OPERATORS SATISFYING CONDITION (G_1) LOCALLY

GLENN R. LUECKE

The class of operators that satisfy condition (G_i) locally is studied. For operators in this class, conditions on the spectra which will insure normality are investigated.

An operator (continuous linear transformation from H into H) Ton the complex Hilbert space H satisfies condition (G_1) if $||(T-zI)^{-1}|| =$ $1/d(z, \sigma(T))$ for all $z \in \rho(T)$, where $\rho(T)$ is the resolvent set of T and $d(z, \sigma(T))$ is the distance from z to $\sigma(T)$, the spectrum of T. T satisfies (G_1) locally if T satisfies (G_1) in an open neighborhood of $\sigma(T)$, i.e. $||(T-zI)^{-1}|| = 1/d(z, \sigma(T))$ for all $z \in U - \sigma(T)$ where U is some open set containing $\sigma(T)$. Let \mathcal{G} and \mathcal{G}_{loc} be all operators on H satisfying (G_1) and (G_1) locally, respectively. First it is shown how to construct nontrivial examples of operators in \mathcal{G} and \mathcal{G}_{loc} . When dim $H < \infty$, it is well-known that $\mathcal{G}_{loc} = \mathcal{G} = \mathcal{N}$, the set of all normal operators on H. However, when dim $H = \infty$ then \mathcal{N} is a proper subset of \mathcal{G} and \mathcal{G} is a proper subset of \mathcal{G}_{loc} . Next, for $T \in \mathcal{G}_{loc}$ having $\sigma(T)$ countable, conditions on $\sigma(T)$ are investigated to guarantee that T be normal.

1. Properties of \mathcal{G} and \mathcal{G}_{loc} . First we show how to construct nontrivial operators in \mathcal{G} and \mathcal{G}_{loc} . Let A be any operator on H. Then $A \bigoplus N \in \mathcal{G}$ on the Hilbert space $H \bigoplus K$ (the orthogonal direct sum of H and K), whenever N is a normal operator on K with $\sigma(N) \supseteq$ W(A), the numerical range of A [see 8]. The following is an analogous way to construct operators in \mathcal{G}_{loc} .

THEOREM 1. If A is an operator on H, then $A \bigoplus N \in \mathcal{G}_{loc}$ on $H \bigoplus K$ whenever N is a normal operator on K with $\sigma(N) \supseteq U$, where U is an open set containing $\sigma(A)$.

Proof. Let $T = A \bigoplus N$ where A and N are as above. Then $\sigma(T) = \sigma(A) \cup \sigma(N) = \sigma(N)$. Let $R(S, z) = (S - zI)^{-1}$ denote the resolvent of S at z. Then for $z \in \rho(T)$ [see 11],

$$egin{aligned} \|R(T,\,z)\,\| &= \, ext{Max} \left\{ \|R(A,\,z)\,\|,\,\|R(N,\,z)\,\|
ight\} \ &= \, ext{Max} \left\{ \|R(A,\,z)\,\|,\,1/d(z,\,\sigma(T))
ight\} \,. \end{aligned}$$

The last equality holds since N is a normal operator and thus $||R(N, z)|| = 1/d(z, \sigma(N)) = 1/d(z, \sigma(T))$. Since there is an open set U such that $\sigma(N) \supseteq U \supseteq \sigma(A)$, there exists an open set $V \supseteq \sigma(N) = \sigma(T)$

such that for each $z \in V - \sigma(T)$, $||R(A, z)|| \leq 1/d(z, \sigma(T))$. Thus $||R(T, z)|| = 1/d(z, \sigma(T))$ for all $z \in V - \sigma(T)$, and hence $T \in \mathcal{G}_{loc}$.

