STRONG HEREDITY IN RADICAL CLASSES

R. L. TANGEMAN

In a recent paper, W. G. Leavitt has called a radical class $\mathscr T$ in a universal class $\mathscr T$ of not necessarily associative rings strongly hereditary if $\mathscr T(I)=I\cap\mathscr T(R)$ for all ideals I of any ring $R\in\mathscr W$. In this paper, strongly hereditary radicals are investigated and a new construction is provided for the minimal strongly hereditary radical containing a given class in $\mathscr W$. Nonassociative versions of some results of E. P. Armendariz on semisimple classes are proved, including a characterization of semisimple classes corresponding to strongly hereditary radicals.

Unless otherwise indicated, \mathscr{W} is assumed to be a universal class of not necessarily associative rings. If \mathscr{P} is any radical class in \mathscr{W} , we denote the class of \mathscr{P} -semisimple rings in \mathscr{W} by \mathscr{SP} . We use the notation $I \leq R$ to denote that I is an ideal of R. For any class \mathscr{M} we denote by \mathscr{HM} and \mathscr{FM} , respectively, the homomorphic closure and ideal closure of \mathscr{M} .

For any radical class $\mathscr{T} \subseteq \mathscr{W}$, Leavitt in [7] has defined $\mathscr{CP} = \{J' | J \leq I \leq R, J \in \mathscr{T}, \text{ and } J' \text{ is the ideal of } R \text{ generated by } J\}$. Radical classes \mathscr{T} for which $\mathscr{T} = \mathscr{CP}$ are said to satisfy property (a). Theorem 1 of [7] states that a hereditary radical class \mathscr{T} is strongly hereditary if and only if \mathscr{T} satisfies property (a). In [8], it is shown that any subclass \mathscr{M} of \mathscr{W} is contained in a unique minimal radical class satisfying property (a).

Some preliminary results are required.

LEMMA 1.1. [2]. Let $\mathscr P$ be any radical class in $\mathscr W$. Then $\mathscr S\mathscr P$ is hereditary if and only if for each $R\in \mathscr W$ with $I\leq R$ we have $\mathscr P(I)\subseteq (R)$.

Lemma 1.2. Let $\mathscr P$ be any radical class. Then $\mathscr P$ is strongly hereditary if and only if both $\mathscr P$ and $\mathscr S\mathscr P$ are hereditary.

Proof. If $\mathscr P$ is strongly hereditary, $\mathscr P(I)=I\cap\mathscr P(R)$ for each $I\leqq R$, so $\mathscr P$ and $\mathscr S\mathscr P$ are hereditary. Suppose $\mathscr P$ and $\mathscr S\mathscr P$ are hereditary and let $I\leqq R$. By Lemma 1.1 $\mathscr P(I)\subseteqq I\cap\mathscr P(R)$. Also since $\mathscr P(R)\in\mathscr P$ and $\mathscr P$ is hereditary, $I\cap\mathscr P(R)\in\mathscr P$. Since $I\cap\mathscr P(R)\leqq I$, we have $I\cap\mathscr P(R)\subseteqq \mathscr P(I)$.

Lemma 1.3. Let $\mathscr S$ be a radical class satisfying property (a). Then $\mathscr S$ is hereditary. If $\mathscr S$ is hereditary, $\mathscr S$ satisfies property

(a) if and only if SF is hereditary.

Proof. Suppose \mathscr{T} has property (a). Let $J \subseteq I \subseteq R$ where $J \in \mathscr{T}$. Then J', the ideal of R generated by J, belongs to \mathscr{T} , so $J' \subseteq \mathscr{T}(R)$. Thus $J \subseteq \mathscr{T}(R)$ and $\mathscr{T}(R)$ contains all the \mathscr{T} -ideals of I, so $\mathscr{T}(I) \subseteq \mathscr{T}(R)$. By Lemma 1.1, this means $\mathscr{S}\mathscr{T}$ is hereditary. If \mathscr{T} and $\mathscr{S}\mathscr{T}$ are hereditary, then \mathscr{T} is strongly hereditary by Lemma 1.2, so \mathscr{T} satisfies property (a) by Theorem 1 of [7].

