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REPRESENTATION THEORY OF ALMOST

CONNECTED GROUPS

RONALD LIPSMAN

Let G be a locally compact group and Go its connected
component of the identity. If G/Go is compact, then G is a
projective limit of Lie groups. In fact, there exist arbitrarily
small compact normal subgroups H g G such that G/H is a
Lie group. Suppose H is such a compact, co-Lie subgroup of
G. Then any unitary representation of G/H can be lifted to
G in a natural way. Conversely, given a unitary representa-
tion π of G, one may ask whether it really lives on a Lie
factor—that is, does there always exist a compact normal sub-
group H g G such that G/H is a Lie group and π(h), heH, is
the identity operator ? In this paper it is shown that this is
indeed the case whenever π is irreducible (or more generally
whenever π is factorial). The dual space G (=equivalence
classes of irreducible unitary representations) is then realized
as an inductive limit of the dual spaces of Lie groups. This
inductive limit is first cast in a topological setting (using the
dual topology on G); and then, when G is also unimodular
and type I, one obtains a measure-theoretic interpretation of
the inductive limit (using the Plancherel measure). One appli-
cation of these results is the fact that an almost connected
group whose solvable radical is actually nilpotent must be a
type I group.

l Introduction* Let G be a locally compact group with left

Haar measure dg. Denote by Irr (G) the collection of irreducible
unitary representations of G, and by G the quotient space obtained
from Irr(G) by the relation of unitary equivalence. When there is
no possibility of confusion we shall fail to distinguish between a
reperesentation π e Irr (G) and its class {π} e G. It is possible to endow
G with a locally compact (generally, non-Hausdorff) topology [6]; and
with that topology G is called the dual space of G. Suppose in addi-
tion that G is unimodular and type I; then there is a unique positive
Radon measure μG on G (called the Plancherel measure—see [3]) such that

(1.1) ί \f(g) \>dg = [ Tr [π(f)*π(f)]dμσ(π) , / G L,(G) Π L2(G) ,
J G J G

where π(f) = \ f(g)π(g)dg.
JG

Now by an almost connected group we mean a locally compact
group G such that G/Go is compact, Go = the connected component of
the identity. It is well-known that such groups are projective limits
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of Lie groups; more precisely, given any neighborhood W of the iden-
tity in G, there exists a compact normal subgroup HQ ^ such that
G/H is a Lie group [14, p. 175]. Let us denote £f = J^f(G) = {H^
G: H compact normal in G and G/H is a Lie group}. Then Sf is a
directed set (since Hγ, H2 e Sf =~ Hx Π H2 e £f [14, p. 177]) and

(1.2) G = lim/ i 6^(?/iJ.

The main idea that will be discussed in this paper is a representa-
tion-theoretic dual of equation (1.2). More explicitly, let He^f(G)
and let j H : G —> G/H be the canonical projection. Then there is a

"dual" or "adjoint" map jH:G/H—G given by (jHX)(g) = MJH(g)),
geG,Xe G/H. We denote by GH the image of G/H in G under the
injective map j H . The dual equation we seek to establish is

(1.3) G = l i π w G t f .

In §2 we demonstrate the natural set-theoretic interpretation of
(1.3), namely we show that G = \JHe^GH. Then in §3 we extend
this result from irreducible to factorial representations of G. We
show how this leads to "smoothness" criteria for G in terms of those

for G/H, He jSf. These criteria are used in §4 to deduce that all groups
of a certain important kind are type I. Specifically, if G is almost
connected then it contains a unique radical R = R{G) = the maximal
connected solvable normal subgroup. We prove that any group whose
radical is nilpotent is a type I group. We further consider a somewhat
smaller class of groups (which we call traceable) for which there is
an adequate "character theory." We show that all semisimple (i.e.,
R{G) trivial) and nilpotent groups are traceable. Next in §5, we
make (1.3) precise in first a topological, and then a measure-theoretic
fashion. In fact we shall show that G is a topological inductive limit

(in a rather strong sense) of the topological spaces G/H; and that
when G is unimodular and type I, the Plancherel measure μG is an
inductive limit of the measures μGIH Finally in an appendix we give
a brief survey of how the structure and representation theory of con-
nected semisimple Lie groups (due mostly to Harish-Chandra) can be
extended to arbitrary connected semisimple groups.