It is well-known [13, Th. 1] that \mathscr{G} contains \mathscr{N} , the set of all normal operators on H. It is immediate that $\mathscr{G} \subseteq \mathscr{G}_{loc}$. Putnam [10] has shown that for $T \in \mathscr{G}_{loc}$ the isolated points of $\sigma(T)$ are normal eigenvalues $(z \in \sigma(T) \text{ is a normal eigenvalue of } T \text{ if } z \text{ is an eigenvalue}$ of T and $\{x \in H: Tx = zx\} = \{x \in H: T^*x = z^*x\}$ where z^* is the complex conjugate of z). Thus for dim $H < \infty$, $\mathscr{G}_{loc} = \mathscr{N}$, and consequently $\mathscr{G}_{loc} = \mathscr{G} = \mathscr{N}$ [see 7].

THEOREM 2. $\mathcal{G} \neq \mathcal{G}_{loc}$ when dim $H = \infty$.

Proof. Let M be a two dimensional subspace of H and let $A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ on M. Let N be normal operator on M^{\perp} with $\sigma(N)$ equal to the closed disc of radius 1/2 about the origin (this requires that dim $M^{\perp} = \infty$). From Theorem 1, $T = A \bigoplus N \in \mathcal{G}_{loc}$. However $T \notin \mathcal{G}$ since upon calculation one finds that $||R(T, z)|| > 1/d(z, \sigma(T))$ when, for example, z = 1.

From [9] we know that for each $T \in \mathcal{G}$, co $\sigma(T) = \operatorname{Cl} W(T)$, where co $\sigma(T)$ denotes the convex hull of $\sigma(T)$ However, from the example in the proof of Theorem 2 we see that not all $T \in \mathcal{G}_{loc}$ satisfy co $\sigma(T) = \operatorname{Cl} W(T)$.

Let B(H) denote the set of all operators on H and give B(H) the norm topology. When dim $H < \infty$, then $\mathcal{G}_{loc} = \mathcal{G} = \mathcal{N}$ is a closed subset of B(H). When dim $H = \infty$, then \mathcal{G} and \mathcal{N} are closed subsets of B(H) [8].

THEOREM 3. \mathcal{G}_{loc} is niether an open nor closed subset of B(H) when dim $H = \infty$.

Proof. To see that \mathscr{G}_{loc} is not open, it suffices to observe that (1) the zero operator is in \mathscr{G}_{loc} , (2) $T \in \mathscr{G}_{loc}$ and α a complex number implies $\alpha T \in \mathscr{G}_{loc}$, and (3) $\mathscr{G}_{loc} \neq B(H)$.

Let H, M, and A be as in the proof of Theorem 2. Let N_n be a normal operator on M^{\perp} whose spectrum is the closed disc of radius 1/n about the origin. Let $T_n = A \bigoplus N_n$. By Theorem 1, $T_n \in \mathcal{G}_{loc}$. Let Z be the zero operator on M^{\perp} . Then $T_n \to A \bigoplus Z$ in norm and since $A \bigoplus Z \notin \mathcal{G}_{loc}$ is not closed.

For a detailed discussion of the topological properties of \mathcal{G} see

[8].

II. Operators in \mathcal{G}_{loc} with countable spectra. In general an operator $T \in \mathcal{G}_{loc}$ with countable spectrum need not be normal. However, such a non-normal operator can always be decomposed as the orthogonal direct sum of a normal operator and another operator:

THEOREM 4. If $T \in \mathcal{G}_{loc}$ has countable spectrum, then either T is normal or $T = A \bigoplus N$ where N is a normal operator with $\sigma(N) = \sigma(T)$ and A is an operator with $\sigma(A)$ a subset of the derived set of $\sigma(T)$.

Proof. If z is an isolated point of $\sigma(T)$, then by [10] z is a normal eigenvalue of T; let E(z) be the eigenspace of z. Let $\sigma_0(T)$ denote the isolated points of $\sigma(T)$ and let

Since each $E(z), z \in \sigma_0(T)$, reduces T, T is normal on E(z); and consequently M reduces T and T is normal on M. Since $\sigma(T)$ must have at least one isolated point, $M \neq (0)$. If M = H, then T is normal.

