A DUALITY FOR QUOTIENT DIVISIBLE ABELIAN GROUPS OF FINITE RANK

DAVID M. ARNOLD

The usual duality for finite dimensional vector spaces induces a duality F on the category of torsion free quotient divisible abelian groups of finite rank with quasi-homomorphisms as morphisms. This duality preserves rank, is exact, hence preserves quasi-direct sums, sends free groups to divisible groups and conversely, and has the property that for all primes p, p-rank FA = rank A - p-rank A.

A torsion free abelian group is quotient divisible if A has a free subgroup B such that A/B is the direct sum of a torsion divisible group and a group of bounded order. Let $\mathscr C$ be the category of quotient divisible abelian groups of finite rank $(rank\ A)$ is the cardinality of a maximal independent subset of A) with morphism sets $Q \otimes_{\mathbb Z} \operatorname{Hom}(A,B)$, where Q is the field of rational numbers. Morphisms in $\mathscr C$ are quasi-homomorphisms of groups.

THEOREM A: There is a contravariant exact functor $F: \mathcal{C} \to \mathcal{C}$ such that F^2 is naturally equivalent to the identity functor on \mathcal{C} , rank $A = \operatorname{rank} FA$ and A is free iff FA is divisible.

Let $R_p = \{m/n \in Q \mid (p, n) = 1\}$ be the localization of Z at a prime p and $\mathscr{C}_p = \{A_p = R_p \bigotimes_Z A \mid A \in \mathscr{C}\}$ be a category with morphism sets $Q \bigotimes_{R_p} \operatorname{Hom}(A_p, B_p)$. The duality F induces a duality on \mathscr{C}_p which coincides with the duality given in [1].

For $A \in \mathcal{C}$, p-rank A is the Z/pZ dimension of A/pA.

COROLLARY B: For all primes p, p-rank FA = rank A - p-rank A.

Notation is established in 1 and the relevant results of Beaumont-Pierce [2] are summarized in a series of lemmas. The proofs of Theorem A and Corollary B are contained in 2. Section 3 includes some easy consequences of the properties of the duality F.

1. Preliminaries. The ring of p-adic integers, p a prime, is denoted by R_p^* and Q_p^* is the quotient field of R_p^* , i.e., the p-adic completion of Q. There are subring inclusions $Z \subset R_p \subset Q \subset Q_p^*$ and $R_p \subset R_p^* \subset Q_p^*$ such that $R_p^* \cap Q = R_p$, $\cap \{R_p \mid p \text{ a prime}\} = Z$.

Each finite dimensional Q-vector space V may be regarded as a Q-subspace of $V_p^* = Q_p^* \bigotimes V$ by identifying v with $1 \bigotimes v$. If X is a subset of V and R a subring of Q_p^* then $RX = \{\sum r_i x_i | r_i \in R, x_i \in X\}$

is an R-submodule of V_p^* . Hence $ZX \subset R_pX \subset QX \subset V$ and $R_pX \subset R_p^*X \subset V_p^*$. Further, if A is a subgroup of V such that V/A is torsion then $R_p^*V = V_p^* = Q_p^*QA = Q_p^*A$ and rank A = Q-dimension of $V = Q_p^*$ -dimension of $V_p^* = R_p^*$ -rank of R_p^*A .

For the remainder of this note, V is a finite dimensional Q-vector space, X is a basis of V and δ_p is a Q_p^* -subspace of V_p^* . Define $(X, V, \delta) = V \cap (\bigcap \{R_p^*X + \delta_p | p \text{ is a prime}\})$.

LEMMA 1. Let $A = (X, V, \delta)$ for some X, V and δ .

- (a) $R_pA = V \cap (R_p^*X + \delta_p);$
- (b) $R_p^*A = R_p^*X + \delta_p \text{ and } \delta_p = \bigcap \{p^i(R_p^*A) | i = 1, 2, \cdots \};$
- (c) $A \in \mathcal{C}$ and ZX is a free subgroup of A with A/ZX torsion divisible;
- (d) If Y is another basis of V and $B = (Y, V, \delta)$ then there are nonzero integers m and n with $mA \subset B$ and $nB \subset A$.

Proof. Beaumont-Pierce [2], §5.

LEMMA 2. Every $A \in \mathcal{C}$ is an (X, V, δ) for some X, V and δ .