The semisimple class \mathscr{SP} may be hereditary even when \mathscr{P} does not satisfy property (a). To see this, let R be the ring generated over GF(2) by the nonassociative symbols $\{x, y, z\}$, subject to the relations $x^2 = xy = yx = xz = x$, yz = zy = zx = y, $z^2 = z$, $y^2 = 0$. Then the only proper nonzero ideal of R is $I = \{0, x, y, x + y\}$ and the only proper ideal of I is $I = \{0, x\}$. I and I are isomorphic simple idempotent rings, and I/I is simple and nilpotent. Let I I = I = I = I and I = I = I = I but I = I = I is hereditary.

2. Radical classes. In Theorem 2 of [2], it is shown that if \mathscr{P} is a radical class in an alternative class \mathscr{W} , and if $R \in \mathscr{W}$ with $I \leq R$, then $\mathscr{P}(I) \leq R$. The following theorem shows that radicals satisfying property (a) in an arbitrary universal class have the same property.

THEOREM 2.1. Let $\mathscr S$ be any radical class in $\mathscr W$. The $\mathscr S$ satisfies property (a) if and only if for each $R\in \mathscr W$, $I\leq R$ implies $\mathscr S(I)\leq R$.

Proof. Suppose $I \subseteq R$ implies $\mathscr{T}(I) \subseteq R$. Then $\mathscr{T}(I) \subseteq \mathscr{T}(R)$ so \mathscr{S} is hereditary by Lemma 1.1. If \mathscr{T} does not have property (a), we have some $J \subseteq I \subseteq R$ with $J \in \mathscr{T}$ and $J' \notin \mathscr{T}$, where J' is the ideal of R generated by J. This means $\mathscr{T}(J') \neq J'$. Since \mathscr{S} is hereditary and $J \subseteq J'$, we have $\mathscr{T}(J) = J \subseteq \mathscr{T}(J')$. Since $\mathscr{T}(J') \subseteq R$, we have J contained in an ideal of R properly smaller than J', contradicting the definition of J'.

Conversely, suppose $\mathscr P$ has property (a) and let $I \leq R$. Then $\mathscr P(I) \leq I \leq R$, so $\mathscr P(I)' \in \mathscr P$ and from $\mathscr P(I)' \leq I$ if follows that $\mathscr P(I)' \subseteq \mathscr P(I)$. Thus $\mathscr P(I) = \mathscr P(I') \leq R$.

In [3] (Lemma 5) a result is proved which may be restated for our purposes as

Lemma 2.2. If $\mathscr S$ is a radical class in an alternative class, then $\mathscr S$ satisfies property (a).

This lemma, when applied with Theorem 2.1, shows that in alter-

native classes $I \leq R$ implies $\mathscr{S}(I) \leq R$, thus providing another proof of Theorem 2 of [2].

We next note that property (a) may be satisfied by possibly non-radical classes of rings. For an example of this, let \mathscr{M} be the class of nilpotent rings in the universal class of all associative rings. Then if $J \subseteq I \subseteq R$ with $J \in \mathscr{M}$, we have $(J')^3 \subseteq J$ so that $J' \in \mathscr{M}$. The following lemma shows that such classes, if also homomorphically closed, are only one step removed from being radical.

LEMMA 2.3. If \mathcal{M} is homomorphically closed and satisfies property (a), then $\mathcal{LM} = \mathcal{M}_2$ in the lower radical construction. (For details of this construction see [5]).

Proof. Let $R \in \mathcal{M}_3$ and let R_1 be an arbitrary homomorphic image of R. Then R_1 has an ideal $I \in \mathcal{M}_2$ and I has a nonzero ideal $J \in \mathcal{M}_3$. Since \mathcal{M} satisfies property (a), J', the ideal of R_1 generated by J, is in $\mathcal{M}_3 \subseteq \mathcal{M}_2$ so $\mathcal{L}\mathcal{M} = \mathcal{M}_2$.

