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ON EXTREMAL FIGURES ADMISSIBLE RELATIVE
TO RECTANGULAR LATTICES

MURRAY SILVER

A theorem of Bender states that if a convex figure F
contains no point of the two dimensional lattice G, where G
is generated by the vectors V, and V, having enclosed angle
0, then A(F) < 1/2 P(F) max (|V,], |V:| sin6) where |V,| <
|V2]. In this paper, two questions are answered: (1) Among
all convex figures of perimeter L. which are admissible rela-
tive to a rectangular lattice G, which encloses the maximum
area? (2) Can the constant 1/2 in Bender’s theorem be impro-
ved? By using the result of (1), the ‘‘sharpest possible’
inequality of the Bender type is found.

NOTATION.
w, = min(lvlly IVZI sinﬁ)
w, = max (| V,|, | V,| sin )
A(F') is the area of F, P(F') is the perimeter of F. A figure F is

admissible relative to the lattice G, if no points of G are in the
interior of F'.

THEOREM. If F is an admissible convex figure relative to the
lattice G, then

(i) for 0 < P(F) £ w(w? + wi)'?, A(F) < (P¥(F))/(4x)

() for m(w? + w)'* < P(F) < 4w, + ww, ,

(PZ(F) -7 (w1 sin ¢/2 + w, cos-%-))2

(4 — 7 sin q)

ar < &
4

where q is the root of equation (9).

(iii) for 4w, + ww, < P(F), A(F) £ 1/2 w,P(F) — w/4 wi.
Further, if G is rectangular the extremal figures relative to G are
shown for (3), (i0) and (iid) in Figure 1 (3), (it) and (iii) respectively;
n these cases, equality holds.

By Bender’s Lemma [1], only rectangular lattices and admissible
convex figures symmetric about the lines &’ = 1/2, ¥’ = 1/2 need be
considered (2" and %’ are coordinates relative to the lattice); in the
remainder of this paper only such figures and lattices will be considered.

DEFINITION. Let G be a (rectangular) lattice and denote by R
the set of all admissible rhombi whose vertices lie on the lines 2’ =
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(i)
FIGURE 1
1/2, ' = 1/2 and each of whose sides pass through at least one lattice
point of G (see Figure 2). R(p) denotes the rhombus in R with base
angle ¢ (Figure 2) where 0 < @ <7 (¢ = 0 and @ = 7 yield the two
infinite strips).

FIGURE 2
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LemmA 1. Ewvery figure F 1is contained in at least one rhombus
R(®) of the set R.

Proof. Let g be one of the four lattice points which contain
the intersection of the lines ' = 1/2 and ¥’ = 1/2. Consider the follow-
ing two cases: (i) ¢ is a boundary point of F', (ii) ¢ is not a boundary
point of F.

(i) Since F is convex and ¢ is a boundary point, there exists a
line of support S of F at the point G. Construct the three remaining
lines symmetric to S about the lines 2’ = 1/2 and ¥’ = 1/2. By the
symmetry of ¥, all four of these lines are support lines of F and the
rhombus formed contains F' and belongs to R.

(ii) Since g is exterior to F, there exists a line S’ which separates
g and F. Construct S through g parallel to S’. Clearly S lies in the
exterior of F and the proof is completed as in (i).

Proof of the Theorem. The inequalities are proven by finding the ad-
missible convex figure of perimeter I which encloses the maximum area
(extremal figure). The problem has been reduced to rectangular lattices
and symmetric figures which are contained in rhombi of R. Denote
by Y(L, @) the extremal figure of perimeter L contained in R(@). The
existence, uniqueness, form, ete., of the extremal figure are discussed
in references [2] and [4], pp. 124-5. For fixed L, define ¢ by A(Y (L,
q)) = sup, A(Y(L, #)). The maximum area is thus attained by the
extremal figure contained in the rhombus R(g). Since any figure F
is contained in R(p) for some ¢ (Lemma 1), A(F) =< A(Y(L, 9)) =
A(Y(L, 9)). The inequalities (ii) and (iii) are nothing other than A(Y(L,
q)) expressed in terms of L and the lattice constants; (i) means simply
that Y(Z, q) is a circle. In (ii) and (iii), Y(L, ¢) contains lattice points
on its boundary; otherwise, it is easy to construct a figure of per-
imeter L having larger area. Hence, for a rectangular lattice, the
inequalities of the theorem are the “sharpest possible”.

In the remainder of the proof, A(Y(L, ®)) and A(Y(L, q)) are
determined.

Y(L, 9)
From Figure 2, it follows for 0 < p < w

(1) S:%wlsecgnt—;-wzcsc%

or

(2) Ssin@:wlsin%—}—wzcos—z
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Y(L, ) is the parallel figure of radius » taken about a concentric
subrhombus of R(®) (see reference 3, p. 124-5). Denoting by v the
length of a side of the subrhombus,

(3) A(Y(L, p)) = v*sinp + 4rv + wr* (see Figure 3).

@y
FIGURE 3
The perimeter of Y(L, #) is given by
(4) P(Y(L, )) = L = 2nr + 4v.

Use (4) to eliminate » from (3). After simplification it follows that

(5) 71’%’—A<Y<L, ?) = (£ — sing) .

