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STRONG HEREDITY IN RADICAL CLASSES

R. L. TANGEMAN

In a recent paper, W. G. Leavitt has called a radical class
^ in a universal class Ύ/^ of not necessarily associative
rings strongly hereditary if 0{I) = / n 0(R) for all ideals
I of any ring Re 5^Γ In this paper, strongly hereditary
radicals are investigated and a new construction is provided
for the minimal strongly hereditary radical containing a given
class in 5^7 Nonassociative versions of some results of E. P.
Armendariz on semisimple classes are proved, including a
characterization of semisimple classes corresponding to strongly
hereditary radicals.

Unless otherwise indicated, "W" is assumed to be a universal class
of not necessarily associative rings. If 0 is any radical class in

<W] we denote the class of ^-semisimple rings in W~ by 6^0. We
use the notation I <̂  R to denote that I is an ideal of R. For any
class ^& we denote by £ίf^€ and ^i^f, respectively, the homomor-
phic closure and ideal closure of ^ .

For any radical class 0 g 5^7 Leavitt in [7] has defined gf^ =
{J'\ J ^ I ^ R, Je 0, and Jf is the ideal of R generated by J}. Radical
classes 0 for which 0 = &0 are said to satisfy property (a).
Theorem 1 of [7] states that a hereditary radical class 0 is strongly
hereditary if and only if 0 satisfies property (a). In [8], it is shown
that any subclass ^Jt of y/" is contained in a unique minimal radical
class satisfying property (a).

Some preliminary results are required.

LEMMA 1.1. [2]. Let &> he any radical class in W. Then
is hereditary if and only if for each R e W" with I fg R we have

LEMMA 1.2. Let & he any radical class. Then & is strongly
hereditary if and only if both ^ and 6^^ are hereditary.

Proof. If & is strongly hereditary, &*(I) = IΠ &*(E) for each
/ ^ R, so &> and Sf& are hereditary. Suppose & and 6^0* are heredi-
tary and let I ^ R. By Lemma 1.1 0(1) g i n 0(R). Also since
0{R) e 0 and 0 is hereditary, I Π 0{R) e 0. Since / Π 0{R) ^ I,
we have IΠ 0{R) S

LEMMA 1.3. Le£ 0 he a radical class satisfying property (a).
is hereditary. If 0 is hereditary, 0 satisfies property
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(a) if and only if Sf& is hereditary.

Proof. Suppose & has property (a). Let J ^ I ^ R where Je
g?. Then J7, the ideal of R generated by J, belongs to ^* so Jf g

Thus J £ &*(R) and ^*(JB) contains all the ^-ideals of I, so
^(i2). By Lemma 1.1, this means && is hereditary. If

& and ̂ ^ are hereditary, then & is strongly hereditary by Lemma
1.2, so & satisfies property (a) by Theorem 1 of [7].

The semisimple class && may be hereditary even when & does
not satisfy property (a). To see this, let R be the ring generated
over GF(2) by the nonassociative symbols {x, y, z), subject to the
relations x2 — xy = yx — xz = x, yz — zy — zx — y, z2 — z^y2 — 0. Then

the only proper nonzero ideal of R is / = {0, x9 y, x + y} and the only
proper ideal of I is J — {0, x). R/I and Jare isomorphic simple idem-
potent rings, and I/J is simple and nilpotent. Let ̂ ~ = {0, R, J, I, I/J}
and &* = {0, R, J}. Then & Φ <&&> but S& = {0, IjJ) is hereditary.

2* Radical classes. In Theorem 2 of [2], it is shown that if &
is a radical class in an alternative class 'W, and if R e Ύ/^ with I ^
i?, then ^(1) ^ i?. The following theorem shows that radicals satis-
fying property (a) in an arbitrary universal class have the same pro-
perty.

THEOREM 2.1. Let & be any radical class in <W. The &> satis-
fies property (a) if and only if for each R e ^ 7 1 < R implies
R.

Proof. Suppose I ^ R implies &>(I) ̂  R. Then
so S& is hereditary by Lemma 1.1. If & does not have property
(a), we have some J <£ I ^ R with Je ^ and J ' g ̂ , where J ' is the
ideal of R generated by J. This means &>{J') Φ Jf. Since 6^ is
hereditary and J^ J', we have ^ ( J ) - J g &{J'). Since ^ ( J ' ) ^ i?,
we have J contained in an ideal of R properly smaller than /', con-
tradicting the definition of J'.

Conversely, suppose & has property (a) and let I ^ R. Then
so ^ ( I ) ' e ^ and from ^ ( Γ ) ' ^ I if follows that
Thus &(I) = &(Γ) ^ R.

