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OPERATORS SATISFYING CONDITION (Gy) LOCALLY

GLENN R. LUECKE

The class of operators that satisfy condition (G;) locally
is studied. For operators in this class, conditions on the
spectra which will insure normality are investigated.

An operator (continuous linear transformation from H into H) T
on the complex Hilbert space H satisfies condition (G) if ||[(T — zI)™'|| =
1/d(z, o(T)) for all ze o(T), where o(T) is the resolvent set of 7 and
d(z, o(T)) is the distance from z to o(7T), the spectrum of 7. T satisfies
(G) locally if T satisfies (G, in an open neighborhood of o(T), i.e.
(T — 2I)7|| = 1/d(z, o(T)) for all ze U — o(T) where U is some open
set containing ¢(T). Let & and ¥,,, be all operators on H satisfying
(@) and (@,) locally, respectively. First it is shown how to construct
nontrivial examples of operators in & and Z,,,. When dim H < <o,
it is well-known that %,,, = & = _#; the set of all normal operators
on H. However, when dim H = « then .4~ is a proper subset of &
and ¥ is a proper subset of %,,. Next, for Te ¥, having o(T)
countable, conditions on o(7T) are investigated to guarantee that T be
normal.

1. Properties of & and %, First we show how to construct
nontrivial operators in & and &,,.. Let A be any operator on H. Then
AP NeZ on the Hilbert space H@ K (the orthogonal direct sum
of H and K), whenever N is a normal operator on K with o(N) 2
W(A), the numerical range of A [see 8]. The following is an analo-
gous way to construct operators in <,..

THEOREM 1. If A is an operator on H, then AP Ne &, on
H& K whenever N s a normal operator on K with o(N) 2 U, where
U vs an open set containing o(A).

Proof. Let T= AP N where A and N are as above. Then
o(T) = 0(A)Ua(N) = a(N). Let R(S, z) = (S — zI)"* denote the resol-
vent of S at 2. Then for ze o(T) [see 11],

| B(T, 2)|| = Max {[| E(4, 2) ||, [| E(N, 2)[|}
= Max {|| R(4, 2)[|, 1/d(z, o(T))} .

The last equality holds since N is a normal operator and thus
| R(N, 2)|| = 1/d(z, 6(N)) = 1/d(z, o(T)). Since there is an open set U
such that o(N) 2 U 2 0(4), there exists an open set V2 o(N) = o(T)
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such that for each zeV — o(T), || R(A, 2)|| £ 1/d(z, o(T)). Thus
| R(T, z)|| = 1/d(z, o(T)) for all ze V — o(T), and hence Tec <,..

It is well-known [13, Th. 1] that & contains _#~, the set of all
normal operators on H. It is immediate that & < Z7,.. Putnam [10]
has shown that for Te &, the isolated points of o(T) are normal
eigenvalues (z € o(T) is a normal eigenvalue of T if z is an eigenvalue
of Tand {xe H: Tx = za} = {x € H: T*x = z*x} where z* is the complex
conjugate of z). Thus for dim H < «, &, = .#; and consequently

Troe = & = A [see 7].
THEOREM 2. ¥ # %,, when dim H = co.

Proof. Let M be a two dimensional subspace of H and let A =

02
[0 0] on M. Let N be normal operator on M* with o(N) equal to

the closed disc of radius 1/2 about the origin (this requires that
dim M+ = o). From Theorem1l, T= AP Ne &,,.. However T¢ &
since upon calculation one finds that || R(T, z)|| > 1/d(z, o(T)) when,
for example, z = 1.

From [9] we know that for each Te &7, coo(T) = Cl W(T), where
co o(T) denotes the convex hull of ¢(7) However, from the example
in the proof of Theorem 2 we see that not all Te ¥, satisfy coo(T)=
Cl W(T).

Let B(H) denote the set of all operators on H and give B(H) the
norm topology. When dim H < oo, then &,, = & = _#~ is a closed
subset of B(H). When dim H = <, then & and .4~ are closed sub-
sets of B(H) [8].