Before beginning we establish some notation which—together
with that set down above—will be standard in the following. G will
denote a locally compact group; usually G/Go will be compact. C0(G)
stands for the continuous functions of compact support, and if G is
a Lie group C°°(G) = the infinitely differentiate functions. We write
jgr(G) for C0(G) Π C~(G) with its usual Schwartz topology. If π is a
unitary representation of G, we denote by Sίfifi) the Hubert space
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on which π acts. We set &(π) — the ΐ^*-algebra of operators gen-
erated by {π(g):geG}. Then Fae (G) = {π: .^(π) is a factor}. For
two representations πl9 π2, we write π1 ~ π2 to mean unitary eqivalence
and rrx ^ π2 for quasi-equivalence. If JyίΓ is a subset of a Hubert
space S^f, sp {<5έΓ} will denote the smallest closed subspace of £ίf con-
taining J£<" Finally, I will always denote the identity operator on
Stf, as well as the identity representation on βίf of whatever group
G is under consideration.

2* The main result* We show first that G = \JIIe^GΠ. This
amounts to the following. Given ττeΙrr(G), we have to produce
an He Sf(G) such t h a t π\Π = I. Then X(jΠ(g)) = π(g), geG, is well-

defined, λ e l r r (G/H), the class of X depends only on the class of π,
and {π} = jΠ{X}.

THEOREM 2.1. Let G be a locally compact almost connected group.
Then for any π e Irr (G), there exists a compact normal subgroup H^G
such that π\H = I and G/H is a Lie group.

We give the proof in several steps. The first is an easy

LEMMA 2.2. Let λ be a unitary representation of a compact group
H on a Hilbert space Sίf. Suppose that {£έζ\aeΩ is a family of {finite-
dimensional) invariant irreducible subspaces of £%f. Denote by \a the
restriction of X to 3ίfa. Assume that sp {ξ: ξ e βg*, a e Ω) = Sίf. Then
any irreducible subrepresentation of λ is unitarily equivalent to one
of the Xa.

Proof. Let ,ΪΛΓ be any invariant irreducible subspace, σ the
resulting representation of H. Let a e Ω be arbitrary, and set Pa =
the orthogonal projection of β^ onto 3ί?a. Since έyέfa is invariant,
PaX(h) = X(h)Pa. But then for ξ e ^ we have Xa(h)Paζ - X(h)Paς =

PaX(h)ξ = Paσ(h)ζ. Since Sίfa and .2Γ are irreducible, the Schur Theo-
rem [4, §2.3.4] guarantees that either Pα(j^T) = {0}—that is, ,cJίf and
£%fn are orthogonal—or σ and Xa are unitarily equivalent. But since
the collection {<%^a:aeΩ} spans £ίf, it is impossible for /JiΓ to be
orthogonal to all the

In our next lemma, we use the following idea. Let G be a locally
compact group and H^G a closed normal subgroup. Then G acts
as a transformation group of the topological space H by {g> X) —>
g-X, (g-X)(h) = X(g~ιhg), he H, g eG,Xe H. T h i s a c t i o n is in f a c t j o i n t l y
continuous [7, Lemma 1]; but we shall need only the (easily estab-
lished) continuity of g-+g X,X fixed, in what follows.
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LEMMA 2.3. Let G be a locally compact almost connected group,
H^G a compact normal subgroup, τreΙrr(G). Then we can find
subspaces £%fa, aeΩ, of έ%f — 3ίf(π), invariant and irreducible under
π\H, such that:

(i) sp{^:αeί2} = Sίf\
(ii) if Xa denotes the representation π\H in the subspace £%fa, and

{λα} its class in H, then U«ei?{\J is a finite subset of H.

Proof. Since H is compact, we can always find a nonzero sub-
space of ^f, say _%7 invariant and irreducible under π\H. Let λ
denote the representation π\H in 3ίΓ. Now if ζe J%^'geG, he H, then
π(h)π(g)ζ = π(g)π(g~1hg)ζ e π(g)SΓ, i.e., π(g)SΓ is also invariant under
π\H. Let Xg denote the representation π\H in π(g)S^ Note that it
follows from the irreducibility of π that sp {π(g) J3Γ: g eG} = Sίfi

Now consider the continuous map g —*{# λ} of G into H. Since
H is compact, the space H is actually discrete [4, p. 322]. There-
fore the inverse image Gλ of {λ}, Gλ = {geG: g*X = X}, is an open
subgroup of G. In particular Go S Gλ. Then G/Gλ is both compact
and discrete—so it's finite. Choose a set of representatives gly , gn

for the left cosets of Gλ in G.
It is a formality to check that ξ —• π(g)ζ, J2Γ —• 7r(#) <_%7 is a unitary

intertwining operator for g X and Xg. Therefore if g = ^^;., 1 ^ i ^ ?̂ r

^ e G;., the representation Xg is equivalent to (^g;.) λ = gi (gλ X) = gi X»
Thus we may take for our subspaces the collection {π(g)3ίΓ\ ge G}.
We have already seen that they satisfy (i); condition (ii) follows from

This completes the preliminary stages. We go on now to the
main argument.