If $M \neq H$, then write $H = K \bigoplus M$ and $T = A \bigoplus N$ where A is T restricted to K and N is T restricted to M. Clearly $\sigma(N) = \sigma(T)$ and N is normal. Suppose to the contrary that $\sigma(A)$ is not a subset of the derived set of $\sigma(T)$. Then there exists $w \in \sigma(A)$ such that w is an isolated point of $\sigma(T)$. Therefore w is an isolated point of $\sigma(A)$, so there exists a circle C about w such that if $z \in C$, then |z - w| = $d(z, \sigma(T)) = d(z, \sigma(A))$. Then for $z \in C$

$$egin{aligned} ||\,R(A,\,z)\,|| &\leq ext{Max}\,\{||\,R(A,\,z)\,||,\,||\,R(N,\,z)\,||\,\} = ||\,R(T,\,z)\,|| \ &= 1/d(z,\,\sigma(T)) = 1/d(z,\,\sigma(A)) \,\,. \end{aligned}$$

Then since $||(z - w)R(A, z)|| \leq 1$ as $z \to w$, (z - w)R(A, z) is a vectorvalued analytic function of z at z = w. Therefore (z - w)R(A, z) is analytic on an open disc containing C. Let

$$P=\,-\,rac{1}{2\pi i}\int_{_C}R(A,\,z)dz\;.$$

then

$$AP-wP=-rac{1}{2\pi i}\int_{c}{(z-w)R(A,z)dz}=0$$

so that AP = wP. Since $P \neq 0$ [12, p. 421], w is an eigenvalue of A

and hence of T. Since w is isolated point of $\sigma(T)$, w is a normal eigenvalue of T. Hence $K \cap M \neq (0)$. Contradiction.

With Theorem 4 we can easily classify all compact operators in \mathcal{G}_{loc} .

COROLLARY. If $T \in \mathcal{G}_{loc}$ is compact, then either T is normal or $T = A \bigoplus N$ where N is compact and normal, and A is compact and quasi-nilpotent.

Proof. The spectrum of a compact operator is countable with zero the only possible point of accumulation.

The existence of a non-normal $T \in \mathcal{G}_{loc}$ follows immediately from the following:

THEOREM 5. If A is any operator, then there exists a normal operator N such that

1. $A \bigoplus N \in \mathcal{G}_{loc}$

2. $\sigma(N) \supseteq \sigma(A)$, and

3. $\sigma(N) - \sigma(A)$ is a countable set whose points of accumulation are contained in $\sigma(A)$.

Proof. Assume ||A|| = 1. We would like to find a normal operator N so that $\sigma(N)$ is the disjoint union of $\sigma(A)$ and some countable set $X \subseteq \{z: |z| \le 2\}$ such that the following properties hold:

(i) the accumulation points of X are contained in $\sigma(A)$,

(ii) for $|z| \ge 2$, $d(z, \sigma(N) \le d(z, W(A))$, and

(iii) for |z| < 2 and $z \in \rho(N)$, $||R(A, z)|| \leq 1/d(z, \sigma(N))$.

Property (i) guarantees that $\sigma(A) \cup X$ is a compact set so that there does exist a normal operator N with $\sigma(N) = \sigma(A) \cup X$. Let $T = A \bigoplus N$. Then for |z| > 2 property (ii) implies

$$||R(A, z)|| \leq 1/d(z, W(A)) = 1/d(z, \sigma(T))$$
.

Combining this with property (iii) we see that for every $z \in \rho(T)$, $|| R(A, z) || \leq 1/d(z, \sigma(T))$. Consequently $T = A \bigoplus N \in \mathcal{G} \subseteq \mathcal{G}_{loc}$. Thus, it sufficies to construct such a set X.

Let

$$S_n = \{z \colon |z| \leq 2 \text{ and } 3/(n+1) \leq d(z, \sigma(A)) \leq 3/n\}$$

for $n = 1, 2, 3, \cdots$. Since ||R(A, z)|| is bounded on each compact set

632

 S_n , there exists a finite set of points $X_n \subseteq S_n$ such that $d(z, X_n) \leq ||R(A, z)||^{-1}$ for all $z \in S_n$. Let

$$X = \bigcup_{n=1}^{\infty} X_n$$
.