THEOREM 3. <. is niether an open mnor closed subset of B(H)
when dim H = <.

Proof. To see that ¥, is not open, it suffices to observe that
(1) the zero operator is in &, (2) Te &, and a a complex number
implies aTe <., and (3) <. # B(H).

Let H, M, and A be as in the proof of Theorem 2. Let N, be a
normal operator on M* whose spectrum is the closed disc of radius
1/n about the origin. Let T,= A& N,. By Theorem 1, T,ec Z,,..
Let Z be the zero operator on M*. Then T,— AP Z in norm and
since AP Z & £, Toe 1S not closed.

For a detailed discussion of the topological properties of & see
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II. Operators in &, with countable spectra. In general an
operator T e &,,, with countable spectrum need not be normal. How-
ever, such a non-normal operator can always be decomposed as the
orthogonal direct sum of a normal operator and another operator:

THEOREM 4. If Te &, has countable spectrum, then either T is
normal or T =A@ N where N is a normal operator with o(N) =
o(T) and A is an operator with o(A) a subset of the derived set of

a(T).

Proof. If z is an isolated point of o(T), then by [10] z is a
normal eigenvalue of T; let E(z) be the eigenspace of z. Let o,(T)
denote the isolated points of o(7T) and let

M = closed span UE(®R)
zeoy(T) .

Since each E(z),z€ 0,(T), reduces T, T is normal on FE(z); and con-
sequently M reduces T and T is normal on M. Since o(T) must have
at least one isolated point, M == (0). If M = H, then T is normal.

If M+ H, thenwrite H=K@® M and T = A N where A is T
restricted to K and N is T restricted to M. Clearly o(N) = o(T) and
N is normal. Suppose to the contrary that o(A) is not a subset of
the derived set of o(T). Then there exists w e g(A4) such that w is an
isolated point of o(T). Therefore w is an isolated point of ¢(4), so
there exists a circle C about w such that if zeC, then |z — w]| =
d(z, o(T)) = d(z, 0(4)). Then for zeC

| R(A, 2) || = Max {|| R(4, 2)[], [| R(N, 2)[|} = [| B(T, 2) ||
= 1/d(z, o(T)) = 1/d(z, o(4)) .

Then since ||(z — w)R(A4, 2)|| =1 as z— w, (# — w)R(A4, 2) is a vector-
valued analytic function of z at 2z = w. Therefore (z — w)R(A4, 2) is
analytic on an open disc containing C. Let

1
P=—— ECR(A, 2)dz .

then

1
AP~ wP= —— Sc(z — wWR(A, 2)dz = 0

so that AP = wP. Since P = 0 [12, p. 421], w is an eigenvalue of A
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and hence of 7. Since w is isolated point of ¢(7T), w is a normal
eigenvalue of 7. Hence KN M =+ (0). Contradiction.

With Theorem 4 we can easily classify all compact operators in

I
u‘//)loc‘

COROLLARY. If Te <3, s compact, then either T is normal or
T=A@ N where N is compact and normal, and A is compact and
quast-nilpotent.

Proof. The spectrum of a compact operator is countable with
zero the only possible point of accumulation.

The existence of a non-normal T e <7, follows immediately from
the following:

THEOREM 5. If A is any operator, then there exists a mnormal
operator N such that

1. A@Ne<zy,

2. o(N)=20(4), and

3. o(N) — 0(A) is a countable set whose points of accumulation
are contained in o(A).

Proof. Assume ||A|| = 1. We would like to find a normal oper-
ator N so that o(IN) is the disjoint union of ¢(A4) and some countable
set X< {2:|z| < 2} such that the following properties hold:

(i) the accumulation points of X are contained in o(4),

(ii) for |z| = 2, d(z, o(N) < d(z, W(A)), and

(iii) for |2| < 2 and ze p(NN), || R(4, ?)|| < 1/d(z, 6(N)).