Proof of Theorem 2.1. Let π e Irr (G) be given. Choose any Ke
Jχf(G). Of course π\κ is a direct sum of irreducible representations
of K. It follows from Lemmas 2.2 and 2.3 that there exist elements
{Xi} e K, 1 <̂  i ^ n, and i£-invariant subspaces Sίfx, , ^fn of £ίf =
^f{π) such that ^ ^ = ©?=.! ̂ ? and every irreducible subrepresenta-
tion of π\κ in Jgt is equivalent to X{.

But λί is finite-dimensional, say dim λ* = m {. Thus λ̂  is actually
a continuous homomorphism of i£ into the compact Lie group U{m^
of unitary mf x m^ matrices. Letting ^ = kernel \i9 we see that K/K{

is a compact Lie group.
Clearly π\κ. = I on the subspace ^gt But Ki may not be normal

in G, so we have to shrink it somewhat. Set Gi = {g e G: g-Xi = λ j .
Exactly as in the proof of Lemma 2.3, one proves that Gi is an open
subgroup of finite index in G. Moreover Ki is normal in G;. Indeed
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let g e Gi9 ke Ki. Then Xi{g~ιkg) = (g-Xi)(k) = I, since # λ; = λ* and
Kι depends only on the class of {λj.

Set K{ — ΓigecdKig'1, a compact normal subgroup of G. Let
9u "Λ,ΰpi denote a set of representatives for G/Gi Then, since G*
normalizes Ki3 it is a simple matter to verify that K = Π?=i 9d^%971

But jfiΓ/iΓi is a Lie group and isomorphic to gjKgj1 \'gjK^j1 = K/gάK{gγ.
Since the intersection is finite, it follows [14, p. 177] that K/K[ is
also a Lie group. But the fact that GjK and K/K[ are both Lie
groups guarantees that G/K[ is actually a Lie group [11, Theorem 7].

Thus for each ί, 1 ^ i ^ n, we have found Kl, compact normal
in G, G/KΪ a Lie group, and π\κ. = I onj^t. Let H = Γl?=i #*'• Then

and TΓ^ = J.

3* Smoothness in the dual* There are varying degrees of
smoothness (mainly separation properties) that the dual space G may
possess. G Hausdorff is a strong imposition on G. It appears to force
G to be some kind of combination of compact and abelian groups
although the precise characterization is not known yet. However, we
can ask for a little less and, as we shall see, there are large collec-
tions of groups which are "type I" or even "CCR." We show in this
section that G has either of the latter two properties if and only if

each G/H does also. First we need the following generalization of
Theorem 2.1.

THEOREM 3.1. Let G he a locally compact almost connected group.
Then for any π e Fac (G), there exists a compact normal subgroup

ξΞ G such that π\H = I and G/H is a Lie group.

Proof. Let KeJ^(G). Apply the argument used in the proof
of Lemma 2.3 to π\κ. If we let SΓ be any nonzero subspace of
^f = ^fiπ), invariant and irreducible under π\κ, then on the G-
invariant subspace έ%ff — sp {π(g)St~: g e G}, the representation π\κ

breaks up into a direct sum φ? = 1 c(ΐ)Xi9 for some λ* e K, and some
cardinal numbers c(i). (Note the only place we used the irreducibility
of π in Lemma 2.3 was to conclude that £%?' = ^f.) Let π' = π
acting on £%ff. Then employing the reasoning in the proof of Theo-
rem 2.1, we conclude that there is H^K, a compact normal sub-
group of G, such that G/H is a Lie group and π'\H = /.

But π is a factorial representation. Therefore it is quasi-equiva-
lent to any subrepresentation, π ^ πr [4, p. 106]. Hence there exist
cardinals α, β such that aπ ~ βπ' [4, p. 104]. Certainly π'\H = I =>
βπ'\H = I^aπ\H = I. We can realize 2ίf{aπ) = 3^(π) (x) Ca, (aπ)(x) =
π(x) (x) /, and so it follows that π\H — I as well. This completes the
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proof.