The right side of (5) is, of course, the classical isoperimetric deficit.
From Figure 3,

6 Scos 2 = P ese 2 .
(6) s2 vcosz—}—'r p

Using equation (4), eliminate » from equation (6); use the resulting
equation to eliminate v from equation (5), and finally, use equation
(2) to eliminate S:

L (4 in® s wyeos2))
(7) A(Y(L,gv)):%_<7f <w15m2+wcosz)>

4_ sin @
T
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Equation (7) is valid for 0 <@ <z, If ¢ =0 or x, the extremal
figure consists of two parallel lines connected by semicircles [3].
Calculation shows that the area agrees in both cases with (7). Hence, (7)
is valid for 0 £ @ < 7.

Y(L, 9

From equation (7), A(Y (L, ®)) is a single valued continuous func-
tion of L and @ which possesses neither a singularity nor a cusp.
To find Y(L, q), the isoperimetric deficit

) D=<%_(wl sin%—i—wwos%))z

4_ sin @
T

must be minimized.

If L < m(w? + w)'?, the solution is trivial; viz. the circle. In the
remainder of the proof, it is assumed that L > w(w? 4+ wd)'?. Setting
dD/d® = 0, the condition for an extremum becomes:

(9) L cos ¢ = (4w, + mw,) cos 5’21 — (dw, + Tw,) sin% .

The value (s) of ® which yield an extremum of D must be either 0,

7w or a root of equation (9).
The case w, = w, will be treated separately; if not otherwise

stated, it is assumed that w, > w,.

LEMMA 2. The absolute minimum of D(L, @) lies in the interval
0= @< m/2.

Proof. Consider an arbitrary rhombus R(®) € R. From the midpoint
of R(p) mark off the distance 1/2 w, along the line &’ = 1/2; at this
point construct the perpendicular d. From similar triangles,

1

Scos? — =

i _ cos2 zw2
n-=— S cos Z-

S si 2 52

Using equation (1), eliminate S and solve for d:

(10) d= %w - % (w, — w,) tan 5’;1 )
If R(®) is rotated through 90° about its midpoint, it will not contain

a lattice point (the boundary included) if d < 1/2 w,. Applying this
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condition to equation (10), it follows that (11) tan®/2 > 1. Hence,

R(®) does not contain a lattice point when rotated about its midpoint

through 90° if ® > n/2. Suppose Y(L, ®) is the extremal figure of

the rhombus R(®) where ®» > m/2. Rotate R(®) through 90° about its

midpoint. By the preceding argument, R(®) and thus Y (L, ®) contains

no lattice point (boundary included). Thus, Y(L, ®#) cannot be Y(L, g).
Thus, ¢ is either 0 or a root of equation (8) (w, # w,).

LeMMA 3. For 0 < ¢ < /2 equation (9) has

(i) exactly one root if L < 4w, + ww,

(ii) exacly one root (viz., » = 0) if L = 4w, + 7w,
(iii) mo roots of L > 4w, + ww,

Proof. Form the auxillary functions ¥, = L cos ¢ and

Y, = (4w, + Tw,) cos -Zi — (dw, + 7w, sin%

= (4w, + 7wy + (dw, + Tw,))'" sin (3 — %)

where

4w, + Tw,

tan B = .
P Tw, + 4w,

Clearly, 38° < g < 45°. The roots of equation (9) are the points of
intersection of ¥, and y,. Divide the problem into three parts

(i) 2.(0) < 9:(0); ice., L < 4w, + mw,

(i) .(0) = ¥,(0); i.e., L = 4w, + 7w,

(i)  9.(0) > v.(0); i.e., L > 4w, + 7w,

y, and y, are cosine and sine curves; the lemma follows from the
elementary properties of these curves.

From Lemma 8, it follows for (iii) and (ii) that ¢ = 0. In case (i),
D'(0) is negative and ¢ must be the (single) root of equation (9).
Thus, the extremal figures have been found and inserting the value
of ¢ into equation (7) gives the theorem (for w, = w,).

The Solution for w, = w, = w.

This is the most important single case; viz., the square lattice.
Geometrically it is obvious that equation (7) and therefore (8) are
symmetric about 7/2; viz., R(®) is identical with R(m — @) except for
a rotation of 7/2 about the midpoint. Hence Y(L, ®) is identical with
Y(L, = — ®), except for a rotation of 7/2 about its midpoint. @ can
therefore be restricted to the interval 0 < @ < 7/2. In this case,
equation (9) becomes:
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12) (cos-i- — sin %)(cos% + sin% - (4++)w> =0

Equation (12) has two roots

13 :——7?—’
(13) P =3

(14) sing = (%) 4+mr—1.

(i) 0<L=1v2rw. The circleis admissible and A(B) < (P*B))/4~.
(iii) L > (4 + m)w. Equation (14) does not yield an admissible root;
since D(p) is strictly increasing, ¢ = 0. The extremal figure is of the
form shown in Figure 1 (iii) and A(B) =< 1/2wP(B) — 1/4 ww*

(ii) V2 mw<L=<(4+mw. Case (ii) decomposes into two cases:

(ia) V2rw<L=V'2 4+ mw

(iib) V2 @+nw<L=Z@+nw

Case (ita) If L <1/V/ 2 4+ T)w, equation (14) offers no solution;
since D(p) is strictly decreasing, ¢ = /2. Thus, for all L in (iia),
the extremal figure is contained in R(x/2). The desired inequality
becomes A(B) < (4_1._5 (— 1/4L* + 1/ 8wl — 2zu?). Note that there

is no analogy if w, # w,.

Case (itb) ¢ occurs in (0, 7/2) and is given by equation (14). The
extremal figure has the form shown in Figure 1 (ii) and A(B) <
(LH)H/4 + 4 + w’.
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