Proof. Choose V such that $A \subset V$, V/A torsion; let X be a maximal Z-independent subset of A with A/ZX torsion divisible and let $\delta_p = \bigcap \{p^i(R_p^*A) \mid i=1,2,\cdots\}$. Then $R_p^*A = R_p^*X + \delta_p$ and $R_pA = R_p^*A \cap V$ for all primes p. Hence $A = \bigcap \{R_pA \mid p \text{ prime}\} = \{X, V, \delta\}$.

Note that if $A=(X,\,V,\,\delta)$ then $p\text{-rank }A=\operatorname{rank} A-(Q_p^*\text{-dimension}$ of $\delta_n)$.

Let A and B be torsion free abelian groups. Call $\phi: A \to B$ a quasi-homomorphism if there is $0 \neq n \in Z$ with $n\phi \in \text{Hom }(A, B)$. Observe that $\{\phi \mid \phi: A \to B \text{ is a quasi-homomorphism}\}$ may be identified with $Q \bigotimes_{\mathbb{Z}} \text{Hom }(A, B)$. The groups A and B are quasi-isomorphic $(A \stackrel{.}{\sim} B)$ if there are monomorphisms $f: A \to B, g: B \to A$ such that B/f(A) and A/g(B) are bounded.

Assume that $A=(X,\,V,\,\delta)$ and $B=(Y,\,U,\,\sigma)$ are objects of $\mathscr C$ and that $\phi\colon A\to B$ is a quasi-homomorphism. Then ϕ induces a unique Q-linear transformation $\lambda\colon V\to U$ since V/A and U/B are torsion. Define $\phi_p=1\bigotimes\lambda\colon V_p^*\to U_p^*$, a Q_p^* -linear transformation extending λ , hence ϕ . There is an integer n such that $n\phi_p(R_p^*A)\subset R_p^*B$ so that $\phi_p(\delta_p)\subset\sigma_p$ for all primes p.

Conversely if $\theta: V \to U$ is a Q-linear transformation such that $\theta_p(\delta_p) \subset \sigma_p$ (where $\theta_p = 1 \otimes \theta: V_p^* \to V_p^*$) for all primes p, then $\theta: A \to B$ is a quasi-homomorphism. Observe that if W is a basis of U with $\theta(X) \subset W$ then $\theta(A) \subset D = (W, U, \sigma)$. By Lemma 1.d, there is $0 \neq n \in Z$ with $n\theta(A) \subset nD \subset B = (Y, U, \sigma)$.

Note that a quasi-homomorphism $\phi: A \to B$ is a quasi-isomorphism

iff $\lambda: V \to U$ is an isomorphism and $\phi_p(\delta_p) = \sigma_p$ for all primes p, where λ is the unique extension of ϕ and $\phi_p = 1 \otimes \lambda$.

We summarize some of the categorical properties of \mathscr{C} , as given by Walker [4]. Assume that $\phi \colon A \to B$ is a quasi-homomorphism and that $f = n\phi \in \operatorname{Hom}(A,B) \colon \phi$ is epic in \mathscr{C} iff B/f(A) is bounded; ϕ is monic in \mathscr{C} iff f is monic and $0 \to A \xrightarrow{\phi} B \xrightarrow{\theta} C \to 0$ is exact in \mathscr{C} iff ϕ is monic, θ is epic and $(\operatorname{im} f + \ker g)/(\operatorname{im} f) \cap (\ker g)$ is bounded, where $g = m\theta \in \operatorname{Hom}(B,C)$. The direct sum in \mathscr{C} is the quasi-direct sum of groups, $A \oplus B$, where $M = A \oplus B$ iff there are non-zero integers m and n with $mM \subset A \oplus B$ and $n(A \oplus B) \subset M$. A group $A \in \mathscr{C}$ is strongly indecomposable if A is indecomposable in \mathscr{C} , i.e., $A = B \oplus C$ implies that B = 0 or C = 0.

LEMMA 3. Suppose that $A_i = (X_i, V_i, \delta_i) \in \mathscr{C}, i = 1, 2, 3$. Then $0 \to A_1 \overset{\phi_1}{\to} A_2 \overset{\phi_2}{\to} A_3 \to 0$ is exact in \mathscr{C} iff $0 \to V_1 \overset{\lambda_1}{\to} V_2 \overset{\lambda_2}{\to} V_3 \to 0$ is an exact sequence of Q-vector spaces where λ_i is the unique extension of ϕ_i , i = 1, 2.