Before stating our next theorem we recall some definitions. G is
called CCR if for every τreΙrr(G) and feL,(G), the operator π(f) is
compact. G is called type I if for every unitary representation π of
G,&(π) is a type I FF*-algebra [4, pp. 338-9]. Of course CCR=>
type I [4, p. 87], but not conversely. It has long been known that
for separable groups, G is type I<= f̂or every πe Fac (G), &(π) is
type I. A more recent result of Sakai [16, Theorem 2] shows that
this is true for non-separable groups as well. (Sakai's theorem also
shows that the collection of type I groups coincides with the collection
of GCR groups [4, §4.3.1 and §13.9.4], again whether G is separable
or not.)

THEOREM 3.2. Let G be a locally compact almost connected group.
Then G is type I (respectively CCR) if and only if G/H is type I
(respectively CCR) for every He Jyf(G).

Proof. First suppose G is type I. Let He J^ and πι e Fac (G/H).
Set π(g) = π^j^g)), geG. It is clear that &{π) = ^(π^). Therefore
ττeFac(G) and &(π) = .^(π^ is type I. It follows that G/H is a
type I group.

Conversely suppose G/H is type I for all H e ̂ f. It follows im-
mediately from Theorem 3.1 that for every τreFac(G), &(π) is type
I. So G is a type I group.

Next suppose G is CCR. Let HeSά" and πι e Irr (G/H). Again
setting π(g) = π1(jH(g)), geG, we obtain a representation π e Irr (G). Let
FeL,(G/H) be arbitrary. Then choose feL,(G) so that F(jΠ(g)) =

I f(gh)dh. This choice is possible since / —> F is a (bounded) linear
in c
map of LL(G) onto L,(G/H). Then we compute π(f) = \f(g)π(g)dg =
( ( f(gh)π(gh)dhdg = \ F(g)nt(g)dg = π,(F). Since G is CCR, it
JGIIIJH JGJII

follows that πx(F) is a compact operator ==> G/H is also CCR.
Finally, let G/H be CCR for all He£f. Then for any π e Irr (G),

there exists HeJ2f" such that π(g) = ̂ (jH(g)), g e G, for some πte
Irr (G/H). Let feLL(G). Then a computation similar to the above
shows π(f) = π,(F), where F(g) = \ f(gh)dh, FeL^G/H). Therefore

in

π(f) is compact and G is CCR.
4* Nilpotent radical and traceable groups* If H and K are

subgroups of a group G, we denote [iJ, if] = the subgroup of G gen-
erated by {xyχ-ιy~ι: xeH,ye K). Set G^G1^ [G, G], Gn = [Gn-ίf Gn_J,
and G% = [G, G*"1]. G is called solvable (respectively nilpotent) if Gn
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(respectively Gn) is trivial for some finite n ^ 1. If G is a topologi-
cal group, it is well-known (and easily seen) that a subgroup H is
solvable (respectively nilpotent) « H is solvable (respectively nilpotent)
see e.g. [15, Theorem 1.10].

DEFINITION. Let G be a locally compact almost connected group.
The radical R = R(G) is the maximal connected solvable normal sub-
group of G. The group R does in fact exist [11, Theorem 15] and it
is clearly closed. Also R(G) = R(GQ). G is called semisimple if R(G) is
trivial.

Our next result is a generalization of a theorem due to Dixmier.

THEOREM 4.1. Let G be a locally compat almost connected group.
Suppose that R(G) is nilpotent. Then G is type I.

Proof. Since G/Go is compact, it suffices [12, Theorem 1] to show
that Go is type I. Also R(G) — i2(G0)=>it is no loss of generality to
assume that G itself is connected. Then G/R(G) is semisimple and
R(G) is the unique connected normal solvable subgroup S ϋ G such
that G/S is semisimple.

Now by Theorem 3.2, it suffices to show that for an arbitrary
H e £f(G), G/H is type I. So fix He £f(G), 3 = jH- Claim: j(R (G)) =
R(G/H). Indeed, j(R(G)) is a connected normal subgroup of G/H. In
addition, a homomorphic image of a solvable group is again solvable.
Therefore j(R(G)) S R(G/H). But j(R(G)) = R(G)H/H; hence the com-
pactness of H insures that j(R(G)) is closed in G/H. Denote Rι =
j(R(G)). Then (G/H)^ ~ G/Γ^Rd = [G/R{G)]l[Γ\Rι)/R{G)]. But
G/R(G) is semisimple; and a factor group of a semisimple group is
semisimple [15, Theorem 3.7]. Therefore (G/H)/R1 is semisimple. It
follows that R, = R(G/H).

