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ON THE SPECTRAL RADIUS FORMULA IN
BANACH ALGEBRAS

JAN-ERIK BJORK

B will always denote a commutative semi-simple Banach
algebra with a unit element. If fc B then #(f) denotes its
spectral radius. A sequence F = (f;)i is called a spectral
null sequence if || f;|| <1 for each j, while lim; . r(f;) = 0.
If F=(f;) is a spectral null sequence we put 7y(F)=
lim sup;w || £ ||Y¥ for each N = 1. Finally we define the
complex number 7ry(B)=sup{ry(F):F is a spectral null
sequence in B}. In general ry(B) =1 for all N =1 and the
aim of this paper is to study the case when ry(B) <1 for
some N.

We say that B satisfies a bounded inverse formula if there exists
some 0 < ¢ < 1 and a constant K, such that for all f in B satisfying
IfII<1 and »(f) <e, it follows that || (¢ — f)~*|| < K,. In Theorem
3.1. we prove that B satisfies a bounded inverse formula if and only
if ry(B) < 1 for some N.

In §1 we give a criterion which implies that B is a sup-norm
algebra. In §2 we introduce the so called infinite product of B
which will enable us to study spectral null sequences in § 3.

1. Sup-norm algebras. Recall that B is a sup-norm algebra if
there exists a constant K such that ||f|| < Kr(f) for all f in B.
Clearly this happens if and only if 7, (B) = 0. Next we give an example
where r(B) = 1 while r,(B) = 0.

Let B = C'[0, 1] be the algebra of all continuously differentiable
functions on the closed unit interval. If feB we put || f|l =
sup {|f ()| + |f'(w) |: 0 <z, y <1}, The maximal ideal space M, can
be identified with [0, 1], so the spectral radius formula shows that
r(f) =sup{ f(x)|: 0 <2 < 1). From this we easily deduce that 7,(B) =
0. In fact we also notice that [[f"|| < || f[|(»(f))*" holds for all
n = 2. We will now prove that this estimate is sharp.

THEOREM 1.1. Let the norm in B satisfy ||f"|| < qn || f || r(f)*?
for some q <1 and some n = 2. Then B is a sup-norm algebra and
there is a constant K(n, q) such that || f|| < K(n, q)r(f) for all fe B.

LEMMA 1.2. Let n =3 and suppose that ||f*| =< K||f|lr(f)"
for all f in B and some constant K. Then there is a comstant K(n)
such that || f* || = K(m)K]|| f [lr(f)-
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Proof. Notice that all the inequalities above are homogeneous.
Hence it is sufficient to consider the case when ||f|| =1. If now
r(f) = ¢, then we must prove that || f?|| < K(n)Ke for some K(n).

Under the hypothesis, we note that

| (ke + )" | < K || ke + £ llie + key < Ker(L + )"

for all 0 £ k < m.
Now consider the inhomogeneous system of equations
L (2 s
Z( '>(k5)”"ff= ke +1)y O0=k=mn,
=0\ 7
which we wish to solve for the f%. The determinant of the system
is ee? -+ e"K,(n), and the determinants of the minors can be expressed

similarly. Using Cramer’s rule to solve this system for f*, we obtain
the estimate || f* || = K(n)Ke, as required.

Proof of Theorem 1.1. Firstly we choose ¢ >0 so small that
1— e > 2ne" + q. Next we introduce the power series ¢(z) =& +
o2 + 4,2 + +++, which satisfies (¢(2))" = e + z for all |z | < e". Notice
that na.e*' =1 holds. If 0 < & < &* we put

Av(x) = xlp([avn [ + b _l_ Iavn+n-—1 l) .

Then it is clear that the sum U(x) = A, (®) + As(x) + -+ is finite,
while lim U(x) = 0 as © — 0.

Note that from Lemma 1.2. there is a constant K(n) such that
|5l < Km)r(f) for all 2<k<n—1 and all f in B satisfying
|fIl= 1. It follows that there is a constant K(n,e) such that
| @of? + oo + @ f* M| = K(m, e)r(f) for all f satisfying || f|] < 1.

Now we choose 6 >0 so small that né"* < e and U(né*™) +
K(n, €)0 < & holds.