Property (i) guarantees that ¢(4)U X is a compact set so that there
does exist a normal operator N with o(N) = 0(4)UX. Let T= A N.
Then for |z| > 2 property (ii) implies

1R(A, 2)|| = 1/d(z, W(A)) = 1/d(z, o(T)) .

Combining this with property (iii) we see that for every ze p(T),
[|R(A, 2)|| < 1/d(z, 6(T)). Consequently T=APNec < = 2. Thus,
it sufficies to construct such a set X.

Let

S, = {z:]2] £ 2 and 3/(n + 1) £ d(z, 0(A4)) =< 3/n}

for n =1,2,8,---. Since ||R(4, ?)|| is bounded on each compact set
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S,, there exists a finite set of points X, & S, such that d(z, X,) <
| R(A, z)||* for all ze S,. Let

X, .

C:

X =
Since || R(A, z)|| = 1/d(z, 6(A)) [see 4, p. 566], X has all of its accu-
mulation points in ¢(4), and hence property (i) is satisfied. To see
that property (iii) is satisfied, let ze S,NpP(N). Then

1

d(z, 0(N)) = d(z, X) < d(z, X.) = || R(4, 2)[|" .

Thus || R(4, 2)|| < 1/d(z, 6(N)). Since W(A) is a subset of the closed
unit dise, property (ii) can be satisfied, for example, by making sure
taht X contains the points 2 exp (n7i/4), for n = 0,1, <+, 7.

One can further require in Theorem 5 that T= AP N¢ &. This
can be done, in essentially the same manner as above, by choosing
o(N) = 0(4A)U X where X is as above only instead of satisfying proper-
ties (ii) and (iii) X satisfies the following: for xze o(N) || R(4,?)|| <
1/d(z, 6(N) only for z contained in a sufficiently small neighborhood
of d(A) instead of for all ze {ze p(N): |2] < 2}. This can be done by
choosing m sufficiently large and then letting

X=UZX..

To show that there exists a non-normal Te %,,, with countable
01
spectrum, let 4 = [ 0 O] and choose a normal operator N as in Theo-

rem 5.

Stampfli [17] has shown that if Te &,,, has o(T) lying on a C*-
smooth rectifiable Jordon curve C, then T is normal. The following
question now arises: If Te %, has countable spectrum, then can we
weaken the assumption that ¢(7) & C and still conclude that T must
be normal? The answer is not fully known, but the following material
gives a partial answer.

If S is a countable compact subset of the complex plane, then S
satisfies condition (A) if for each pe S there exists ¢¢ S such that
lg — pl = d(g, S).

To show that S satisfying condition (4) is weaker than S < C,
let S be the following countable, compact set of complex numbers:

S={0tu{l/n + i(sinn)/n:n=1,2,8, -} .

Then S does not lie on a C®*-smooth rectifiable Jordon are, but S does
satisfy condition (4).
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THEOREM 6. If T is a scalar operator im &, whose spectrum is
countable and satisfies condition (A), then T is nmormal.

Proof. Let u € o(T), then there exists a sequence {u,} S 0o(T) such
that w, —w and |u, — %| = d(«,, 6(T)). Since T is scalar

T = S AE, .
a(T)
Therefore
U — U,
(u - u”)R(T’ un) - SU(T) 2 — U, dEz :

Let x,ye H be fixed and define m to be the complex Borel measure
m(S) = (E(S)z, y) for each Borel set S in ¢(T). For each ze o(T) let

lifz=u
0if 2 u

7o) = =t and ) = |

—u’lb

Then | f,(2)| £ 1 and f,(2) — f(2). Therefore we may apply the Lebesgue
dominated convergence theorem:

m)| = || @ am@ |
=1lim| | A@dm@)|
= lim|((w — %) R(T, ), )|
< |w — w, | (| R(T, w) || [z 1yl = ]l |yl .
Since m({u}) = (E({u})x, y), we have that

[(E({uhz, v)| = Izl [yl .

Letting y = E({u})x, we obtain || E({u})z|| < ||«||, and hence || E({u})]| <
1. Therefore E({u}) is an orthogonal projection for each e a(T).