A homomorphic image of a nilpotent group is also nilpotent.
Therefore R(G/H) must be nilpotent. But whenever a connected Lie
group has nilpotent radical, the group must be type I [5, Prop. 2.3].
Therefore G/H is type I.

Two special cases in which R is nilpotent are: (1) G is nilpotent
itself, and (2) G is semisimple. We can say somewhat more in these
cases, but first we formulate some general notions. Let G be almost
connected, Hejίf(G). Then &{G/H) is injected into CQ(G) viaαv.
&(G/H)-+Co(G), (ωHF)(g) = F(jH(g)), geG. The Schwartz-Bruhat
space &{G) is the inductive limit 3ί(G) = lim_//6^ {&{G/H), ωπ) (see
[1, p. 45]). More precisely, £%r(G) is the linear span of the subspaces
ωH(^f(G/H)) with the strongest topology making all the maps ωH

continuous.
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DEFINITION. G is called traceable if for every π e Irr (G) and every

fe£?(G), the operator π(f) = \ f{g)π{g)dg is trace class and
JG

f — Tr π{f) is a distribution. The distribution θπ: f -> Tr π(/) is called
the character of TΓ. It depends only on the class of π in G.

Note G traceable implies G is CCR. Indeed π(&r(G)) £ trace class
operators £ compact operators. But 3ί{G) is dense in LJfi),

\\π{f)\\^\\f\l,

and the compact operators are closed in the operator norm => π{Lx{G)) £
compact operators. Traceable appears to be a stronger property than
CCR, but experience has shown that many CCR groups are indeed
traceable.

THEOREM 4.2. Let G be a connected locally compact group. Sup-
pose that G is either semisimple or nilpotent. Then G is traceable.
If G is semisimple and π e G, then θπ is actually a locally integrable

function, i.e., Ύτπ(f) = \ f(g)ψMdg, f e &(G), where ψπeLloc(G).
JG

Proof. Suppose first that G is a connected Lie group. If G is
semisimple, then all claims of the theorem are known and due to
Harish-Chandra [8, 9]. On the other hand if G is nilpotent, then
Dixmier [2, p. 78] has established the traceability of G.

In general now, let G be connected and either semisimple or nil-
potent. Let π e Irr (G). By Theorem 2.1 there exists Hι e J*f(G) such
that π \Hl = I. Next let / e &(G). Then there exists H2 e £f{G) such
that / is iϊ2-invariant and / = ωH(f),f e ̂ r(G/H2). Set H=H1Π
H2e^f(G). Writing g = jH(g),f(g) = f{g), πH{g) = π(g), we compute

S r _
f(g)π(g)dg = 1 f{g)τϋH{g)dg. But the factor group G/H must

G JGJH _

be semisimple or nilpotent according as G is. Also f e &(G/H).
Therefore by the Lie group case π(f) is trace class. Moreover, it is
clear that θπ(f) = Ύτπ(f) is independent of the choice of HeS^(G)
such that π\H — I and / is iϊ-invariant. It remains to show that / - +
θ*(f)> &{G) -+C> i s continuous.

Since &{G) = limu (&(G/H), ωH), it is enough to show θπ°ωI{ is
continuous for all He J^(G). In fact it suffices to prove that θπoωH

is continuous for all sufficiently small H. Therefore we fix
such that π\H = /, and show that θπoωκ is continuous for all
KξΞ H. But it is a formality to check that ΰπ°ωκ = θπκ, πκ(jκ(g)) =
π(g). Therefore (again by the Lie group case), θπκ is continuous; and so
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we obtain the fact that θπ is a distribution.
Finally, suppose G is semisimple. Choosing He Sf{G) such that

π\H = I, π = jHπH, we define ψπ{g) = ψπH(jH(g)), gzG. It is straight-
forward to check that the function ψπ is independent of the choice
of H with these properties. Certainly ψπ e Lloc(G). Moreover for any
fe&(G), we can choose Ke£f such that KξΞkH and / is K-in-

variant. Then Ύτπ(f) = Trπκ(fκ) = ( fκ{g)ψx(g)dg = ( MfMdg.
:GJK JG

This completes the proof.