Suppose now that B is not a sup-norm algebra. Then we can
choose fin B such that ||f|| =1 while »(f) < é. The assumption
shows that || /™ || £ qgné" ' < no" ' <e". Hence || ||| f"|"|| f*|| =
(nomY) —for all v=1land all k=0---(n —1). It follows that we
can define the element g = ¢(f) = ¢ + a.f + a,f*+ -+- in B.

We get |[gfl = e+ |a|+ [[auf® + +o + ap f* 7| + Umo™™) =
2 + |a,|. We also have r(g) < (r(e + f))'* < (e* + )"

It follows that 1 —e* < ||e"+f|| =gl S gnllg]lr(@)** =
gn(2e + (ne*)™)(e" + 8)Y* = Z(5).

Clearly Z(5) tends to 2gne” + q as 6 — 0. The original choice of
¢ shows that 1 — &” < Z(6) cannot hold for sufficiently small values
of 6. This proves that B must be a sup-norm algebra and the proof
gives a lower bound for §, once we have fixed e.
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2. The infinite product of a Banach algebra. Firstly we
introduce the infinite product.

DEFINITION 2.1. Put B. = {(f): (f;) is a sequence in B such
that sup; || f;|] < o while lim;,., r(we — f;) = 0 for some we C'}.

Clearly B.. is a Banach algebra if to each F = (f;) we define
| F|| =sup;|| fill. If F=(f;) and if N =1, then we put 7 (F) =
(9;), where g; = 0 for § < N and g, = f; for § > N.

A complex-valued homomorphism H on B, is free if H(F) =
H(zy(F)) for all N=1 and each FeB.. The part at infinity in
M;_ consists of the points determined by free homomorphisms. We
denote this set by M.

To each N =1 we have an idempotent ¢, in B., whose Nth
component is ¢ while all the other components are zero. The set
4y = {we My_: é,(x) = 1} is a clopen (closed and open) subset of M,_.
We can identify 4, with M. For if xe M, we get a point Ty,(x) in
4y satisfying F(Ty(x)) = fy(@) for all F = (f;). It is easily seen that
T, is a homeomorphism from M, onto 4.

If we put 4 = 4,: N=1, then it is easily seen that 4 =
My \M... Here 4 is open and hence M. is closed. The set M.
contains a distinguished point m.., determined by the complex-valued
homomorphism which sends F = (f;) into the complex number w
satisfying lim;_.. r(we — f;) = 0.

With the notations above the following result is evident.

LeMMA 2.2. Let V be an open neighborhood of m. in My,
Then there ts an integer N such that 4;CV for all 7 > N.

LEMMA 2.3. Let b4 be the topological boundary of 4 in M.
Then b4 = {m.}.

Proof. Lemma 2.2. means that the clopen sets 4, converge to
{m.}. Then it is a trivial topological fact that m. is the only
boundary point of 4.

The result below was motivated by Theorem 2 in [2].

THEOREM 2.4. The set M. 1is a closed and connected subset
of My_.

Proof. We already know that M, is closed. Suppose next that
S and T are disjoint closed subsets whose union is M., such that
M. €S. Then Lemma 2.3. implies that SU 4 is clopen in M, . By
Shilov’s idempotent Theorem there is Ee B. such that £ =0 on
SuU4 while =1 on 7. In particular E =0 on each 4;, which
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implies that the jth component is zero. Since this holds for all j
we conclude that £ = 0, and 7 is empty. Hence M., is connected.

The next result gives a useful characterization of M.. This
result is due to the referee.

THEOREM 2.5. Let I be the closed ideal of all F' in B. for which
lim||7(F)|| =0 as N— co. Then M. is the maximal ideal space
of B./I.

Proof. A point m in M, induces a complex-valued homo-
morphism on B./I if and only if F(m) =0 for all Fel. Clearly
each idempotent e, belongs to I. This proves that if m annihilates
I, then m must belong to M.. Conversely, if me M, then F(m) =
T (F)"(m) for all N=1. Hence | F(m)|<lim,._.. | Tw(F) || =0 follows
if FF'el. This proves that every point in M., annihilates I.

If F=(f;) is in B, we put »,(F) = limsup,_.. || /¥ ||"* for each
N=1. Let us also put | F|. = sup{| F(m)|: me M.}. With these
notations the following result is a direct consequence of Theorem 2.5.