Proof. Observe that ϕ_1 monic iff λ_1 monic; ϕ_2 epic iff λ_2 epic and $(\ker f_2 + \operatorname{im} f_1)/(\ker f_2) \cap (\operatorname{im} f_1)$ is bounded iff $\ker \lambda_2 = \operatorname{im} \lambda_1$ where $f_i = n_i \phi_i \in \operatorname{Hom}(A_i, A_{i+1})$ for $0 \neq n_i \in Z$, i = 1, 2.

2. A Duality for \mathscr{C} . Let \mathscr{V} denote the category of finite dimensional Q-vector spaces with Q-linear transformations as morphisms. Define $G: \mathscr{V} \to \mathscr{V}$ by $G(V) = V' = \operatorname{Hom}_{\mathbb{Q}}(V, Q)$; and for $f \in \operatorname{Hom}_{\mathbb{Q}}(V, U)$, G(f) = f' is an element of $\operatorname{Hom}_{\mathbb{Q}}(U', V')$ defined by $f'(\alpha) = \alpha f$. It is well-known that G is a contravariant exact functor naturally equivalent to the identity functor on \mathscr{V} , i.e., (fg)' = g'f'; if $0 \to U \xrightarrow{f} V \xrightarrow{g} W \to 0$ is an exact sequence of Q-vector spaces then $0 \to W' \xrightarrow{g'} V' \xrightarrow{f'} U' \to 0$ is exact; and for each $V \in \mathscr{V}$ there is a Q-isomorphism $h_{\mathcal{V}}: V \to V''$ such that if $f \in \operatorname{Hom}_{\mathbb{Q}}(V, U)$, $h_{U}f = f''h_{V}$. If $\{x_{1}, \dots, x_{n}\}$ is a basis for V then $\{x'_{1}, \dots, x'_{n}\}$ is a basis for V' where x'_{i} is defined by $x'_{i}(x_{j}) = \delta_{ij}$, the Kronecker delta.

Proof of Theorem A.

(a) Definition of F. If $A=(X,\ V,\ \delta)\in \mathscr{C}$ then there is a Q_p^* -exact sequence

$$0 \longrightarrow \operatorname{Hom} (V_p^*/\delta_p, Q_p^*) \xrightarrow{j_A'} \operatorname{Hom} (V_p^*, Q_p^*) \xrightarrow{i_A'} \operatorname{Hom} (\delta_p, Q_p^*) \longrightarrow 0$$

induced by the canonical Q_p^* -exact sequence

$$0 o \delta_p \xrightarrow{i_A} V_p^* \xrightarrow{j_A} V_p^*/\delta_p o 0$$
 .

Define $F(A) = (X', V', \bar{\delta})$, where V' = Hom(V, Q), $X' = \{x' | x \in X\}$ and $\bar{\delta}_p = j'_A(\text{Hom}(V_p^*/\bar{\delta}_p, Q_p^*))$. Note that $\bar{\delta}_p$ may be regarded as a subspace of $(V')_p^*$ since $\text{Hom}(V_p^*, Q_p^*)$ is naturally isomorphic to $Q_p^* \bigotimes V' = (V')_p^*$.

(b) F is a contravariant functor. Let $B=(Y,\,U,\,\sigma),\,\theta\colon A\to B$ a quasi-homomorphism, $\lambda\colon V\to U$ the unique extension of θ and $\theta_p=1\otimes\lambda\colon V_p^*\to U_p^*$. Define $F(\theta)=\lambda'\in \operatorname{Hom}_{\mathbb{Q}}(U',\,V')$. Then $F(\theta)\colon F(B)\to F(A)$ is a quasi-homomorphism if for all primes $p,\,F(\theta)_p(\bar{\sigma}_p)\subset\bar{\delta}_p$, where $F(\theta)_p=1\otimes\lambda'\colon (U')_p^*\to (V')_p^*$.

Since $\theta_p(\delta_p) \subset \sigma_p$ there is a canonical homomorphism $\phi_p \colon V_p^*/\delta_p \to U_p^*/\sigma_p$ such that $\phi_p j_A = j_B \theta_p$. Thus $j_A' \phi_p' = \theta_p' j_B'$. It now follows that $F(\theta)_p(\bar{\sigma}_p) \subset \bar{\delta}_p$ since $\theta_p' = (1 \otimes \lambda)'$ is identified with $1 \otimes \lambda' = F(\theta)_p$ by the natural isomorphism of (a).