REMARK. The same techniques as in the above proof show that
to extend Theorem 4.2 to the almost connected case, one need only
consider a Lie group G with finitely many components, [G: Go] < <*>.
Using the fact that an irreducible representation of G breaks up into
a direct sum of at most [G: Go] irreducible representations when re-
stricted to Go (a fact which can be justified by using the Mackey
machine for normal subgroups), one can show that ττeΙrr(G), fe
£&{G)=>π(f) is trace class. I have not been able to prove that /—•
Ύrπ(f) is continuous nor that in the semisimple case the character
is a function. More generally, I don't know if a finite extension of
a traceable group need be traceable.

5. Topology and measure* In this section we give topological
and measure-theoretic interpretations of equation (1.3).

Suppose that X is a locally compact (but not necessarily Hausdorff)
topological space. As usual the Borel sets &(X) constitute the
smallest σ-algebra of subsets of X containing all open sets. It is
possible for a compact subset of X to be non-Borel. However, we
assume that every point of X has a neighborhood basis of compact
Borel sets. By a positive Radon measure on X we mean a map
μ: &(X) —> [0, oo] having the properties: (i) μ is countably additive,
(ii) μ(C) < co for every compact Borel set C, (iii) for every Ye &{X),
we have μ(Y) = sup{μ(C): CS Y, C compact Borel}.

EXAMPLE. G = unimodular type I locally compact group, X = G,
μ = the Plancherel measure μG (see [3]).

LEMMA 5.1. Let X be a locally compact space. Suppose that
{Xa}aeQ is an increasing net of open subsets of X whose union equals
X. Assume that each Xa carries a positive Radon measure μa such
that whenever Xa QXβ, we have μβ\X(X = μa. Then there exists a unique
positive Radon measure μ on X such that μ\Xa = μa, aeΩ.

Proof. Let Ye^(X). For any Ce^(X), Cg Γ, C compact,
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it must be true that C ^ Xa some a. Set μ(Y) — supc {μa(C)}. It is
a relatively straightforward mattter to check that μ is the desired
measure (see [3, Lemma 16]).

We call μ the inductive limit of the μa and write μ = \im^aeΩ μa.

LEMMA 5.2. Let G be a locally compact group, H^G a compact

normal subgroup. As usual jH: G —> G/H is the canonical projection,

and jH: G/H—+G is the adjoint map, GH = jH(G/H).

(i) GH is an open-closed subset of G, and jH\ G/H~+GH is a
homeomorphism.

(ii) Suppose in addition that G is unimodular and type I. Then
G/H has those properties also, and μG\(jH — μ^jH

Proof. Let us first briefly recall how the topology on G may be
defined (see [6]). If π e G and y g G is a subset, then π e £s if and
only if every continuous positive-definite function associated to π is
a uniform-on-compacta limit of continuous positive-definite functions
associated to £f\ more precisely, given ζe <§tf{π), ikfϋ G compact sub-
set, ε > 0, then there exists σ e 6^, rj e Sίfip) such that

(i) The fact that jH:G/H—>GΠ is a homeomorphism is well-
known and requires only that H is a closed normal subgroup. The
same is true of the fact that GH is closed, but I include a proof for
illustrative purposes. Of course GH = {πeG:π\H = I}. Suppose πe
GH)~. Let heH be arbitrary. Then we can find a compact subset
MξΞ G containing e, h. Let ξ be any vector in £ϊf(π) and set f{g) =
(π(9)ξ, £)• Finally let ε > 0. Then there exists σeGH and ΎJ e Sίfip)
such that \f(g) — {σ{g)η, η) | < ε, g e M. Since σ e GH, σ \n = I. Setting
g = e and then g = h, we obtain \f{h) — ||f ||2| < 2ε. Since ε is arbi-
trary, f(h) - \\ξ||2, i.e., (π(h)ξ, ζ) = (ί, ζ), ξe Sίf{π). Therefore π(h) is
both unitary and positive ==> π(h) = I . Since heH was arbitrary,
π\H = I=>πeGH. Using similar arguments, it is easy to show £/" S

G/H is closed <=> JH{^) ^GH is closed. (We omit the details.)
We next prove that GΠ is also open. Unlike the previous situa-

tion, this requires that H be a compact subgroup. We prove that
£S = G — GH = {π e G: π \n Φ I) is closed. Let π e £/ζ Choose a non-
zero vector ξ e βg?(π) and select M = H itself. Let ε > 0. Then there
exists σ e Sζ η e £έf(σ) such that | (π(h)ζ, ξ) - (σ(h)rj, rj) \ < ε, h e H.
Suppose that π£S^. Then π\H = I => \\\ζ\\2 - (σ(h)η, rj) \ < ε, he H.
We claim that the operator \ σ(h)dh is the zero operator. Postponing
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the proof of that momentarily, we see that

0 < llfll2 = I \βξ\\2 - (σ{h)η, V)]dh\ ̂  j j | | ί | | 2 - (σ(h)rj, η)\dh < ε .

