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STRICTLY CYCLIC OPERATOR ALGEBRAS

ALAN LAMBERT

This paper is concerned with the structure of abelian
algebras S/ of operators on Hubert space Sίf such that
j y # = £ίf for some vector x in H. It is shown that if a
transitive algebra J^~ contains such an algebra then j ^ ~ is
dense in the weak topology on £? {£ίf). It is also shown
that when an algebra of this type is semi-simple then it is
a reflexive operator algebra. The algebras investigated have
the property that every densely defined linear trans-forma-
tion commuting with the algebra is bounded.

Let έ%f be a complex Hubert space and let J^ {έ%f) be the
algebra of all bounded linear operators on £$f. The study of sub-
algebras of ^{έZf) has primarily dealt with self-adjoint algebras.
The literature on non-self-adjoint subalgebras of £f(£ίf) is far less
complete. This paper is concerned with a class of non-self-adjoint
subalgebras, the strictly cyclic abelian subalgebras. The first appli-
cation of these algebras will be to the theory of transitive algebras.
A subalgebra J7~ of Sf{Sίf) is transitive if the only closed subspace
of £ίf invariant for every operator in S~ are £ίf and {0}. W. B.
Arveson showed that a knowledge of the (possibly) unbounded linear
transformations commuting with a transitive algebra ^7~ can be
used to decide if J7~ is dense in the weak operator topology on Sf(Sίf)
(it is not kown if every transitive algebra of operators on an infinite
dimensional Hubert space must be weakly dense in £?(έ%f)).

Arveson also proved that every transitive algebra containing a
maximal abelian self-ad joint algebra is weakly dense in £?(£έf). E.
Nordgren, H. Radjavi, and P. Rosenthal used Arveson's techniques to
show that if £ίf is separable, then every transitive algebra of oper-
ators containing a certain type of weighted shift must be dense in
£f(3ίf)* It is shown that every transitive algebra containing a
strictly cyclic abelian algebra is weakly dense in £?{££*). It has
been shown that the weakly closed algebras generated by certain
weighted shifts are strictly cyclic. This class of shifts properly con-
tains the class of shifts mentioned above. In particular, several
examples of shifts generating strictly cyclic algebras are neither com-
pact nor quasi-nilpotent.

In §3 we develop some tests for strict cyclicity of abelian alge-
bras. In § 5 we show that certain stictly cyclic abelian algebras are
unitarily equivalent to multiplication operator algebras on functional
Hubert spaces (Theorem 5.1), and are examples of reflexive operator

717



718 ALAN LAMBERT

algebras. We then give examples of strictly cyclic abelian algebras
on spaces of arbitrary dimension and show that there exist non-singly
generated strictly cyclic abelian algebras.

2* Preliminaries* A subalgebra S>f of ^(£έf) is cyclic if

= {AxQ: A in

is strongly dense in έ%f for some vector x0 in £ίf. Szf is strictly
cyclic if Jzfx0 — £(f. The vector x0 is called cyclic for Sf in the for-
mer case and strictly cyclic in the latter.

If Jzf is abelian and xQ is cyclic for J^; then xQ is also separating
for j ^ ; i. e., if A is in s^ and AxQ = 0, then A = 0 It follows that
for each x in s*?xQ there is a unique operator Ax in Jzf such that
AxxQ = x. Let p be the mapping x —> Ax of J^fx0 onto jyί It is
clear that p is a bijective linear transformation.

If Jϊf is a subalgebra of ^f(β^) and T is a possibly unbounded
linear transformation with domain D(T), then by " T commutes with
J ^ " we mean for every A in jy, A(ΰ(T)) is contained in D(T)
and AT = TA on Z>(T). Γ is closed if graph (Γ) = {<>, Tx>: a? in
D(T)} is closed in ^ © ^ 2\ is an extension of T2 if ^(TJ
contains i)(T2) and 2\ = T2 on D(T2). A linear transformation is
closable if it has a closed extension. It is easy to see T is closable
if and only if whenever {xn} is a sequence in D(T) converging
strongly to 0, then either Txn diverges or Txn converges strongly
to 0.

