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OPERATORS SATISFYING CONDITION (Gi) LOCALLY

GLENN R. LUECKE

The class of operators that satisfy condition (Gi) locally
is studied. For operators in this class, conditions on the
spectra which will insure normality are investigated.

An operator (continuous linear transformation from H into H) T
on the complex Hubert space Hsatisfies condition (GJ if \\(T — zl)"1!! =
l/d(z, σ{T)) for all zeρ(T), where ρ(T) is the resolvent set of T and
d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. T satisfies
(GO locally if T satisfies (Gx) in an open neighborhood of σ(Ί), i.e.
| | ( T - zl)~'\\ = l/d(z, σ(T)) f o r a l l zeU - σ(T) w h e r e U is s o m e o p e n

set containing σ(T). Let <& and &Ue be all operators on H satisfying
(GJ and (GJ locally, respectively. First it is shown how to construct
nontrivial examples of operators in & and S^oc. When dim£Γ< co,
it is well-known that 5^oc = S? — ̂ 7 the set of all normal operators
on H. However, when dim H — °° then <sV is a proper subset of &
and ^ is a proper subset of 5^oc. Next, for Te&Ί00 having σ(T)
countable, conditions on σ(T) are investigated to guarantee that T be
normal.

1* Properties of & and g^oc First we show how to construct
nontrivial operators in ^ and ^ o c . Let A be any operator on H. Then
^ 4 . 0 ^ 6 ^ on the Hubert space H@K (the orthogonal direct sum
of H and K), whenever N is a normal operator on K with σ(N) 3
TΓ(^L), the numerical range of A [see 8]. The following is an analo-
gous way to construct operators in 5^oc.

THEOREM 1. // A is an operator on H, then AφNe^i0C on
H 0 K whenever N is a normal operator on K with σ(N) 2 U, where
U is an open set containing σ(A).

Proof. Let T = A 0 N where A and N are as above. Then
σ(T) = σ(A)\Jσ(N) - σ(N). Let R(S, z) = (S - zl)~γ denote the resol-
vent of S at z. Then for zeρ(T) [see 11],

)\\ = Max{\\R(A,z)\\,\\R(N,z)\\}

= mn{\\R(A,z)\\,l/d(z,σ(T))}-

The last equality holds since N is a normal operator and thus
\\R(N, 2)|| = 1/φ, σ(iV)) = l/d(z, σ(T)). Since there is an open set U
such that σ(N) 2 Z72 "̂(A), there exists an open set 7 2
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such t h a t for each z e V - σ(T), \\R(A, z)|| g l/d(z, σ{T)). Thus

\\R(T, z)\\ = l/d(z, σ{T)) for all ze V - σ{T)y and hence Te %?loe.

It is well-known [13, Th. 1] that ^ contains ^/^, the set of all
normal operators on H. It is immediate that & £ gfZoc. Putnam [10]
has shown that for Te^loe the isolated points of σ(T) are normal
eigenvalues (zeσ(T) is a normal eigenvalue of T if z is an eigenvalue
of T and {& e H: Tx = 2$} = {$ 6 if: T*£ = z*̂ } where 2* is the complex
conjugate of z). Thus for dim if < 00 9 9?Uc — ̂ yfr a n ( j consequently

[see 7].

THEOREM 2. ^ Φ ̂ Uc when dim H = 00.

Proof. Let M be a two dimensional subspace of if and let A =
rθ 2η

o n l , Let JV be normal operator on ML with σ(N) equal to
the closed disc of radius 1/2 about the origin (this requires that
dim M1 = 00). From Theorem 1, T = A © Ne gfZoc. However Γ$ gf
since upon calculation one finds that || J?(T, ̂ ) | | > l/d(z, σ(Tj) when,
for example, z = l

From [9] we know that for each Γe gf, co σ(Γ) = Cl W(T), where
co(j(T) denotes the convex hull of σ(T) However, from the example
in the proof of Theorem 2 we see that not all Te g^oc satisfy co σ(T) =
Cl W(T).