PROPOSITION 2.6. If Fe B., then | F|. = lim,_. ry(F).
3. Spectral null sequences.

THEOREM 3.1. The following conditions on B are equivalent:

(@) 7ry(B) <1 for some N = 1.

(b) B satisfies a bounded inverse formula.

(¢) There is a constant K, such that if fe B satisfies || f]| <1
and r(f) = q <1, then || (e — /)| = K,1 — ¢)~".

Proof. Since (c) — (b) we only prove that (a) — (b) and (b) — (a).
Firstly we assume that r,(B) <1 for some N = 1. Then we get
some ¢ >0 and a <1 such that || f¥]| <a” for all f satisfying
171 =1 and #(f) < e

Let then ||f]| <1 while »(f) £¢ <1. Let s be the positive
integer satisfying ¢° < ¢ < ¢°~'. It follows that || f**||a” and hence
[| f¥ ]| < a* for all k= 1. Using this fact we see that if R =
>, f%:j = sN, then || R|| = sNa®(1 — a¥)".

We have (e — f)'=e+ f+ <+« + "+ R, Since |[f|| =1 we
get [[(e— f)'||=sN+||R|| £ K,s. Finally ¢ < ¢°' which implies
that s = K,(1 — ¢)7'. Hence (c) follows with K, = K, K,.

Now we assume that (b) holds in B. Suppose that »y(B) =1
for all N. To each j =1 we can choose f; such that || f;|| =1 and
P(£7) < (7 + 1, while || f7 || > 1 — 1/j.

Let us consider F = (f;) in B.. Since lim,.. || F?|'" =1, it
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follows that there is some we C* satisfying |w| =1 while we — F
is not invertible in B..

Consider the elements g; = (¢ — f;/w)™* which exist for all j = 1.
Clearly (b) implies that || g;|| < K for some fixed constant K. Since
lim;_.. »(f;) = 0 it follows that the element G = (9;) exists in B..
Now (we — F)Gw™ = e in B. which shows that we — F is invertible,
a contradiction. Hence 7y(B) < 1 must hold for some N.

Let us observe that a spectral null sequence F = (f;) simply is
an element of B, for which || F'|| <1 and F(m.) = 0. The following
result is a direct consequence of Proposition 2.6.

THEOREM 3.2. The following two conditions on B are equivalent:
(a) limry(B) =0 as N— .
) M., ={m.}.

Finally we study spectral null sequences satisfying polynomial
conditions.

THEOREM 3.3. Let p be a polynomial of the form z* (1 + a,z +

o+ a,2"), with s> 1. Then there exist constants K and ¢ with

the following property: If fe B satisfies ||f|| =1, ||p(f) ] < ¢ and
r(f) < e, where € < ¢, then || f*|] < Ke.

Proof. For each ¢ >0 we put S(¢) ={feB:||f||=1, ||p(H)] £
€ and r(f) < ¢}. Suppose the constants ¢ and K do not exist. Then
there is a decreasing sequence (g;), with lim,..e&; = 0, while S(g))
contains an element f; for which || f} | > je;.

We may assume that 1> |a,|e + ++« + |a,|¢! holds. This im-
plies that the elements u; = e + a,f; + +++ + a,f! are invertible in B.

Now »p(fj) = fju; and hence je; < |[f7|| = ||p(f) ]l |wi']] =
€;||u;*|l. This means that || u;'|| > j for all j, so the element G =
(#;) is not invertible in B..

Now we obtain a contradiction by proving that G must
be invertible in B.. Since lim;..| p(f;)|| =0 it follows that
lim|| p(zy(G)) || =0 as N — oo. Then Proposition 2.6. shows that
»(G@) must vanish on M.

Hence the set G(Mw) is contained in the finite set of zeros of p.
Using Theorem 2.4. we see that G(J..) is connected. It follows that
G(M.) = {G(m.)}. Clearly G(m.) =1 holds and hence G does not
vanish on M.. The choice of & shows that G + 0 on 4 too. This
proves that G is invertible in B. which gives the desired contra-
diction.

Finally we raise some problems. We do not know if the con-
dition that ry(B) <1 for some N > 2 implies that r.(B) < 1. We
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also ask if the condition that »,(B) < 1 for some N = 2 implies that
limr,(B) =0 as J — oo,
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