In the remainder of this paper Jϊf is assumed to be an abelian
subalgebra of Sίf{Sίf) with cyclic vector xQ. We note that for any
x and y in s/x^ AyAxx0 = Ayx — Axy. Also, Axy is in JϊfxQ. We
will assume Sίf is infinite dimensional, Szf is weakly closed, and

3* Conditions equivalent to strict cyclicity* We showed in [6]
that Szf is strictly cyclic if and only if p is continuous with respect
to the strong topology on Jϊfx0 and the uniform topology on j ^ . Also,
p~~ι is a contraction since || Ax \\ ^ || Axx0 \\ = || x ||.

For each x in 3$f define the linear transformation Ux by

D{UX) = J^fXo and Uxy = Ayx .

LEMMA 3.1. Each Ux commutes with j%f, and if s/ is ynaximal
abelian, then Ux is bounded if and only if x is in

Proof. Let y and z be in J^fxo and let w = Ayz. Then
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= Uxw = UxAyz ,

showing Ux commutes with
Now suppose s^f is maximal abelian. If Ux is bounded, let A be

the bounded operator extending Ux. Then A commutes with jy .
Thus x = E/Λ — -4̂ o is in S*fx0. The converse is trivial.

COROLLARY 3.2. Ssf is strictly cyclic if and only if Szf is
maximal abelian and each Ux is bounded.

Proof. By Lemma 3.1 it suffices to show every strictly cyclic
abelian algebra is maximal abelian. Let Szf be strictly cyclic and
suppose B is a bounded operator commuting with Ssf. Then for every
y in 3if, By = B Ayx0 = AyBx0 = ABXQ(y), showing B = AΰXQ.

LEMMA 3.3. Sf is strictly cyclic if and only if Jzf is maximal
abelian and the dual space of S$f consists entirely of the maps
Ax-+(x, y), y in

Proof. Suppose first Jzf is strictly cyclic. Then j%f is maximal
abelian and if / is a continuous linear functional on Jzf, then the
composition / o p is a continuous linear functional on §ίf. Thus there
is a unique y in Sίf such that f(Ax) = f{ρ{x)) = (x,y) for every x in
Sίf. Conversely, suppose these are the only continuous linear func-
tionals on sf. Then for each pair x, y in έ%f there is a vector
K(x, y) in £έf such that for every A in j ^ (Ax, y) = (Ax0, K(x, y)).
Since Jϊfx0 is dense, K(x, y) is uniquely defined. Also, it is easy to
see for fixed x the map Kx: y—> K{x, y) is an everywhere defined
linear transformation. Fix a; in 3ίf and let « be in J^fx0. Then for
every y in <%*; (A,a;, y) = («, iί(ίc, i/)). But Aβa? = ί/̂ ^ so that for all
y in Sίf and « in J^^o, (U9z,y) = (z,K(x,y)). Thus ?7* is every-
where defined (in fact, U*y = iΓ(α?, τ/)) Since the adjoint of every
linear transformation is closed, U* is closed and everywhere defined.
Thus U* is bounded and U** is then a bounded extension of Ux. By
Corollary 3.2, Jzf is strictly cyclic.

The next lemma yields information about the spectra of operators
in a strictly cyclic abelian algebra and will be used in § 4 and § 5.

LEMMA 3.4. If Szf is strictly cyclic, then there is a nonzero y
in c%^ such that Axy = (y, x)y for every x in

Proof. Since Szf is a commutative Banach algebra with identity,
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there is a nonzero multiplicative linear functional / on jzf. By Lemma
3.3 there is a y in Sίf such that f(Ax) = (x, y) for every x in Sίf.
Let # and z be in J^, and let w — A,2. Then AXAZ = Aw and so
f(Aw) = /(Λ) (Λ), i.e.,

(Aβs, 2/) = (a, y)(z, y) = (z, ft/, &)2/) .

Thus A*# = (y, χ)y*

4. Transitivity and strict cyclicity* We begin this section with
a brief summary of Arveson's analysis of transitive algebras. This
material is found in [1].

Let y be a subalgebra of £f(3l?). For N a positive inte-
ger, ^~ is N-fold transitive if for every linearly independent set
{xlf x2, - , xN) in Sίf, and for every set {y19 y2, , yN] in 3(f. There
is a sequence {Tk} in ^ " such that limit ̂  TkXi = yiy i = 1, 2, , N.
Note that 1-fold transitivity is transivity.

LEMMA (Arveson). A subalgebra _̂ ~ of £?{3ίf) is weakly dense
if and only if ^~ is N-fold transitive for every positive integer
N.