In [3] (Lemma 5) a result is proved which may be restated for
our purposes as

LEMMA 2.2. If ^ is a radical class in an alternative class, then
& satisfies property (a).

This lemma, when applied with Theorem 2.1, shows that in alter-
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native classes I t=k R implies &°{I) g R, thus providing another proof
of Theorem 2 of [2].

We next note that property (a) may be satisfied by possibly non-
radical classes of rings. For an example of this, let ̂ /t be the class
of nilpotent rings in the universal class of all associative rings. Then
if J^ I ^ R with Je ^ we have (J')3 £ J so that J''e ^/ά The
following lemma shows that such classes, if also homomorphically
closed, are only one step removed from being radical.

LEMMA 2.3. // Λ£ is homomorphίcally closed and satisfies pro-
perty (a), then S^^ — ̂ ^ in the lower radical construction. (For
details of this construction see [5]).

Proof. Let R e ̂ €z and let RΣ be an arbitrary homomorphic image
of R. Then R1 has an ideal Ie ^/f2 and I has a nonzero ideal Je ^ C
Since ^f satisfies property (a), /', the ideal of R1 generated by /, is
in ^/ί. Thus each image of R has a nonzero ideal in ^ ^ which means
^ £ ^ so £?^fέ = ̂ /C

Using Lemma 2.3, we next prove that property (a) is preserved by
passing to the lower radical.

THEOREM 2.4. // ^£ is homomorphically closed and satisfies pro-
perty (a), then £f^/£ satisfies property (a).

Proof. Let & = SfΛZ' — ̂ g, and suppose & does not have
property (a). Then by Theorem 2.1 there is some R with I ^ R but
3?(I) not an ideal of R. Since the union of a chain of ^-ideals of
R is again a ,^-ideal of J? (see [1]), we may select by Zorn's Lemma
a ^-ideal F oί R which is maximal among those ^-ideals of R
which are contained in &>(I) (F may of course be zero). We claim
&>(I)/F - &*(I/F). Clearly &*(I)/F S &*(I/F). Let if be the ideal
of / such that K/F = &>(I/F). Then &>(I)SK and

&*, forcing Ke&>, which means KS^(I) so
Now if Λ/.P has a nonzero ^-ideal P/FS&*(Γ)/F, we

would have Pe ^ violating the maximality of .F.
Thus by passing if necessary to a homomorphic image, we may

assume ,^{I) gΞ J ^ R, and ̂ ( 1 ) contains no nonzero & -ideal of i2.
Since ^ ( I ) e ^ g , ^ ( J ) has a nonzero ideal J^^/έ, and the ideal /
of J generated by Jι is also in ^£. Thus we have Λ S / S ^ W S
I ξΞ: R where J e ^ f and J ^ I. Also J', the ideal of R generated by
J, is contained in J, and J ' e ̂  S .^. Thus J ' £ ^ ( / ) , contradic-
ting the assumption that ^(1) contains no nonzero ^-ideals of R.

The example following the proof of Lemma 1.3 may be used to
show that in the nonassociative case the requirement in Theorem 2.4
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that ^/έ be homomorphically closed cannot be dropped. Let <W be
as in the example and ^ = {R}. Then ^ has property (a) but
gίf^ff = &> does not.

It is shown in [8] that an arbitrary class is contained in a unique
minimal radical class satisfying property (a) and in a unique minimal
strongly hereditary radical class. The next few results provided
countable construction which are at most one (Kuros) step from these
classes.

THEOREM 2.5. Let ̂  § W^ with 'W" any universal class. There
exists a unique minimal class in Ύ/^ containing ^ which is homo-
morphically closed and has property (a).

Proof. Define ^ = ̂ f and ^ C + 1 = ^Jgt^C for each n ^ 1.
Then set ̂ £* = U ^ C , the union being taken over all positive integers
n. ^€* is easily seen to be homomorphically closed. Also ^£* satis-
fies property (a), for if / ^ I ^ R with Je ^€*, then J e ^ C for some
n so that J ' e ̂ C + 1 s Λ?*.

If Stf is any homomorphically closed class containing j& and
satisfying property (a), an easy induction shows ^ C S <-$/ for each
n so that ̂ T *

COROLLARY [Leavitt]. For ^£ £ ^ " w£ί/& ̂ ^ απi/ universal class
there is a unique minimal radical class in Ύ/^ containing ^? which
satisfies property (a).

Proof. This is immediate from Theorems 2.4 and 2.5.

Note that by Lemma 2.2 the radical £f^£* coincides with the
lower radical £^^ in alternative classes, and thus for such classes
the above construction may be regarded as an alternate lower radical
construction.

THEOREM 2.6. Let *W be a universal class ^/έ £ "W. There is
a unique minimal class ^£rt 2 - ^ which is homomorphically closed,
hereditary, and satisfies property (a).