Let B(H) denote the set of all operators on H and give B(H) the
norm topology. When dim H < 00, then &loe — ̂  — Λ" is a closed
subset of B(H). When dimϋ"= 00, then ^ and ̂ K are closed sub-
sets of B(H) [8].

THEOREM 3. ^Ue is niether an open nor closed subset of B(H)
when dim H — 00.

Proof. To see that ^Uc is not open, it suffices to observe that
(1) the zero operator is in 5 Ẑoc, (2) Te^loc and a a complex number
implies aTe &loe, and (3) gfIoβ =̂ B(iϊ).

Let ίί, M, and A be as in the proof of Theorem 2. Let Nn be a
normal operator on M1 whose spectrum is the closed disc of radius
1/n about the origin. Let Tn = A © ΛΓn. By Theorem 1, ΓΛ e &loc.
Let Z be the zero operator on M1. Then Tn~> A@ Z in norm and
since 4 © 2 ί ^ ί o c , 2^0C is not closed.

For a detailed discussion of the topological properties of ^ see
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[8].

II* Operators in S^oc with countable spectra* In general an
operator Te &loβ with countable spectrum need not be normal. How-
ever, such a non-normal operator can always be decomposed as the
orthogonal direct sum of a normal operator and another operator:

THEOREM 4. If Te &loc has countable spectrum, then either T is
normal or T = AQ) N where N is a normal operator with σ(N) —
σ(T) and A is an operator with σ(A) a subset of the derived set of
σ(T).

Proof. If z is an isolated point of σ(T), then by [10] z is a
normal eigenvalue of T; let E(z) be the eigenspace of z. Let σo(T)
denote the isolated points of σ(T) and let

M — closed span U E(z)

zeσo(T) .

Since each E(z),zeσo(T), reduces Γ, T is normal on E(z); and con-
sequently M reduces T and T is normal on ikf. Since σ(T) must have
at least one isolated point, MΦ (0). If M = H, then T is normal.

If M Φ H, then write H = K 0 M and T = A φ N where A is T
restricted to K and N is T restricted to M. Clearly σ(N) = σ(T) and
N is normal. Suppose to the contrary that σ(A) is not a subset of
the derived set of σ{T). Then there exists w e σ(A) such that w is an
isolated point of o(T). Therefore w is an isolated point of (?(A), so
there exists a circle C about w such that if zeC, then \z — w\ =
d(z, σ{T)) = d(z, σ{A)). Then for z e C

, σ(T)) = l/d(z, σ(A)) .

Then since \\(z — w)i2(il, «)|| ^ 1 as z—> w9 (z — w)R(A, z) is a vector-
valued analytic function of z at 2 = w. Therefore (z — w)iϋ(A, 2) is
analytic on an open disc containing C. Let

then

AP- wP= - r ^ ( (« - w)R(A, z)dz = 0

so that AP = wP. Since P ^ 0 [12, p 421], w is an eigenvalue of A
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and hence of T. Since w is isolated point of σ(T), w is a normal
eigenvalue of T. Hence K[\MΦ (0). Contradiction.

With Theorem 4 we can easily classify all compact operators in

COROLLARY. / / Te&loc is compact, then either T is normal or
Γ = i φ J V where N is compact and normal, and A is compact and
quasi-nilpotent.

Proof. The spectrum of a compact operator is countable with
zero the only possible point of accumulation.

The existence of a non-normal T e &loe follows immediately from
the following:

THEOREM 5. If A is any operator, then there exists a normal
operator N such that

2. σ(N) a σ(A), and
3. σ(N) — o(A) is a countable set whose points of accumulation

are contained in σ(A).

Proof. Assume \\A\\ — 1. We would like to find a normal oper-
ator N so that σ(N) is the disjoint union of o(A) and some countable
set J g ^ φ l ^2} such that the following properties hold:

( i ) the accumulation points of X are contained in σ(A),
(ii) for |sI ̂  2, d(z, σ(N) ̂  d(z, W(A)), and
(iii) for \z\ < 2 and zep(N), \\R(A, z)\\ ^ l/d(z, σ(N)).