Since $||R(A, z)|| \ge 1/d(z, \sigma(A))$ [see 4, p. 566], X has all of its accumulation points in $\sigma(A)$, and hence property (i) is satisfied. To see that property (ii) is satisfied, let $z \in S_n \cap \rho(N)$. Then

$$d(z, \sigma(N)) = d(z, X) \leq d(z, X_n) \leq ||R(A, z)||^{-1}$$

Thus $||R(A, z)|| \leq 1/d(z, \sigma(N))$. Since W(A) is a subset of the closed unit disc, property (ii) can be satisfied, for example, by making sure taht X contains the points $2 \exp(n\pi i/4)$, for $n = 0, 1, \dots, 7$.

One can further require in Theorem 5 that $T = A \bigoplus N \notin \mathscr{G}$. This can be done, in essentially the same manner as above, by choosing $\sigma(N) = \sigma(A) \cup X$ where X is as above only instead of satisfying properties (ii) and (iii) X satisfies the following: for $x \in \rho(N) ||R(A, z)|| \leq 1/d(z, \sigma(N) \text{ only for } z \text{ contained in a sufficiently small neighborhood}$ of $\sigma(A)$ instead of for all $z \in \{z \in \rho(N) : |z| < 2\}$. This can be done by choosing m sufficiently large and then letting

$$X = \bigcup_{n=m}^{\infty} X_n$$
.

To show that there exists a non-normal $T \in \mathscr{G}_{loc}$ with countable spectrum, let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and choose a normal operator N as in Theorem 5.

Stampfli [17] has shown that if $T \in \mathcal{G}_{loc}$ has $\sigma(T)$ lying on a C^2 smooth rectifiable Jordon curve C, then T is normal. The following question now arises: If $T \in \mathcal{G}_{loc}$ has countable spectrum, then can we weaken the assumption that $\sigma(T) \subseteq C$ and still conclude that T must be normal? The answer is not fully known, but the following material gives a partial answer.

If S is a countable compact subset of the complex plane, then S satisfies condition (A) if for each $p \in S$ there exists $q \notin S$ such that |q - p| = d(q, S).

To show that S satisfying condition (A) is weaker than $S \subseteq C$, let S be the following countable, compact set of complex numbers:

$$S = \{0\} \cup \{1/n + i(\sin n)/n: n = 1, 2, 3, \cdots\}$$
.

Then S does not lie on a C^2 -smooth rectifiable Jordon arc, but S does satisfy condition (A).

THEOREM 6. If T is a scalar operator in \mathcal{G}_{loc} whose spectrum is countable and satisfies condition (A), then T is normal.

Proof. Let $u \in \sigma(T)$, then there exists a sequence $\{u_n\} \subseteq \rho(T)$ such that $u_n \to u$ and $|u_n - u| = d(u_n, \sigma(T))$. Since T is scalar

$$T=\int_{\sigma(T)}zdE_z$$
 .

Therefore

$$(u-u_n)R(T,u_n)=\int_{\sigma(T)}\frac{u-u_n}{z-u_n}dE_z$$
.

Let $x, y \in H$ be fixed and define m to be the complex Borel measure m(S) = (E(S)x, y) for each Borel set S in $\sigma(T)$. For each $z \in \sigma(T)$ let

$$f_n(z) = rac{u-u_n}{z-u_n} ext{ and } f(z) = egin{cases} 1 & ext{if } z = u \ 0 & ext{if } z
eq u \end{cases}$$

•

Then $|f_n(z)| \leq 1$ and $f_n(z) \to f(z)$. Therefore we may apply the Lebesgue dominated convergence theorem:

$$|m(\{u\})| = \left| \int_{\sigma(T)} f(z) \operatorname{dm} (z) \right|$$

= $\lim_{n \to \infty} \left| \int_{\sigma(T)} f_n(z) \operatorname{dm} (z) \right|$
= $\lim_{n \to \infty} |((u - u_n)R(T, u_n)x, y)|$
 $\leq |u - u_n| ||R(T, u_n)|| ||x|| ||y|| = ||x|| ||y||$

Since $m(\{u\}) = (E(\{u\})x, y)$, we have that

$$|(E({u})x, y)| \leq ||x|| ||y||$$
.