Proof. Define ^ C = ̂ T and for n ^ 1 let
Now set ^ ' = U c^C, the union being taken over all positive integers.

As in the proof of Theorem 2.5, ^/ί' is homomorphically closed,
hereditary, and has property (a). Also as before (induction) ^£' £
Sf where Stf is any homomorphically closed hereditary class with
property (a) containing
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COROLLARY 2.7. If ^f is any class, i?L^€" is the unique minimal
strongly hereditary radical class containing

Proof. Since ^ £ ^£\ ^£ £ £?^f. Since ^ C is homomor-
phically closed, hereditary, and satisfies property (a), &?^f has the
same properties by Theorem 2.4 together with Theorem 2 of [6]. Now
let ^y£ £ & where & is a strongly hereditary radical class. Then
& is homomorphically closed and hereditary, hence satisfies property
(a) by Lemmas 1.2 and 1.3. Hence by Theorem 2.6 ^£f £ ^ and
therefore &>^?' £ ^ .

3* Semisimple classes* Using Theorem 2.1, nonassociative ver-
sions of certain theorems concerning semisimple classes can be given.
In [4], semisimple classes of associative rings are characterized as
those classes ^ satisfying the following four properties:

(1) & is hereditary
(2) & is closed under subdirect sums
(3) & is extension closed
(4) If I ^ R and 0 Φ IjB e & for some ideal B of /, there is

an ideal A of R with A £ I and 0 =£ I/A e ̂ K
For possibly nonassociative classes, we have

THEOREM 3.1. & is a semisimple class for a radical class &
satisfying property (a) if and only if & satisfies properties (1), (2),
(3), and (4).

Proof. If £? — && where & has property (a), then the proof
of (1), (2), (3), and (4) go through as in the associative case (see [4])
using Theorem 2.1 and Lemma 1.3. Conversely, suppose ^ satisfies
(1), (2), (3), and (4). Then again as in the associative case & is semi-
simple for some radical ^ . Suppose & does not satisfy property (a).
Then by Theorem 2.1 there is some R with an ideal I for which
&{I) is not an ideal of R. Let T be the ideal of R generated by
P(I), then &>(I) ̂  T ^ I ^ R. Then by (1) and two applications of
Lemma 1.1, ^ ( ^ ( / ) ) - ^(1) £ &>{T) £ &>{I) so ^(1) = ^{T) Φ
T^R, and T is the ideal of R generated by &*(T). Also T/&*(T) e
& so by (4) there is an ideal K of R with K £ T so that TjK is non-
zero in &. Thus K^^(T) so iΓ is an ideal of R containing ^(T),
and if is proper in T, a contradiction which proves the theorem.

In [4], an ideal / of a ring R is said to be large in R if I has
nonzero intersection with every nonzero ideal of R. It is proved there
that a radical class & in an associative universal class is hereditary
if and only if ^ ^ satisfies property (λ): If I ^ R with l e , 9 ^ and
I large in R, then R e &&. The same proof given there proves the
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following theorem, which is valid in an arbitrary universal class.

THEOREM 3.2. Let .ζί? he a radical class satisfying property (a).
Then & is hereditary if and only if S^ satisfies property (λ).

Theorem 3.1 and 3.2 may be combined to give the following char-
racterization of semisimple classes for strongly hereditary radicals:

THEOREM 3.3. & is a semisimple class for a strongly hereditary
radical if and only if & satisfies properties (I), (2), (3), (4), and

Proof. Suppose & — £f& where & is strongly hereditary.
Then & is hereditary and has property (a) so ^ satisfies (1), (2),
(3), (4), and (λ). Conversely, if & satisfies (1), (2), (3), (4), and (λ),
then & = £^ for a radical & satisfying property (a) by Theorem
3.1 and & is hereditary by Theorem 3.2. Thus & is strongly here-
ditary by Lemma 1.2.

The following proposition and its corollary show that certain
semisimple classes of associative rings satisfy property (a).

PROPOSITION 3O4. // ^€ is a class of associative rings which is
hereditary, extension closed, and contains all nilpotent associative
rings, then ^/f satisfies property (a).

Proof. Suppose J ^ I ^ R where J e ̂ /f, and let Jf be the ideal
of R generated by J. Then (J')3 S / so (/')3 e ̂ C Also J'/(J'Y e ^f,
so / ' 6 ̂ /ί since ^€ is extension closed.

COROLLARY 3β5. If ^ is a radical in an associative universal
class such that R2 — R for all Re^, then 6^.^ has property (a).

Proof. && is easily verified to satisfy the hypotheses of Pro-
position 3.4.
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