Property ( i ) guarantees that o(A) u X i s a compact set so that there
does exist a normal operator N with σ(N) = σ(A) U X. Let T = A φ N.
Then for | z \ > 2 property (ii) implies

\\R(A, s)|| ̂  l/d(z, W{A)) = l/d(z, σ{T)) .

Combining this with property (iii) we see that for every zeρ(T),
\\R(A, z) || ^ l/d(z, σ{T)). Consequently T = A © ΛΓe Sf S &ioc- Thus,
it sufficies to construct such a set X.

Let

Sn = {z: \z\ ^ 2 and S/(n + 1) ̂  d(z, σ(A)) ^

for n — 1, 2, 3, •• Since \\R{A, z)\\ is bounded on each compact set
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Sn, there exists a finite set of points Xn £ Sn such that d(z, Xn) sΞ
\\R(A, 2;) 11-1 for all zeSn. Let

X - U Xn

Since \\R(A, z)\\ ^ 1/φ, σ(A)) [see 4, p. 566], X has all of its accu-
mulation points in σ(A), and hence property ( i ) is satisfied. To see
that property (iii) is satisfied, let zeSnΓ\ρ(N). Then

d(z, σ(N)) = d(z, X) ^ d(z, Xn) ^ \\R(A, z)\\~' .

Thus \\R(A, z)\\^ lfd(z, σ(N)). Since W(A) is a subset of the closed
unit disc, property (ii) can be satisfied, for example, by making sure
taht X contains the points 2 exp {nπijA), for n — 0,1, , 7.

One can further require in Theorem 5 that T = A 0 iV<£ gf. This
can be done, in essentially the same manner as above, by choosing
σ(N) — σ(A) U X where X is as above only instead of satisfying proper-
ties (ii) and (iii) X satisfies the following: for xeρ(N) \\R(A,z)\\ ^
l/d(zf σ(N) only for z contained in a sufficiently small neighborhood
of σ(A) instead of for all ze{zeρ(N): \z\ < 2}. This can be done by
choosing m sufficiently large and then letting

X = U -X.

To show that there exists a non-normal Te&Ί0C with countable

Γ° l l
spectrum, let A = and choose a normal operator N as in Theo-
rem 5.

Stampfli [17] has shown that if Γe 3fZoc has σ(T) lying on a C2-
smooth rectifiable Jordon curve C, then T is normal. The following
question now arises: If Te &loe has countable spectrum, then can we
weaken the assumption that σ(T) £ C and still conclude that T must
be normal? The answer is not fully known, but the following material
gives a partial answer.

If S is a countable compact subset of the complex plane, then S
satisfies condition (A) if for each peS there exists q$S such that
l ί - p | = d( ? f S).

To show that S satisfying condition (A) is weaker than S g C ,
let S be the following countable, compact set of complex numbers:

S = {0}(J {1/n + i(sin n)/n: n = 1, 2, 3, •} .

Then S does not lie on a C2-smooth rectifiable Jordon arc, but S does
satisfy condition (A).
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THEOREM 6. If T is a scalar operator in gfZoβ whose spectrum is
countable and satisfies condition (A), then T is normal.

Proof. Let ueσ(T), then there exists a sequence {un} §j ρ{T) such
that un-+u and \un — u\ = d(un, σ(T)). Since T is scalar

T = ( zdE, .
Jσ(T)

Therefore

(u - uJΛίΓ, O - ( ^=^dEM .
Jσ(Γ) £ — Un

Let x,yeH be fixed and define m to be the complex Borel measure
m(S) = (E(S)x, y) for each Borel set S in σ(T). For each zeσ(T) let

1 if z = %

0 if « Φ u

Then |/n(j5) | <̂  1 and fn(z) —> /(»). Therefore we may apply the Lebesgue
dominated convergence theorem:

σ(Γ)

\ fn(z) dm (z)\

- un)R(T,un)x,y)\
n-*oo

<ί\u-un\\\R(T,un)\\\\x\\\\y\\ = \\x\\\\y\\.

Since m({u}) = (l?({t&})£, ^/), we have that

\(E({u})x,y)\^\\x\\\\y\\.

