COMPLEX CHEBYSHEV ALTERATIONS

S. J. POREDA

- P. Chebyshev's famous Alternation Theorem for best uniform approximation to continuous real valued functions on an interval is generalized to include best approximation to a class of continuous complex valued functions on an ellipse.
- 1. Preliminary remarks and definitions. For a continuous complex valued function f defined on a compact set E in the plane and, for $n \in \mathbb{Z}^+$, let $p_n(f, E)$ denote the polynomial of degree n, of best uniform appoximation to f on E and let;

$$\rho_n(f, E) = \max_{z \in E} |f(z) - p_n(f, E)(z)|.$$

Chebyshev's Alternation Theorem [1, p. 29] states that if f is a continuous real valued function on an interval [a, b], and p_n is a polynomial of degree n, $n \in \mathbb{Z}^+$, then $p_n = p_n(f, [a, b])$ if and only if, there exists n+2 points,

 $\{x_i\}_{i=1}^{n+2}, a \leq x_1 < x_2 < \dots < x_{n+2} \leq b, \text{ with the property that } |f(x) - p_n(x)|$ attains its maximum on [a, b] at these points and $f(x_i) - p_n(x_i) = -[f(x_{i+1}) - p_n(x_{i+1})]$ for $i = 1, 2, \dots, n+1$.

The sets we consider here are ellipses which are of course a generalization of intervals. So, for $a \ge 0$, let $E_a = \{z + a/z : |z| = 1\}$. Now let $\mathscr{F}_n(E_n)$ denote those complex valued functions f, not themselves polynomials of degree n, continuous on E_a , having the property that there exists n+2 points $\{\xi_k\}_{k=1}^{n+2}$ in E_a , such that $p_n(f, E_n) = p_n(f, \{\xi_k\}_{k=1}^{n+2})$. It is known [1, p. 22] that there always exists a set $D \subset E_a$, consisting of n+k points, $2 \le k \le n+3$, such that $p_n(f, E_a) = p_n(f, D)$. Furthermore, to this author's knowledge, every example of best uniform approximation to rational functions on infinite sets in the plane (e.g., [3], [4] and [5]) is one in which such a set consisting of n+2 points exists or, can be shown equivalent to such an example.

2. Main theorem. Given n+2 points $\{\xi_k\}_{k=1}^{n+2}$ in E_a let z_k be such that $\xi_k=z_k+a/z_k, \, |z_k|=1$ and if $a=1,\,0\leq {\rm Arg}\,z_k\leq \pi$ for $k=1,\,2,\,\cdots,\,n+2$. The z_k' s are uniquely determined. Now let

$$arPhi_k = z_k^{-n/2} \prod_{\substack{j=1 \ j
eq k}}^{n+2} [(z_k z_j - a)/|z_k z_j - a|] ext{ for }$$

 $k = 1, 2, \dots, n + 2$ where $0 \le \arg z^{1/2} < \pi$.

THEOREM 1. If f is continuous on E_a and p_n is a polynomial of degree $n, n \in Z^+$, then $f \in \mathscr{F}_n(E_a)$ and $p_n = p_n(f, E_a)$ if and only if there exists n+2 points $\{\xi_k\}_{k=1}^{n+2}$ in E_a , with $0 \le \operatorname{Arg} \ \xi_1 < \operatorname{Arg} \ \xi_2 < \cdots < \operatorname{Arg} \ \xi_{n+2} < 2\pi$ if $a \ne 1$ or $-2 \le \xi_1 < \xi_2 < \cdots < \xi_{n+2} \le 2$ if a = 1, where $|f(\xi) - p_n(\xi)|$ attains its maximum on E_a and, $[f(\xi_i) - p_n(\xi_i)]/\Phi_i = -[f(\xi_{i+1}) - p_n(\xi_{i+1})]/\Phi_{i+1}$ for $i = 1, 2, \cdots, n+1$ where the Φ_i 's are defined in terms of the ξ_i 's as above.

Proof. In order to prove our theorem we make use of a lemma which is a reformulation of a result [2] due to T. S. Motzkin and J. L. Walsh.

LEMMA. A necessary and sufficient condition that the given numbers $\{\sigma_k\}_{k=1}^{n+2}$ be the deviations of some function f defined on the n+2 points $\{\xi_k\}_{k=1}^{n+2}$ and its polynomial of degree n of best uniform approximation to f on these points is that for some $\rho \geq 0$;

- (1) $|\sigma_k| = \rho \text{ for } k = 1, 2, \dots, n+2 \text{ and,}$
- (2) $\arg \sigma_k = \arg \omega'(\xi_k) + \theta_0 \text{ for } k = 1, 2, \dots, n+2 \text{ if } \rho > 0 \text{ where}$

$$\omega(\xi)=\prod\limits_{k=1}^{n+2}\left(\xi-\xi_k
ight)$$
 and $heta_0=rg\left[\sum\limits_{k=1}^{n+2}f(\xi_k)/\omega'(\xi_k)
ight]$.