THEOREM 4.1 (Arveson). Let J7~ be a transitive subalgebra oj
Then

(a) ^ ~ is not 2-fold transitive if and only if there exists a non-
scalar closed linear transformation commuting with J7~\ and

(b) if N^>2 and ^~ is N-fold but not (N+ϊ)-fold transitive,
then there exist linear transformations Tiy T2, , TN with common
dense domain D such that each Tι commutes with J7~, no T{ is closable,
and {O, 2>, T2x, , TNx}: x in D) is closed in £ί? 0 0 £ίf
(N+l copies).

We now examine the linear transformations commuting with a
strictly cyclic abelian algebra

LEMMA 4.2 Let T be a linear transformation commuting with
Then either T is closable or there is a nonzero A in J&f such

that

A(D(T)) = 0 .

Proof. Suppose T is not closable. Then there is a sequence {xn}
of vectors in D{T) such that xn converges to 0 but Txn converges to
a non-zero vector y. Let z be in D{T). Then
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= Azy = ^(limit Txn)
n

= limit (AzTxn) = limit (TA,z)
n n

= limit (A, Ts) = 0 .

LEMMA 4 3. Let ^/£ be a linear submanifold of έ%f (not neces-
sarily closed) with x0 in the closure of ^ . If ^£ is invariant for
Ssf, then

Proof. Since p is continuous and AH = I, there is a vector x in
with | | /— A, 11 < 1. In particular, Ax is invertible Since Stf is

maximal abelian, A~ι is in j ^ But then x0 = A^ιAxxQ = A~ιx is in
and so for any y in Jg ,̂ i/ = Ayx0 is in

COROLLARY 4,4. Every densely defined linear transformation
commuting with J^f is everywhere defined and bounded.

Proof. Let T be a densely defined linear transformation com-
muting with j ^ By Lemma 4.2 T is closable, and by Lemma 4 3
D(T) — Sίf. By the closed graph theorem T is bounded.

We are now ready to prove the main result of this section.

THEOREM 4.5. Let S" be a transitive algebra containing a strictly
cyclic abelian algebra J&ϊ Then J7~ is weakly dense in

Proof. By Corollary 4.5 every densely defined linear transforma-
tion commuting with ^~ is bounded. Thus by 4.1 it suffices to show
that every bounded operator commuting with ^ is a scalar multiple
of /. Let A be a bounded operator commuting with j?~ (and con-
sequently with Jϊf). Then A is in Jάf and so by Lemma 3.4 there
is a nonzero vector y and a scalar a such that A*y = ay. It follows
that Range (A—al) is not dense in ^g^ But A—al commutes with
&~ and so Range (A-al) is invariant for *J^. Since ^ is transitive,
Range (A—al) is either dense or {0}. Thus Range (A—al) = {0}, i.e.,
A = a I.

5* Semisimplicity and strict cyclicity* A commutative Banach
algebra & is semisimple if for every x in ^ , there is a multiplica-
tive linear functional / on & such that f(x) Φ 0. Some of the
examples we gave in [6] of strictly cyclic abelian algebras are semi-
simple (e.g., the weakly closed algebra generated by the weighted
shift with weights {(n+ΐ)/n}) The collection of all multiplicative
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linear functional on & will be denoted ^ C and is called the maxi-
mal ideal space of ^

Let S^f be a strictly cyclic abelian subalgebra of £f(£έf), with
the notation of §2. For each y in <§ίf, let y* be the linear func-
tional y*(Ax) — (x, y), and let ^^(j^f) be the collection of all y in
£ίf such that y* is multiplicative. If ^{Jzf) is given the relative
weak Hubert space topology and ^fV is given the maximal ideal
space topology [8; p. 110], the map y—>y* is a homeomorphism bet-
ween ^yf^(^f) and ^€V(this is just the identification of £έf with its
dual space restricted to ^V(j&)). In particular, ^l^(j^f) is compact
in the weak Hubert space topology. A short calculation shows a vector
y is in Λ^{S?f) if and only if (x0, y) = 1 and y is an eigenvector for
the adjoint of every operator in jzf.

