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ON EXTREMAL FIGURES ADMISSIBLE RELATIVE
TO RECTANGULAR LATTICES

MURRAY SILVER

A theorem of Bender states that if a convex figure F
contains no point of the two dimensional lattice G, where G
is generated by the vectors Vx ajtid V^ having enclosed angle
0, then A(F) ^ 1/2 P(F) max (|Fi|, \V2\ sintf) where |Fi | ^

F21. In this paper, two questions are answered: (1) Among
all convex figures of perimeter L which are admissible rela-
tive to a rectangular lattice G, which encloses the maximum
area? (2) Can the constant 1/2 in Bender's theorem be impro-
ved? By using the result of (1), the "sharpest possible"
inequality of the Bender type is found.

NOTATION.

w, = mindFJ, \V2\ sintf)

w2 = maxdFil, | F 2

A(F) is the area of F, P(F) is the perimeter of F. A figure F is
admissible relative to the lattice G, if no points of G are in the
interior of F.

THEOREM. If F is an admissible convex figure relative to the
lattice G, then

(i) for 0 < P(F) ̂  π(wl + wψ\ A(F) ^ (P2(F))/(4π)
(ii) for π{w{ + w2

2)
ιμ < P(F) < Awι + πw2,

P\F) - π U sin q/2 + w2 eos-j))2

Jψl- ± 1- — ^
4τr π(4 — π sin q)

where q is the root of equation (9).
(iii) for Awι + πw2 ^ P(F), A(F) ^ 1/2 w2P(F) - π/4 w\.

Further, if G is rectangular the extremal figures relative to G are
shown for (i), (ii) and (iii) in Figure 1 (i), (ii) and (Hi) respectively;
in these cases, equality holds.

By Bender's Lemma [1], only rectangular lattices and admissible
convex figures symmetric about the lines xf — 1/2, yf = 1/2 need be
considered (x' and yf are coordinates relative to the lattice); in the
remainder of this paper only such figures and lattices will be considered.

DEFINITION. Let G be a (rectangular) lattice and denote by R
the set of all admissible rhombi whose vertices lie on the lines x* =
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( i ) (ϋ)

(iii)

FIGURE l

1/2, y' = 1/2 and each of whose sides pass through at least one lattice
point of G (see Figure 2). R(φ) denotes the rhombus in R with base
angle φ (Figure 2) where 0 <: φ <; π (φ - 0 and φ = π yield the two
infinite strips).

R(Φ)

FIGURE 2
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LEMMA 1. Every figure F is contained in at least one rhombus
R(φ) of the set R.

Proof. Let g be one of the four lattice points which contain
the intersection of the lines x' = 1/2 and yf — 1/2. Consider the follow-
ing two cases: (i) g is a boundary point of F, (ii) g is not a boundary
point of F.

(i) Since F is convex and g is a boundary point, there exists a
line of support S of F at the point G. Construct the three remaining
lines symmetric to S about the lines x' = 1/2 and yr = 1/2. By the
symmetry of F, all four of these lines are support lines of F and the
rhombus formed contains F and belongs to R.

(ii) Since g is exterior to F, there exists a line S' which separates
g and F. Construct S through g parallel to S'. Clearly S lies in the
exterior of F and the proof is completed as in (i).

Proof of the Theorem. The inequalities are proven by finding the ad-
missible convex figure of perimeter L which encloses the maximum area
(extremal figure). The problem has been reduced to rectangular lattices
and symmetric figures which are contained in rhombi of R. Denote
by Y(L, φ) the extremal figure of perimeter L contained in R{φ). The
existence, uniqueness, form, etc., of the extremal figure are discussed
in references [2] and [4], pp. 124-5. For fixed L, define q by A(Y(L,
q)) — supφA(Y(L, φj). The maximum area is thus attained by the
extremal figure contained in the rhombus R{q). Since any figure F
is contained in R{φ) for some φ (Lemma 1), A(F) ^ A(Y(L, φ)) ^
A(Y(L, q)). The inequalities (ii) and (iii) are nothing other than A(Y(L,
q)) expressed in terms of L and the lattice constants; (i) means simply
that Y(L, q) is a circle. In (ii) and (iii), Y(L, q) contains lattice points
on its boundary; otherwise, it is easy to construct a figure of per-
imeter L having larger area. Hence, for a rectangular lattice, the
inequalities of the theorem are the "sharpest possible".

In the remainder of the proof, A(Y(L, Φ)) and A{Y(L, q)) are
determined.
Y(L, φ)

From Figure 2, it follows for 0 < φ < π

(1) s ^ i _ W l s e c | - + -L^2csc|l

or

(2) S sin φ = w, sin — + w2 cos
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Y(L, φ) is the parallel figure of radius r taken about a concentric
subrhombus of R{φ) (see reference 3, p. 124-5). Denoting by v the
length of a side of the subrhombus,

( 3 ) A(Y(L, φ)) = v2 sin<ρ + Arv + πr2 (see Figure 3).

FIGURE 3

The perimeter of Y(L, φ) is given by

(4) P(Y(L, φ)) = L = 2πr + iv .

Use (4) to eliminate r from (3). After simplification it follows that

(5) ψ- - A(Y(L, φ)) = v2 (A _ sin φ) .

The right side of (5) is, of course, the classical isoperimetric deficit.
From Figure 3,

( 6 )
n Φ Φ Φ

S cos — = v cos — + r esc — .