Letting $y = E(\{u\})x$, we obtain $||E(\{u\})x|| \le ||x||$, and hence $||E(\{u\})|| \le 1$. 1. Therefore $E(\{u\})$ is an orthogonal projection for each $u \in \sigma(T)$.

Let $S \subseteq \sigma(T)$ be a Borel set, then S is a countable set so write $S = \{z_1, z_2, z_3, \dots\}$. Then for each $x, y \in H$, we have

$$(E(S)x, y) = \sum_{n=1}^{\infty} (E(\{z_n\})x, y) = \sum_{n=1}^{\infty} (x, E(\{z_n\})y)$$
$$= \operatorname{conj} \sum_{n=1}^{\infty} (E(\{z_n\})y, x) = \operatorname{conj} (E(S)y, x) = (x, E(S)y) .$$

Therefore $E(S) = E(S)^*$, the adjoint of E(S), and hence E(S) is an orthogonal projection. Consequently, T is a scalar operator with a resolution of the identity of orthogonal projections; and thus T is normal.

634

In light of Theorem 6 it seems reasonable to conjecture the following theorem: If $T \in \mathcal{G}_{loc}$ has countable spectrum satisfying condition (A), then T is normal. The following theorem shows that this conjecture is false.

THEOREM 7. There exists $T \in \mathcal{G}_{loc}$ with $\sigma(T)$ satisfying condition A such that

- (i) $\sigma(T)$ is countable with zero the only point of accumulation,
- (ii) if $z \in \sigma(T)$, then $|z 2| \leq 2$, and
- (iii) T is not normal.

Proof. Let D_n be the closed disc of radius n about n, for n = 1, 2. Let V be the Volterra integration operator. Let $B = (I + V)^{-1}$, and let A = I - B. By [6, problem 150], $\sigma(B) = \{1\}$ and ||B|| = 1. Hence $\sigma(A) = \{0\}$ and W(B) is contained in the closed disc about the origin of radius ||B|| = 1. Therefore $W(A) \subseteq D_1$. We now proceed to fill up D_2 with enough points, X so that if N is a normal operator with $\sigma(N) = X \cup \{0\}$, then $A \bigoplus N \in \mathcal{G}_{loc}$ and $\sigma(A \bigoplus N)$ is a countable set with zero the only point of accumulation. The procedure is similar to that used in the proof of Theorem 5 only the details are a little more involved. For $n = 1, 2, \cdots$, let

- 1. $F_n = \{z \in D_2: 4/(n+1) \leq |z| \leq 4/n\}.$
- 2. $M_n = \sup \{ || R(A, z) || : z \in F_n \},$
- 3. $d_n = \inf \{ d(z, W(A)) : z \in (\partial D_2) \cap F_n \} > 0$
- 4. $P_n = Max \{M_n, 1/d_n\}, and$

5. B(z, r) be the open disc of radius r about z. Then

$$F_n \subseteq \bigcup_{z \in F_n} B(z, 1/P_n)$$
 .

Since F_n is compact, there exists $z_{n_i} \in F_n$, $1 \leq i \leq m_n$, such that

$${F}_n \subseteq igcup_{i=1}^{m_n} B({z_u}_i, 1/P_n)$$
 .

Let N be a normal operator with $\sigma(N) = \{0\} \cup \{z_{n_i}: 1 \leq i \leq m_n, n = 1, 2, 3, \dots\}$, then $\sigma(N)$ is a countable set with zero the only point of accumulation. Let $T = A \bigoplus N$, then $\sigma(T) = \sigma(N)$. We now verify that $T \in \mathcal{G}_{loc}$.