Using Lemma 2.3, we next prove that property (a) is preserved by passing to the lower radical.

THEOREM 2.4. If \mathcal{M} is homomorphically closed and satisfies property (a), then $\mathcal{L}\mathcal{M}$ satisfies property (a).

Proof. Let $\mathscr{T}=\mathscr{LM}=\mathscr{M}_2$, and suppose \mathscr{T} does not have property (a). Then by Theorem 2.1 there is some R with $I \leq R$ but $\mathscr{T}(I)$ not an ideal of R. Since the union of a chain of \mathscr{T} -ideals of R is again a \mathscr{T} -ideal of R (see [1]), we may select by Zorn's Lemma a \mathscr{T} -ideal F of R which is maximal among those \mathscr{T} -ideals of R which are contained in $\mathscr{T}(I)$ (F may of course be zero). We claim $\mathscr{T}(I)/F=\mathscr{T}(I/F)$. Clearly $\mathscr{T}(I)/F \subseteq \mathscr{T}(I/F)$. Let K be the ideal of I such that $K/F=\mathscr{T}(I/F)$. Then $\mathscr{T}(I)\subseteq K$ and $(K/F)/(\mathscr{T}(I)/F)\cong K/\mathscr{T}(I)\in\mathscr{T}$, forcing $K\in\mathscr{T}$, which means $K\subseteq \mathscr{T}(I)$ so $\mathscr{T}(I)/F=\mathscr{T}(I/F)$. Now if R/F has a nonzero \mathscr{T} -ideal $P/F\subseteq \mathscr{T}(I)/F$, we would have $P\in\mathscr{T}$ violating the maximality of F.

Thus by passing if necessary to a homomorphic image, we may assume $\mathscr{P}(I) \subseteq I \subseteq R$, and $\mathscr{P}(I)$ contains no nonzero \mathscr{P} -ideal of R. Since $\mathscr{P}(I) \in \mathscr{M}_2$, $\mathscr{P}(I)$ has a nonzero ideal $J_1 \in \mathscr{M}$, and the ideal J of I generated by J_1 is also in \mathscr{M} . Thus we have $J_1 \subseteq J \subseteq \mathscr{P}(I) \subseteq I \subseteq R$ where $J \in \mathscr{M}$ and $J \subseteq I$. Also J', the ideal of R generated by J, is contained in I, and $J' \in \mathscr{M} \subseteq \mathscr{P}$. Thus $J' \subseteq \mathscr{P}(I)$, contradicting the assumption that $\mathscr{P}(I)$ contains no nonzero \mathscr{P} -ideals of R.

The example following the proof of Lemma 1.3 may be used to show that in the nonassociative case the requirement in Theorem 2.4

that \mathscr{M} be homomorphically closed cannot be dropped. Let \mathscr{W} be as in the example and $\mathscr{M} = \{R\}$. Then \mathscr{M} has property (a) but $\mathscr{H}\mathscr{M} = \mathscr{P}$ does not.

It is shown in [8] that an arbitrary class is contained in a unique minimal radical class satisfying property (a) and in a unique minimal strongly hereditary radical class. The next few results provided countable construction which are at most one (Kuroš) step from these classes.

THEOREM 2.5. Let $\mathscr{M} \subseteq \mathscr{W}$ with \mathscr{W} any universal class. There exists a unique minimal class in \mathscr{W} containing \mathscr{M} which is homomorphically closed and has property (a).

Proof. Define $\mathcal{M}_1 = \mathcal{M}$ and $\mathcal{M}_{n+1} = \mathcal{GHM}_n$ for each $n \geq 1$. Then set $\mathcal{M}^* = \cup \mathcal{M}_n$, the union being taken over all positive integers n. \mathcal{M}^* is easily seen to be homomorphically closed. Also \mathcal{M}^* satisfies property (a), for if $J \leq I \leq R$ with $J \in \mathcal{M}^*$, then $J \in \mathcal{M}_n$ for some n so that $J' \in \mathcal{M}_{n+1} \subseteq \mathcal{M}^*$.