Using equation (4), eliminate r from equation (6); use the resulting
equation to eliminate v from equation (5), and finally, use equation
(2) to eliminate S:

( 7 ) A(Y(L, <P)) = ί-~
( (w1 sin ¥- + w2 cos £

2

π
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Equation (7) is valid for 0 < φ < π. If φ = 0 or π, the extremal
figure consists of two parallel lines connected by semicircles [3].
Calculation shows that the area agrees in both cases with (7). Hence, (7)
is valid for 0 ^ φ ^ π.

Y(L, q)
From equation (7), A(Y(L, φ)) is a single valued continuous func-

tion of L and φ which possesses neither a singularity nor a cusp.
To find Y(L, q), the isoperimetric deficit

(— - (w1 sin— + w2 cos —))
(5) D —

4
sin?

π
must be minimized.
If L ^ π(w\ + wiy12, the solution is trivial; viz. the circle. In the
remainder of the proof, it is assumed that L > π(w\ + wl)1'2. Setting
dD/dφ = 0, the condition for an extremum becomes:

(9) L cos φ — {iwι + πw2) cos — — (4w2 + πw^ sin— .
Δ Δ

The value (s) of φ which yield an extremum of D must be either 0,
π or a root of equation (9).

The case wι = w2 will be treated separately; if not otherwise
stated, it is assumed that w2 > wt.

LEMMA 2. The absolute minimum of D(L, φ) lies in the interval
0 ^ φ ^ τr/2.

Proof. Consider an arbitrary rhombus R{φ) e R. From the midpoint
of R(φ) mark off the distance 1/2 w2 along the line xf = 1/2; at this
point construct the perpendicular d. From similar triangles,

Ssin Scos
2 2

Using equation (1), eliminate S and solve for d:

(10) d = —w2 (w2 — w,) tan — .
Δ Δ Δ

If R{φ) is rotated through 90° about its midpoint, it will not contain
a lattice point (the boundary included) if d < 1/2 wt. Applying this
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condition to equation (10), it follows that (11) tan<p/2>l. Hence,
R{φ) does not contain a lattice point when rotated about its midpoint
through 90° if φ > π/2. Suppose Y(L, φ) is the extremal figure of
the rhombus R(φ) where φ > π/2. Rotate R{φ) through 90° about its
midpoint. By the preceding argument, R(φ) and thus Y(L, φ) contains
no lattice point (boundary included). Thus, Y(L, φ) cannot be Y(L, q).

Thus, q is either 0 or a root of equation (8) {wx Φ w2).

LEMMA 3. For 0 ^ φ ^ π/2 equation (9) has
( i ) exactly one root if L < Awι + πw2

(ii) exacly one root (viz., φ = 0) if L — ίwt + πw2

(iii) no roots if L > 4wλ + πw2

Proof. Form the auxiliary functions yx = L cos ψ and

y2 = (4^i + πw2) cos -— — (4/w72 + πwΛ sin—
2 2

where

tan /5 = Wl "
τrwx -

Clearly, 38° < /3 < 45°. The roots of equation (9) are the points of
intersection of yγ and y2. Divide the problem into three parts

( i ) Vi(0) < 2/2(0); i.e., L < Awt + πw2

(ii) y^O) = y2(0); i.e., L = 4^x + ττ^2

(iii) y^O) > 2/2(0); i.e., L > 4wx + 7Γ 2̂

2/! and y2 are cosine and sine curves; the lemma follows from the
elementary properties of these curves.

From Lemma 3, it follows for (iii) and (ii) that q = 0. In case (i),
D'(O) is negative and q must be the (single) root of equation (9).
Thus, the extremal figures have been found and inserting the value
of q into equation (7) gives the theorem (for wx Φ w2).

The Solution for w1 = w2 — w.
This is the most important single case; viz., the square lattice.

Geometrically it is obvious that equation (7) and therefore (8) are
symmetric about π/2; viz., R{φ) is identical with R(π — φ) except for
a rotation of π/2 about the midpoint. Hence Y(L, φ) is identical with
Y(L, π — φ), except for a rotation of π/2 about its midpoint, φ can
therefore be restricted to the interval 0 ^ ψ ^ π/2. In this case,
equation (9) becomes:
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(12) (cos^ - sin £Vcos ^ + sin 2. - (±±JUΞλ = 0
V 2 2 A 2 2 L /

Equation (12) has two roots

(13) 9 = f,

(14) sin ?> = ( ^ Y (4 + τr)2 - 1 .

(i) 0 < L ^ T/ΊΓTΓW. The circle is admissible and A(B) ^ (P2(B))/4π.
(iii) L > (4 + τr)w. Equation (14) does not yield an admissible root;
since D(φ) is strictly increasing, q = 0. The extremal figure is of the
form shown in Figure 1 (iii) and A{B) ^ l/2wP(B) - 1/4 πw2

(ii) i/ 2 TΓW < L ^ (4 + π)w. Case (ii) decomposes into two cases:
(iia) V~2πw < L ^ i/"2" (4 + π)w
(iib) "l/"2" (4 + π)w < L £ (4 +

Case (iia) If L ^ l/i/ 2 (4 + π)w, equation (14) offers no solution;
since D(φ) is strictly decreasing, q — ττ/2. Thus, for all L in (iia),
the extremal figure is contained in R(π/2). The desired inequality

becomes A(B) ^ ί— ( - 1/4L2 + τ/^"^L - 2πw2). Note that there
( 4 - 7Γ)

is no analogy if w1 Φ w2.

Case (iib) q occurs in (0, 7r/2) and is given by equation (14). The
extremal figure has the form shown in Figure 1 (ii) and A(B) ^
(L2)/(4 + π)4 + ιυ2.
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