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COMPLEX CHEBYSHEV ALTERATIONS

S. J. POREDA

P. Chebyshev's famous Alternation Theorem for best
uniform approximation to continuous real valued functions
on an interval is generalized to include best approximation
to a class of continuous complex valued functions on an
ellipse.

1* Preliminary remarks and definitions. For a continuous
complex valued function / defined on a compact set E in the plane
and, for neZ+, let pn(f,E) denote the polynomial of degree n, of
best uniform appoximation to / on E and let;

pJJ, E) = max|/(2) - pn(f, E){z)\ .
26 E

Chebyshev's Alternation Theorem [1, p. 29] states that if / is a
continuous real valued function on an interval [α, &], and pn is a
polynomial of degree n, neZ+, then pn — pn(f, [α, b]) if and only if,
there exists n + 2 points,

{Xi}"±?, a <Ξ x, < x2 < < xn+2 <L 6, with the property that | f{x) - pn{x) \
attains its maximum on [α, b] at these points and /(a?*) — pn{x%) =
- [/(Λ+i) - Pnfa+i)] for i = 1, 2, , n + 1.

The sets we consider here are ellipses which are of course a
generalization of intervals. So, for a Ξ> 0, let Ea = {z + a/z: \z\ — 1}.
Now let <β^(En) denote those complex valued functions /, not them-
selves polynomials of degree n, continuous on Ea, having the property
that there exists n + 2 points {ξk}ΐ±ϊ in Ea, such that pn(f, En) =
Pn(f, {ξk}kH)- It is known [1, p. 22] that there always exists a
set D c Ea, consisting of n + k points, 2 ^ k ^ n + 3, such that
pΛ(/, Ea) = ί>Λ(/, J5). Furthermore, to this author's knowledge, every
example of best uniform approximation to rational functions on infinite
sets in the plane (e.g., [3], [4] and [5]) is one in which such a set
consisting of n + 2 points exists or, can be shown equivalent to such
an example.

2* Main theorem* Given n + 2 points {ξk}tit in Ea let ^ be
such that ξje = zk + a/zk, \zk\ = 1 and if α = 1, 0 <̂  Arg zk ^ π for k —
1, 2, , w + 2 The 2̂ s are uniquely determined. Now let

ff j - α| ] for

k = 1, 2, , % + 2 where 0 ^ arg z1/2 < π.
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THEOREM 1. If f is continuous on Ea and pn is a polynomial of
degree n, neZ+, then fe^(Ea)andpn = pn(f,Ea) if and only if
there exists n + 2 points {ξk}ΐ±l in Ea, with 0 ^ Arg ξλ < Arg ξ2 <
. . . < Arg ξn+2 < 2π if a Φ 1 or - 2 ^ ξ, < ξ2 < < ξn+2 ^2 if a = I,
where \f(ξ) — pn(ξ) \ attains its maximum on Ea and, [/(£;) — pn(ξi)]/Φi =
- [/(fi+i) - P ίfi+Ol/Φ +i for i = 1, 2, •••, n + 1 w&ere ίAe Φ/s are

defined in terms of the ξ/s as above.

Proof. In order to prove our theorem we make use of a lemma
which is a reformulation of a result [2] due to T. S. Motzkin and J.
L. Walsh.

LEMMA. A necessary and sufficient condition that the given
numbers {σk}ltl be the deviations of some function f defined on the n + 2
points {ξk}lil and its polynomial of degree n of best uniform approx-
imation to f on these points is that for some p ^ 0;

(1) I σk I = p for k = 1, 2, , n + 2 and,
(2) arg σk = arg ω'(ξk) + θ0 for k = 1,2, , n + 2 if p > 0 where

<o(ξ) = Π2(ξ - £*) and 0o = arg [Σ/(e*)/ω'(£*)] .
fc — l fc = l

The necessary portion of our theorem will then follow if it is
shown that;

(2.1) argffω'ί^/ΦJ/Iω'ίft+O/Φί+J) = TΓ for

i — 1, 2, , n + 1. Now substituting zy + α/sy for ξά and using the
definition of the Φ/s we can show the (2,1) is equivalent to;

(2.2) arg{(s?ίV*?/2) ff [(z, - z3)j{zi+ι - z3)]} = Q .

But, (2.2) follows since ^ and z i+1 are by virtue of their definition
adjacent on the unit circle C/(i.e., zi and zi+1 are on a connected
arc in U containing none of the other z3->a) and since; arg (zi+1/Zi) —
- 2 arg [Zi - z3)l{zi+ι - z3)] for j ^ ΐ, i + 1.

In order to prove the converse of our theorem we simply work
backwards and show that; arg [f(ξk) — Pn(ξk)] = arg o)\ξk) + θ0 for some
θ0 and k = 1, 2, , n + 2 and apply the aforementioned result of
Motzkin and Walsh.

3. Special cases and applications. Chebyshev's Alternation Theo-
rem follows as a special case of Theorem 1, when a = 1, since it is
known [1, p. 22] that all real functions, not themselves polynomials
of degree n, continuous on [—2, 2] are in the class ^ ( [ — 2, 2]).
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Also of interest because of its simple form is the case where a = 0
or Ea = U is the unit circle and where n is even. In this case our
main theorem appears to provide us with a valuable tool in deter-
mining if a given function / is in ^m(U) and if it is, in finding

COROLLARY 1. If f is continuous on U and p2m is a polynomial
of degree 2m, me Z+, then fe J^IJJJ) and p2m = P2m(f9 U) if and only
if there exists 2m + 2 points, {z^Zt2, with 0 <̂  Arg zι < < Arg
z2m+2 < 2π where | f(z) — p2m(z) | attains its maximum on U and where
\f{Zk) ~ VM]K = - U(zh+ι) - Άm(*k+d]/*T+i, /or A; = 1, 2, . . . , 2m + 1.

Corollary 1 can be used to obtain a recently discovered example
of best approximation [3], namely, if f(z) = (az + β)/(z — α)(l — az),
\a\ > 1, then;

ft»(/, U){z) = [az + β- K^{1 - dzf - K2(z - a)*]/(z - α)(l - az),

where

K, = (aa + β)/a2m(l - \a\J

and,

K2 = a(a + βa)/(l- \a\2)2 .
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