If \mathscr{A} is any homomorphically closed class containing \mathscr{M} and satisfying property (a), an easy induction shows $\mathscr{M}_n \subseteq \mathscr{A}$ for each n so that $\mathscr{M}^* \subseteq \mathscr{A}$.

COROLLARY [Leavitt]. For $\mathscr{M} \subseteq \mathscr{W}$ with \mathscr{W} any universal class there is a unique minimal radical class in \mathscr{W} containing \mathscr{M} which satisfies property (a).

Proof. This is immediate from Theorems 2.4 and 2.5.

Note that by Lemma 2.2 the radical \mathscr{LM}^* coincides with the lower radical \mathscr{LM} in alternative classes, and thus for such classes the above construction may be regarded as an alternate lower radical construction.

THEOREM 2.6. Let \mathscr{W} be a universal class $\mathscr{M} \subseteq \mathscr{W}$. There is a unique minimal class $\mathscr{M}' \supseteq \mathscr{M}$ which is homomorphically closed, hereditary, and satisfies property (a).

Proof. Define $\mathcal{M}_1 = \mathcal{M}$ and for $n \ge 1$ let $\mathcal{M}_{n+1} = \mathcal{G}\mathcal{J}\mathcal{H}(\mathcal{M}_n)$. Now set $\mathcal{M}' = \bigcup \mathcal{M}_n$, the union being taken over all positive integers.

As in the proof of Theorem 2.5, \mathscr{M}' is homomorphically closed, hereditary, and has property (a). Also as before (induction) $\mathscr{M}' \subseteq \mathscr{M}$ where \mathscr{M} is any homomorphically closed hereditary class with property (a) containing \mathscr{M} .

COROLLARY 2.7. If \mathcal{M} is any class, $\mathcal{LM'}$ is the unique minimal strongly hereditary radical class containing \mathcal{M} .

Proof. Since $\mathcal{M} \subseteq \mathcal{M}'$, $\mathcal{M} \subseteq \mathcal{LM}'$. Since \mathcal{M}' is homomorphically closed, hereditary, and satisfies property (a), \mathcal{LM}' has the same properties by Theorem 2.4 together with Theorem 2 of [6]. Now let $\mathcal{M} \subseteq \mathcal{P}$ where \mathcal{P} is a strongly hereditary radical class. Then \mathcal{P} is homomorphically closed and hereditary, hence satisfies property (a) by Lemmas 1.2 and 1.3. Hence by Theorem 2.6 $\mathcal{M}' \subseteq \mathcal{P}$ and therefore $\mathcal{LM}' \subseteq \mathcal{P}$.

- 3. Semisimple classes. Using Theorem 2.1, nonassociative versions of certain theorems concerning semisimple classes can be given. In [4], semisimple classes of associative rings are characterized as those classes $\mathscr Q$ satisfying the following four properties:
 - (1) @ is hereditary
 - (2) @ is closed under subdirect sums
 - (3) @ is extension closed
- (4) If $I \subseteq R$ and $0 \neq I/B \in \mathbb{Z}$ for some ideal B of I, there is an ideal A of R with $A \subseteq I$ and $0 \neq I/A \in \mathbb{Z}$.

For possibly nonassociative classes, we have

THEOREM 3.1. \mathscr{Q} is a semisimple class for a radical class \mathscr{S} satisfying property (a) if and only if \mathscr{Q} satisfies properties (1), (2), (3), and (4).