We see that Sf is semisimple if and only if for every x in Sίf
there is a y in yi^{J^f) such that (x, y) Φ 0. This is equivalent to
saying ^V{Sf) spans 3ίf (i.e., the smallest closed subspace of 3(?
containing Λr{S/) is έ%f). Before continuing the discussion of semi-
simple strictly cyclic algebras, it is necessary to discuss fuctional
Hubert spaces. A Hubert space jβ~ is a functional Hilbert space if
there is a set X such that

( i ) the elements of &~ are complex valued functions on X;
(ii) each point evaluation is a continuous linear functional on

^\ and
(iii) for each x in X there is an / in ^ such that f(x) Φ 0.

We will denote such a functional Hilbert space by (^~,X).
If (^~, X) is a functional Hilbert space and g is a complex

valued function on X such that gf is in J?~ for every / in ^ 7 then
the linear transformation Mg: f—*gf is called a multiplication operator.
An easy application of (ii) and the closed graph theorem shows every
multiplication operator on a functional Hilbert space is bounded.

In [5; p. 32] it is shown that a bounded operator A on an ab-
stract Hilbert space έ%f is unitarily equivalent to a multiplication
operator on a functional Hilbert space if and only if the eigenvectors
of A* span §ίf. This easily generalizes to the following: If Stf is a
subalgebra of J S ^ ( ^ ) and

X — {x in έ%f\ x is an eigenvector for A* for all A in

spans Sέf, then jzf is unitarily equivalent to an algebra of multiplica-
tion operators on a functional Hilbert space. The idea is if u is a
vector in βίf, let ur be defined on X by uf(x) — (u, x). Then define
\\u'\\ = \\u\\ and let U be the unitary transformation Uu = u\ If A
is in j ^ , then UAU~ι = Mf where A*x = (complex conjugate of
f(x))x for every & in X.
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We now return to the case of J^f a semisimple, strictly cyclic
abelian algebra. Then ^V(j&) spans 3(f, and by the preceding
remarks Sίf is unitarily equivalent to a functional Hubert space

THEOREM 5.1. Let sf be a semisimple, strictly cyclic abelian
subalgebra of £?{£%f). Then S/ is unitarily equivalent to the algebra
of all multiplication operators on a functional Hilbert space
{J^, ^ViJtf)). Moreover, each f in ά?" is continuous and there is a
constant M such that for every f in

= max {I/(a?) I: a? in ^ r ( J ^ ) ^ ikΓ||/|| .

Proof. We have only to show each / in j ^ ~ is continuous and
satisfies the norm inequality. Let / be in j^~ and let z be in Sίf
such that TJz—f. Then for every x in ^V(J^), f(x) = (z,x),
showing / is continuous. Since ^V(J*f) is weakly compact, it is
bounded, say, by M. Thus, for every x in

\ = \ ( z , x ) \ i £ \ \ z \ \ \ \ x \ \ ^ M \ \ z \ \ =

REMARKS. 1. The continuity and norm inequality in Theorem 5.1
could have been ascertained by considering 3ίf as a Banach algebra
with || z ||i = || A* || and using the theory of the Gelfand transform.

2* The bound M on ^V(J^) can be chosen to be the norm of
p, i.e, sup {|| A, || : | | έ | | = 1}, since for each x in *sV(J&),

II Ύ I I * — ( τ r \ ( r τ \ — ( A r τ \ < II A II II Ύ I I 2 < II r I I 3 II n IIII * II — V ^ > ά) V Λ > Λ/ ~ K^-x^f «*) = II -tt-x II II Λ> II = 1 1 ^ 1 1 i i r l l

Finally, we show that semisimple, strictly cyclic abelian algebras
are examples of reflexive operator algebras. A subalgebra & of
Sf{Sίf) is reflexive if for every B in £?(£ίf), if B leaves invariant
all the closed invariant subspaces of &, then B is in &. Reflexive
algebras are studied in [2] and [9].

THEOREM 5.2. // Jzf is a semisimple, strictly cyclic abelian
algebra, then Jϊf is reflexive.

Proof. It is easy to see that an algebra <5§ is reflexive if and
only if ^ * = {£*: B in &) is reflexive. We show that <_£/* is
reflexive. Suppose B is a bounded operator leaving invariant all the
closed invariant subspaces of J ^ * . For each x in ^4^{s/), the one-
dimensional space spanned by x is invariant for J ^ * and hence for
B. Since ^K(J^) spans ^ it follows that B commutes with
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Since J ^ * is maximal abelian, B is in

REMARK. It is not true that every strictly cyclic abelian algebra
is reflexive. Let <§ίf be separable, with orthonormal basis {ej~=o and
let S be the weighted shift operator Sen = (l/2n)en+1. R. Gellar [4]
showed that the weakly closed algebra J^f generated by S is strictly
cyclic, and W. Donoghue [3] proved that the only closed subspaces
invariant for Ssf are {0} and Vΐ=nek9 n — 0,1, •••. These subspaces
are invariant for any operator whose matrix relative to {ej is lower
triangular.