The necessary portion of our theorem will then follow if it is shown that;

(2.1)
$$\arg\{[\omega'(\xi_i)/\Phi_i]/[\omega'(\xi_{i+1})/\Phi_{i+1}]\} = \pi \text{ for }$$

 $i=1,2,\cdots,n+1$. Now substituting z_j+a/z_j for ξ_j and using the definition of the Φ_j 's we can show the (2.1) is equivalent to;

(2.2)
$$\arg\{(z_{i+1}^{n/2}/z_i^{n/2})\prod_{\substack{j\neq i,i+1\\i=j}}^{n+2} [(z_i-z_j)/(z_{i+1}-z_j)]\}=0.$$

But, (2.2) follows since z_i and z_{i+1} are by virtue of their definition adjacent on the unit circle $U(\text{i.e.}, z_i \text{ and } z_{i+1} \text{ are on a connected}$ are in U containing none of the other $z_{j's}$ and since; arg $(z_{i+1}/z_i) = -2 \arg [z_i - z_j)/(z_{i+1} - z_j)$ for $j \neq i, i+1$.

In order to prove the converse of our theorem we simply work backwards and show that; $\arg \left[f(\xi_k) - P_n(\xi_k) \right] = \arg \omega'(\xi_k) + \theta_0$ for some θ_0 and $k=1,2,\cdots,n+2$ and apply the aforementioned result of Motzkin and Walsh.

3. Special cases and applications. Chebyshev's Alternation Theorem follows as a special case of Theorem 1, when a = 1, since it is known [1, p. 22] that all real functions, not themselves polynomials of degree n, continuous on [-2, 2] are in the class $\mathcal{F}_n([-2, 2])$.

Also of interest because of its simple form is the case where a=0 or $E_a=U$ is the unit circle and where n is even. In this case our main theorem appears to provide us with a valuable tool in determining if a given function f is in $\mathscr{F}_{2m}(U)$ and if it is, in finding $p_{2m}(f,U)$.

COROLLARY 1. If f is continuous on U and p_{2m} is a polynomial of degree 2m, $m \in Z^+$, then $f \in \mathscr{F}_{2m}(U)$ and $p_{2m} = p_{2m}(f, U)$ if and only if there exists 2m + 2 points, $\{z_k\}_{k=1}^{2m+2}$, with $0 \le \operatorname{Arg} z_1 < \cdots < \operatorname{Arg} z_{2m+2} < 2\pi$ where $|f(z) - p_{2m}(z)|$ attains its maximum on U and where $|f(z_k) - p_{2m}(z_k)|/z_k^m = -[f(z_{k+1}) - p_{2m}(z_{k+1})]/z_{k+1}^m$, for $k = 1, 2, \cdots, 2m + 1$.

Corollary 1 can be used to obtain a recently discovered example of best approximation [3], namely, if $f(z) = (\alpha z + \beta)/(z - a)(1 - \bar{a}z)$, |a| > 1, then;

$$p_{2m}(f,\,U)(z)=[lpha z+eta-K_{_1}z^{2m}(1-ar{a}z)^2-K_{_2}(z-a)^2]/(z-a)(1-ar{a}z),$$
 where

$$K_1 = (\alpha a + \beta)/a^{2m}(1 - |a|^2)^2$$

and,

$$K_2 = \bar{a}(\alpha + \beta \bar{a})/(1 - |a|^2)^2$$
.

REFERENCES

- 1. G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, 1966.
- 2. T. S. Motzkin and J. L. Walsh, On the derivative of a polynomial and Chebyshev approximation, Proc. Amer. Math. Soc., 4 (1953), 76-87.
- 3. S. J. Poreda, An example of best uniform approximation in the complex plane, Notices Amer. Math. Soc., 17 (1970), 569.
- 4. T. J. Rivlin, Some explicit polynomial approximations in the complex domain, Bull. Amer. Math. Soc., 73 (1967), 467-469.
- 5. T. J. Rivlin and H. S. Weiss, Some best polynomial approximations in the plane, Duke Math. J., 35 (1968), 475-482.

Received December 4, 1970. This work represents part of the author's doctoral dissertation that was directed by Professor Mishael Zedek at the University of Maryland.

CLARK UNIVERSITY