Proof. If $\varnothing = \mathscr{SF}$ where \mathscr{F} has property (a), then the proof of (1), (2), (3), and (4) go through as in the associative case (see [4]) using Theorem 2.1 and Lemma 1.3. Conversely, suppose \varnothing satisfies (1), (2), (3), and (4). Then again as in the associative case \varnothing is semi-simple for some radical \mathscr{F} . Suppose \mathscr{F} does not satisfy property (a). Then by Theorem 2.1 there is some R with an ideal I for which $\mathscr{F}(I)$ is not an ideal of R. Let T be the ideal of R generated by P(I), then $\mathscr{F}(I) \subseteq T \subseteq I \subseteq R$. Then by (1) and two applications of Lemma 1.1, $\mathscr{F}(\mathscr{F}(I)) = \mathscr{F}(I) \subseteq \mathscr{F}(T) \subseteq \mathscr{F}(I)$ so $\mathscr{F}(I) = \mathscr{F}(T) \in T \subseteq R$, and T is the ideal of R generated by $\mathscr{F}(T)$. Also $T/\mathscr{F}(T) \in \mathscr{F}(T) \subseteq T$ so by (4) there is an ideal K of R with $K \subseteq T$ so that T/K is non-zero in \mathscr{C} . Thus $K \supseteq \mathscr{F}(T)$ so K is an ideal of R containing $\mathscr{F}(T)$, and K is proper in T, a contradiction which proves the theorem.

In [4], an ideal I of a ring R is said to be large in R if I has nonzero intersection with every nonzero ideal of R. It is proved there that a radical class $\mathscr T$ in an associative universal class is hereditary if and only if $\mathscr T$ satisfies property (λ): If $I \leq R$ with $I \in \mathscr T$ and I large in R, then $R \in \mathscr T$. The same proof given there proves the

following theorem, which is valid in an arbitrary universal class.

THEOREM 3.2. Let \mathscr{P} be a radical class satisfying property (a). Then \mathscr{P} is hereditary if and only if \mathscr{SP} satisfies property (λ).

Theorem 3.1 and 3.2 may be combined to give the following charracterization of semisimple classes for strongly hereditary radicals:

Theorem 3.3. \mathscr{Q} is a semisimple class for a strongly hereditary radical if and only if \mathscr{Q} satisfies properties (1), (2), (3), (4), and (λ).

Proof. Suppose $\mathcal{Q} = \mathcal{SP}$ where \mathcal{P} is strongly hereditary. Then \mathcal{P} is hereditary and has property (a) so \mathcal{Q} satisfies (1), (2), (3), (4), and (λ). Conversely, if \mathcal{Q} satisfies (1), (2), (3), (4), and (λ), then $\mathcal{Q} = \mathcal{SP}$ for a radical \mathcal{P} satisfying property (a) by Theorem 3.1 and \mathcal{P} is hereditary by Theorem 3.2. Thus \mathcal{P} is strongly hereditary by Lemma 1.2.

The following proposition and its corollary show that certain semisimple classes of associative rings satisfy property (a).

PROPOSITION 3.4. If \mathcal{M} is a class of associative rings which is hereditary, extension closed, and contains all nilpotent associative rings, then \mathcal{M} satisfies property (a).

Proof. Suppose $J \subseteq I \subseteq R$ where $J \in \mathcal{M}$, and let J' be the ideal of R generated by J. Then $(J')^3 \subseteq J$ so $(J')^3 \in \mathcal{M}$. Also $J'/(J')^3 \in \mathcal{M}$, so $J' \in \mathcal{M}$ since \mathcal{M} is extension closed.

COROLLARY 3.5. If $\mathscr P$ is a radical in an associative universal class such that $R^2=R$ for all $R\in\mathscr P$, then $\mathscr S\mathscr P$ has property (a).

Proof. \mathcal{SP} is easily verified to satisfy the hypotheses of Proposition 3.4.

REFERENCES

- S. A. Amitsur, Radicals in rings and bicategories, Amer. J. Math., 76 (1954), 100– 125.
- 2. T. Anderson, N. Divinsky, and A. Sulinski, Hereditary radicals in associative and alternative rings, Canad. J. Math., 17 (1965), 594-603.
- 3. ———, Lower Radical Properties for associative and alternative rings, J. London Math. Soc., 41 (1966), 417-424.
- 4. E. P. Armendariz, Closure properties in radical theory, Pacific J. Math., 26 (1968), 1-7.
- 5. N. Divinsky, Rings and radicals, University of Toronto Press, Tronto, 1965.

- 6. A. E. Hoffman and W. G. Leavitt, Properties inherited by the lower radical, Portugal. Math., 27 (1968), 63-66.

Received April 12, 1971.

ARKANSAS STATE UNIVERSITY