Letting y = ̂ ({u})^, we obtain ||S({tt})α|| ^ ||a?||, and hence \\E({u})\\ ̂
1. Therefore E({u}) is an orthogonal projection for each ueσ(T).

Let S Qσ(T) be a Borel set, then S is a countable set so write
S = {#!, sfc, 23, •}. Then for each x,yeH, we have

(E(S)x, y) = ± (E({zn})x, y) = ± (x, E{{zn})y)

= conj Σ {E({zn})y, x) = conj (E(S)y, x) - (x, E(S)y) .

Therefore ^(S) = J^(S)*, the adjoint of £7(5), and hence E(S) is an
orthogonal projection. Consequently, T is a scalar operator with a
resolution of the identity of orthogonal projections; and thus T is
normal.
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In light of Theorem 6 it seems reasonable to conjecture the fol-
lowing theorem: If Γ e ^ l o c has countable spectrum satisfying condi-
tion (A), then T is normal. The following thorem shows that this
conjecture is false.

THEOREM 7. There exists Te&Ίoe with σ(T) satisfying condition
A such that

( i ) σ(T) is countable with zero the only point of accumulation,
(ii) if zeσ(T), then \z — 2| ^ 2, and
(iii) T is not normal.

Proof. Let Dn be the closed disc of radius n about n, for
n = 1,2. Let V be the Volterra integration operator. Let B =
(1+ V)-1, and let A = I- B. By [6, problem 150], σ(B) = {1} and
||J5|| = 1. Hence σ(A) — {0} and W{B) is contained in the closed disc
about the origin of radius | |B | | = 1. Therefore W(A) <ΞΞ Dx. We now
proceed to fill up D2 with enough points, X so that if N is a normal
operator with σ(N) = XU{0}, then .A0iVe5^ o c and (j(i0i\Γ) is a
countable set with zero the only point of accumulation. The procedure
is similar to that used in the proof of Theorem 5 only the details are
a little more involved. For n = 1, 2, , let

1. Fn = {ze D2: A/(n + 1) rg \z\ ^ i/n}.
2. Mn = avp{\\R(A,z)\\:zeFn},
3. 4 = inf {d(z, W(A)): z e (3A) ΠFn}>0
4. Pn - Max {Mn, 1R}, and
5. JB(^, r) be the open disc of radius r about z.

Then

Fn S U S(

Since ί^ is compact, there exists sΛ< G i^, 1 ^ i ^ mΛ, such that

Let iV be a normal operator with σ(N) = {0} U {zH: 1 ^ i S mκ, % —
1, 2, 3, •}, then σ(iV) is a countable set with zero the only point of
accumulation. Let T = A φ N, then σ(T) — σ(N). We now verify
that Γeg?,...

If Z&Ό^ZΦ 0, then there exists -w and i such that ze FnC\
B(zni,l/PJ. Then

d(z, σ(N))\\R(A, z)\\ £ \z - z.t\ \\B(A, z)\\
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If z is real and negative, then

d(z, σ(N))\\R(A, z)\\ £ \z\/d(z, W{A)) = 1 .

Suppose z§ D2 and that z is not real and negative. Let x be the
point of intersection of dD2 with the shortest line segment connecting
z and Cl W(A). Observe that x Φ 0. Then d(z, W(A)) = \z - x\ +
d(x, W{A)). There exists n and ί such that x e Fn n B(zn., 1/Pn). Then
\x - zn,\ g 1/PΛ, and so

^ \z - x + <Z(α, W(A)) = d(z, W(A)) .

Therefore,

d(z, σ(N))\\R(A, z)\\ ^\z- z%i\ \\R(A, z)\\

£ d(z, W(A))/d(z, W(A)) = 1 .

Therefore, for each complex number z Φ 0, d(z, σ(N))\\R(A,z)\\ ^ 1.
Since N is normal, for each zep(T) — ρ(N),

\\R(N, z)\\ = l/d(z, σ(N)) = l/d(z, σ(T)).

Hence, for ze ρ(T)

\\R(T, z)\\ = M a x { | | i 2 ( A , z ) | | , \\R(N, z)\\} = l/d(z, σ(T))) .

Therefore Te%?loc.
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