Since ε is arbitrary, this is a contradiction.
It remains to establish the claim. Since we will have use for it

again later, we state it as a separate

L E M M A 5 . 3 . If σeG and σ\H Φ I, then \ σ(h)dh — 0 .
JH

Proof. If σ\H is irreducible, then this is an immediate consequ-
ence of the orthogonality relations for the compact group H (σ\H Φ
I=>σ\H is orthogonal to the identity representation). Otherwise σ\u =
(Bβσβ, σβeH. Since \σ(h)dh = φβ\σβ(h)dh, it's enough to show that
the identity representation does not occur as an irreducible constituent
of σ\H. But if there is ξeβ£?(σ), ξ Φ 0, σ(h)ξ = f, heH, then

σ(h)σ(g)ξ = σ{g)σ(g-ιhg)ζ = σ(g)ξ, geG,heH.

Since σ is an irreducible representation of (?, ξ must be a cyclic vector
=> σ(h)η = 7], all η e <%?(σ), he H, a contradiction to the original assump-
tion σ\H Φ I. This completes the proof of Lemma 5.3 and part (i)
of Lemma 5.2.

(ii) If G is type I, then so is G/H (the argument is a duplication
of the first paragraph in the proof of Theorem 3.2). Also G unimodular
and H compact normal => G/H is unimodular. Finally we show that
μG\oπ = μGιπ. Let Fe LL(G/H) n L2(G/H), and set f(g) = F{g),geG,
g = jH(g). Certainly / e L,(G) Π L2(G), and / is right iJ-invariant.
Suppose πeG and ζ,ηe^(π). Then

(π(/)f, rj) = f(g)(π(g)ζ, η)dg
JG

f{gh){π(gh)ξ,η)dhdg
I

F(g)dg\ (rc(h)ζ, π(g~ι)7])dh .
ϊ ill

GIHJH

Therefore if π&GH, i.e., π\H Φ I, it follows from Lemma 5.3 that
π(f) = 0. On the other hand if π e GΠ, π — jHπH, then π{f) = πH{F).

We apply the Plancherel formula (1.1) to G/H and then to G.
First

\ I F(g) fdg = \ / x T r [πH(F)*πH(F)]dμ0IH(π) .

Then we also have
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( I F(g) \>dg = \ \f(g) \>dg = f Tr [π(f) *π(f)]dμa(π)
J G\H JG JG

= ί Tτ[π(f)*π(f)]dμo(π)
J G jι

+ f Tr[π(/)*7r(/)]^0(τr)

= ί Tr [πB(F)*πB(F)]dμa(π) .
jGj£

Since F 6 L^G/H) Π L2(G/H) was arbitrary, it follows from the unique-
ness of the Plancherel measure that μG\GH = μGJH*

We can now state the main result of this section.

THEOREM 5.4. Let G be a locally compact almost connected group.

(i) G = \imHeJ^ G/H topologically in the sense that the maps

jΠ:G/H—*G are homeomorphisms onto open-closed subsets, the collec-
tion of which forms an increasing net whose union is G.

(ii) Suppose in addition that G is unimodular and type I. Then

μG =

Proof, (i) This follows immediately from Lemma 5.2 and Theo-
rem 2.1.

(ii) Suppose that K^H, both in £?(G), so that GH g Gκ. Then

GIH ~ (G/K)/(H/K). By Lemma 5.2, G/H (which is homeomorphic to
GH) is also homeomorphic to an open subset ^/ — G\HHlκ of G/K (the
latter being homeomorphic to Gκ). In addition μGΪK\?/ ~ μGjn There-
fore we may apply Lemma 5.1. The conclusion is that there is a
unique positive Radon measure μ = lim//6^ μGlH such that μ\aH = μGlu,
He^f. But, again by Lemma 5.2, μG is a positive Radon measure
on G such that μG\GH — μGjH, He Jίf. Hence μ = μG and we are done.

REMARK. It is easily checked that (i) forces G to be the ordinary

topological inductive limit of the G/H; that is, the dual topology on

G is the strongest which makes all the maps j H : G/H—+G continuous.