Let S< o(T) be a Borel set, then S is a countable set so write
S = {2, %, %, -++}. Then for each x, yc H, we have

(BS)z, v) = 3 (B(@)w, ) = 3, (5, Bz))
= conj 3, (E((z))y, ) = conj (E(S)y, ) = (z, E(S)) -

Therefore E(S) = E(S)*, the adjoint of E(S), and hence E(S) is an
orthogonal projection. Consequently, T is a scalar operator with a
resolution of the identity of orthogonal projections; and thus T is
normal.
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In light of Theorem 6 it seems reasonable to conjecture the fol-
lowing theorem: If T e %7,, has countable spectrum satisfying condi-
tion (A), then T is normal. The following thorem shows that this
conjecture is false.

THEOREM 7. There exists Te <, with o(T) satisfying condition
A such that

(i) o(T) is countable with zero the only point of accumulation,

(i1) of zeo(D), then |z — 2| £ 2, and

(iili) T s mot mormal.

Proof. Let D, be the closed disc of radius » about =, for
n=1,2. Let V be the Volterra integration operator. Let B =
(I+ V), and let A=1— B. By [6, problem 150], ¢(B) = {1} and
[|B]| = 1. Hence o(A) = {0} and W(B) is contained in the closed disc
about the origin of radius ||B|| = 1. Therefore W(4) &€ D,. We now
proceed to fill up D, with enough points, X so that if N is a normal
operator with o(N) = XU{0}, then AP Ne %, and (AP N) is a
countable set with zero the only point of accumulation. The procedure
is similar to that used in the proof of Theorem 5 only the details are
a little more involved. For n =1,2, .-, let

1. F,={eD:4/(n+ 1)< |z| < 4/n}.

2. M, =sup{||R(4,2?)|:zeF,},

3. d, = inf{d(z, W(A):2e @D)NF,} >0

4. P, = Max{M,, 1/d,}, and

5. B(z,r) be the open disc of radius r about z.
Then

F,= U Bk 1/P,).
ZeF

Since F, is compact, there exists z,, ¢ F,, 1 < ¢ < m,, such that

F.=U B, 1/P) -

Let N be a normal operator with o(N) = {0}U{z,:1=71=m,, n=
1,2,8, ---}, then o(N) is a countable set with zero the only point of
accumulation. Let T= A@ N, then o(T) = o(N). We now verify

that Te Cloce
If 2¢ D,, 2+ 0, then there exists » and ¢ such that ze F,N

B(z,,, 1/P,). Then
d(z, 6(N)) | R(4, 2) || = |z — z,,| || B(4, 2) ||
= (/P R(A, )|
=S (UM)IRA, ) <1.
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If z is real and negative, then
d(z, s(N)) || R(4, »)|| = [z|/d(z, W(4)) = 1.

Suppose z & D, and that z is not real and negative. Let x be the
point of intersection of 0D, with the shortest line segment connecting
z and Cl W(4). Observe that = == 0. Then d(z, W(4)) = |z — x| +
d(x, W(A)). There exists » and 7 such that ve F,N B(z,, 1/P,). Then
v — z,,] < 1/P,, and so

|2 — 2 < |2 — 0| + 1P, < |2 — o] + d,

<
= |z — x| + d(x, W(4)) = d(z, W(4)) .
Therefore,

d(z, o(N) | E(4, 2)[| = |2 — z,,| | R(4, 2) ||
= d(z, W(A))/d(z, W(4)) = 1.

Therefore, for each complex number z == 0, d(z, o(N))|| R(4,?)|| = 1.
Since N is normal, for each z¢€ o(T) = p(N),

LE(N, 2)|| = 1/d(z, o(N)) = 1/d(z, o(T)) .
Hence, for z€ o(T)
| R(T, 2)|| = Max {||E(4, 2)||, | R(N, 2)[|} = 1/d(z, o(T))) -

Therefore Te %,
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