If $z \in D_2, z \neq 0$, then there exists n and i such that $z \in F_n \cap B(z_{n_i}, 1/P_n)$. Then

$$egin{aligned} d(z,\,\sigma(N))\, ||\, R(A,\,z)\, || &\leq |z-z_{n_i}|\, ||\, R(A,\,z)\, || \ &\leq (1/P_n)\, ||\, R(A,\,z)\, || \ &\leq (1/M_n)\, ||\, R(A,\,z)\, || \leq 1 \;. \end{aligned}$$

If z is real and negative, then

$$d(z, \sigma(N)) || R(A, z) || \leq |z|/d(z, W(A)) = 1$$
.

Suppose $z \notin D_2$ and that z is not real and negative. Let x be the point of intersection of ∂D_2 with the shortest line segment connecting z and Cl W(A). Observe that $x \neq 0$. Then d(z, W(A)) = |z - x| + d(x, W(A)). There exists n and i such that $x \in F_n \cap B(z_{n_i}, 1/P_n)$. Then $|x - z_{n_i}| \leq 1/P_n$, and so

$$egin{aligned} |z-z_{n_i}| &\leq |z-x| + 1/P_n \leq |z-x| + d_n \ &\leq |z-x| + d(x, \ W(A)) = d(z, \ W(A)) \ . \end{aligned}$$

Therefore,

$$egin{aligned} d(z,\,\sigma(N))\,||\,R(A,\,z)\,|| &\leq |z\,-\,z_{n_i}|\,||\,R(A,\,z)\,|| \ &\leq d(z,\,W(A))/d(z,\,W(A)) = 1 \;. \end{aligned}$$

Therefore, for each complex number $z \neq 0$, $d(z, \sigma(N)) || R(A, z) || \leq 1$. Since N is normal, for each $z \in \rho(T) = \rho(N)$,

$$||R(N, z)|| = 1/d(z, \sigma(N)) = 1/d(z, \sigma(T))$$
.

Hence, for $z \in \rho(T)$

$$||R(T, z)|| = Max \{ ||R(A, z)||, ||R(N, z)|| \} = 1/d(z, \sigma(T))$$
.

Therefore $T \in \mathcal{G}_{loc}$.

References

1. S. K. Berberian, Some conditions on an operator implying normality, Math. Ann., **184** (1970). 188-192.

2. _____, Some conditions on an operator implying normality II, Proc. Amer. Math. Soc., (to appear).

3. W. F. Donoghue, On the numerical range of a bounded operator, Michigan Math. J., 4 (1957), 261-263.

4. N. Dunford and J. T. Schwartz, *Linear Operators Part I and II*, Interscience Publishers, New York, 1957.

5. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc., **64** (1958), 217-274.

6. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand Company, Princeton, New Jersey, 1967.

7. S. Hildebrandt, Uber den Numerischen Wertebereich eines Operators, Math. Annalen, **163** (1966), 230-247.

8. G. R. Luecke, Topological properties of paranormal operators, Trans. Amer. Math. Soc., (to appear).

9. G. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964), 75-79.

10. C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math., 12 (1968), 278-282.

11. _____, The spectra of operators having resolvents of first-order growth, Trans.

636

Amer. Math. Soc., 133 (1968), 505-510.

12. F. Riesz and B. Sz-Nagy, *Functional Analysis*, F. Ungar Publishing Company, New York, 1965.

13. J. G. Stampfii, Hyponormal operators, Pacific J. Math., 12 (1962), 1453-1458.

14. J. F. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1966), 469-476.

15. J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech., **19** (1966), 287-296.

16. ____, Minimal range theorems for operators with thin spectra, Pacific J. Math., 23 (1967), 601-612.

17. ____, A local spectral theorey for operators, J. Functional Anal., 4 (1969), 1-10.

18. ____, A local spectral theory for operators II, Bull. Amer. Math. Soc., 75 (1969), 803-806.

Received September 21, 1970.

IOWA STATE UNIVERSITY