It is now clear that F is a contravariant functor in \mathcal{C} , since G is a contravariant functor in U.

- (c) F^2 is naturally equivalent to the identity. For $A=(X,V,\delta)\in \mathscr{C}$, define $g_A\colon A\to F^2A=(X'',V'',\bar{\delta})$ to be the restriction of the Q-isomorphism $h_V\colon V\to V''$. It follows that g_A is a quasi-isomorphism since $(g_A)_p=1\otimes h_V\colon V_p^*\to (V'')_p^*$ has the property that $(g_A)_p(\delta_p)=\bar{\delta}_p$.
- Let $\theta: A \to B = (X, U, \sigma)$ be a quasi-homomorphism. Then $g_B\theta = F^2(\theta)g_A$ since $h_U\lambda = \lambda''h_V$, where λ is the unique extension of θ , $\lambda: V \to U$. Therefore, F^2 is naturally equivalent to the identity functor on \mathscr{C} .
- (d) F is exact. Assume $0 \to A_1 \overset{\phi_1}{\to} A_2 \overset{\phi_2}{\to} A_3 \to 0$ is an exact sequence in $\mathscr C$. By Lemma 3, $0 \to V_1 \overset{\lambda_1}{\to} V_2 \overset{\lambda_2}{\to} V_3 \to 0$ is exact hence $0 \to V_3' \overset{\lambda_2'}{\to} V_2' \overset{\lambda_1'}{\to} V_1' \to 0$ is exact. Again by Lemma 3, $0 \to F(A_3) \overset{F(\phi_2)}{\to} F(A_2) \overset{F(\phi_1)}{\to} F(A_1) \to 0$ is exact. Consequently, F is an exact functor.
- (e) A is free iff FA is divisible. Observe that $A=(X,\ V,\ \delta)$ is free iff $\delta_p=0$ for all primes p and divisible iff $\delta_p=R_p^*A$ for all primes p.

Proof of Corollary B. A consequence of the definition of F and Lemma 3.

Note that A is strongly indecomposable iff FA is strongly indecomposable.

3. Examples and applications. If A is a rank 1 quotient divisible group with type (k_i) , then $k_i=0$ or ∞ . It is easy to see that FA is a rank 1 quotient divisible group with type (l_i) where $l_i=0$ if $k_i=\infty$ and $l_i=\infty$ if $k_i=0$.

A torsion free abelian group A is locally free if R_pA is a free R_p -module for all primes p. The only locally free quotient divisible modules of finite rank are free, since if A is such a group FA is divisible (R_pFA) is divisible for all primes p) hence A is free.

For $A \in \mathcal{C}$, let E(A) be the quasi-endomorphism ring of A. Then F induces a ring anti-isomorphism from E(A) to E(FA) which is an isomorphism if E(A) is commutative.

Beaumont-Pierce [3], Corollary 4.6, prove that a torsion free group A, of finite rank, is isomorphic to the additive group of a full subring of a semi-simple rational algebra (i.e., has semi-simple algebra type) iff A is quotient divisible and $A \sim B_1 \oplus \cdots \oplus B_n$, B_i strongly indecomposable, and each $E(B_i)$ is an algebraic number field, whose dimension over Q is the rank of B_i . It follows that A has semi-simple algebra type iff FA does.

One can show, as in [1], that if rank A = n + 1 and p-rank A = n for all primes p, $F(A) = A^n A$, the nth exterior power of A. A module theoretic characterization of F, in general, is unknown to the author.

REFERENCES

- 1. D. Arnold, A duality for torsion free modules of finite rank over a discrete valuation Ring, Proc. London Math. Soc., (3), 24 (1972), 204-216.
- 2. R. A. Beaumont and R. S. Pierce, Torsion Free Rings, Illinois J. Math., 5 (1961), 61-98.
- 3. ———, Subrings of algebraic number fields, Acta Sci. Math. Szeged, 22 (1961), 202-216.
- 4. E. A. Walker, Quotient categories and quasi-isomorphisms of Abelian groups, Proc. of Colloq. on Abelian Groups, Budapest, (1964), 147-162.

Received March 19, 1971 and in revised form August 31, 1971.

NEW MEXICO STATE UNIVERSITY