f1rι and
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?i#2 = i2/i/2^2 It follows by Theorem 5 applied to gx and g2 that

REMARK. The method of proof we have used shows that there is
a unique integer-valued function iD(f, G) (defined for D e ^~, G an
open subset of D, and / : (?—*D a continuons map such that {# e G:f(x) —
x) is compact) which satisfies Theorems 7-10. For as we have already-
remarked there is a unique such function defined for ENR's D. The
methods of § 1, using Theorem 1, the homotopy property, and the com-
mutativity property, show that the index function is determined by
its value for ENR's when De<β^. Finally, we saw in this section
that the commutativity property completely determined our definition
in terms of the index for D e
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