We now show that there exist strictly cyclic abelian algebras on
Hubert spaces of any dimension. We then conclude this paper by
showing that for any Hubert space ^f of dimension greater than 2,
£^(έ%f) contains a non-singly generated strictly cyclic abelian
algebra.

Let Sίf be an arbitrary complex Hubert space. For vectors u and
v in £ΐf, u§§v is the operator on <§ίf defined by (uζZ)v)(x) = (x,u)v.
Let x0 be a fixed unit vector in β^y and for each x in §ίf let

JΛ.X

 =Z \X) XQ) JL \ XQ (^) X ,

where P is the orthogonal projection of £έf onto {XQ}1. Let

= {Ax: x in

LEMMA 5.3. Saf is an abelian subalgebra of £^(£%f) and xQ is
strictly cyclic for

Proof. Clearly Jϊf is a linear subspace of ^f{^f) with

XAX + Ay = Aχx+y

Also, for every x in §ίf,

Ax^o ~~ \p^i *^o/ JL*&O I \Xoi XQ)X

— 11 x011 x — x ,

so xQ is strictly cyclic for jzf. It remains to show that sf is an
abelian algebra. Let x and y be in §ίf. Then

AxAy = (x, xQ){y, xo)P

+ (x, xQ)P(x0 ® y)

+ (xo ® x) (y, %o)P + (»o Θ ») (̂ o ® 2/)

We note that for any vectors u and v, and for any bounded operator
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T(u<g)v) =

and

(u(g)v)T = {T*

Thus

AxAy = (x, χo)(y, %0)P + (x, χo)χo Θ (Py)

+ {(T/, xo)PxQ (x) x) + {&0 (x) [(a?0 (g)

= (x, xo)(y, xQ)P + 0 , xQ)xQ (x) (Pi/)

= (a;, a?0)(l/, O P + a?0 Θ [(a?, xQ)Py + fa0

Let z = (x, xo)Py + (xo(£)x)y- Then A ^ = « and so

(z, x0) = ((a?, a?0)P2/, a?0) + ((a?0 ® a?)ί/, a;0)

= ((«o Θ β)2/> ^0) = (l/» »o)(a?, a;0) .

Thus

Aa A,, = (2, a?0)P + (a?0 (x) 2)

showing that Jzf is an algebra.
To show that Szf is abelian it suffices to show that Axy — Ayx

for every pair x, y of vectors in £%*. We have

Axy = (a;, a;0)P7/ + (?/, xo)x

= (a?, ajo)[l/ - (l/, ^ o K ] + (i/, ̂ 0 )x

= 0% a?0)2/ - (a;, xo)(y, xo)%o + (1/,

= (2/, a?0)[a; - (a?, xo)xo] + (x, xo)y
z= Ά.JXy

Assume now that the dimension of 3ίf is at least 3 We show
that Szf is not the commutant of any operator. This will show that
S^ is not singly generated. For if s/ is generated by an operator
A, then since sf is maximal abelian j y is the algebra of all oper-
ators commuting with A, i.e., J ^ is the commutant of A.

To show J^ is not the commutant of an operator it suffices to
show that for every A in Jϊf there is an operator T such that
AT — TA but T is not in s$f. Let Ax be in s/. We may assume
that (#, x0) — 0 since an operator commutes with Ax if and only if it
commutes with Ax - (x, xQ)I = AX_(X,XQ)XQ. Choose y in Sίf, y Φ 0, such
that y is orthogonal to both x0 and x. Finally, let T — y (x) x.
Then
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Tx0 = (a?0, y)x = 0 .

Since x0 is separating for J^f and Γ =£ 0, T is not in j ^ . However,

TA. = (y® x)(xt <g> x)

= χo<8> [(y <g> χ)χ]

= 0

and

AXT = (ίc0 (x) a?)(y (g) x)

In particular T commutes with Ax.
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