6* Appendix — semisimple groups. In §5 we showed how to
obtain the Plancherel measure for an almost connected group as an
inductive limit of Plancherel measures for Lie groups. We indicate
here how, for semisimple groups, the representation theory and
Plancherel measure can be constructed in terms of the "parameters"
of the group itself.

LEMMA 6.1. Let G be a connected semisimple group. Suppose
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that Ω = the maximal compact normal subgroup of G. Let Z = the
centralίzer of Ω in G and Gι = Zo Then:

( i ) G = Gβ;
(ii) (?! and Ω commute;
(iii) Gx is a closed normal subgroup of G which is connected,

semisimple, and finite-dimensional.

Proof. It is known that G has maximal compact subgroups and
that they are all conjugate [11, Theorem 13]. Therefore the inter-
section of all of them yields the maximal compact normal subgroup
Ω. It is clear that Ω is the largest element of £f{G).

( i ) is an immediate consequence of a theorem of Iwasawa (see,
e.g., [15, Theorem 1.4]). (ii) is obvious. In (iii), the fact that Gx

is closed, normal and connected is clear. Moreover, since any normal
subgroup of Gx is normal in G, it follows that Gx is semisimple.
Finally, H — Gx Π Ω is abelian and normal in G; therefore it is totally-
disconnected (zero-dimensional). Moreover G/Ω = Gfi/Ω^ GJH is a
Lie group. This is, Gx is finite-dimensional. Actually, it's not hard
to show that properties (i)-(iii) characterize Gx uniquely.

Set K = {(h, h):heH= G.f) Ω). Then G = (G, x Ω)/K and G =
((?! x Ω)χ ̂  (G1 x Ω)κ; so it is reasonable to restrict our attention to
the finite-dimensional case.

Let G be connected, semisimple, and finite-dimensional. Then
there is H^G, a compact, totally-disconnected normal subgroup such
that G/H is a Lie group. Since G is connected, HQ ZG = Center (G).
Therefore G/ZG is also a Lie group. Let g = its Lie algebra. One
checks easily that G/ZG is a connected semisimple Lie group with no
center; therefore G/ZG = Int g = the adjoint group of g. The canoni-
cal projection G —• G/ZG may thus be considered to be the "adjoint
representation" Ad:G—>Intg. We can now develop the structure
theory of G exactly as in the Lie group case. For example, let t) S g
be a Cartan subalgebra. Then C = the centralizer of t) in G = {g e
G: Ad g(X) = X, Xe 9} is called a Cartan subgroup. Let us now make
the additional assumption that ZG is compact. This is analogous to
the usual assumption of finite center in the Lie group case. One also
needs to make a technical assumption corresponding to Harish-Chanda's
concept of acceptability [9, p. 484], but we shall not elaborate on that
here. Then we can carry through Harish-Chandra's entire theory for
semisimple Lie groups. Briefly, it goes as follows.

Suppose g = f + q is a Cartan decomposition. Then there is a
maximal compact subgroup K of G such that Ad (if) has ϊ as Lie
algebra. G has a discrete series (i.e., a family of square-integrable
irreducible unitary representations) if and only if there is a Cartan
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subalgebra t) s ϊ. In that case, the corresponding Cartan subgroup
C S K is compact, connected, abelian, and finite-dimensional. The
discrete series is parameterized roughly by the charaters of C C of
course is a discrete space, but actually there is still an inductive limit
buried in it. In fact C, being a finite-dimensional, compact, connected,
abelian group, is a projective limit of tori (of bounded dimension).
Taking the dual, we see that C is an inductive limit of lattice groups
(again of bounded dimension).

We now describe how to obtain the continuous (or principal) series.
A subgroup P g G is called parabolic if it is closed, p = Lie algebra
of Ad (P) is parabolic (i.e., its complexification contains a maximal
solvable subalgebra of the complexification of g), and P = normalizer
(P) = {9 G G: Ad g{X) ep, Xep}. Exactly as in the Lie case one obtains
a Langlands decomposition P = MAN where ΛΓis a connected, simply-
connected nilpotent group, A is a vector group, and M is a finite-
dimensional reductive (i.e., m = Lie algebra of Ad (M) is reductive)
group. P is called cuspidal if M contains a compact Cartan subgroup
B (i.e., if there is b £ tn, a Cartan subalgebra such that B = {me
M: Ad m(X) = X, Xe b} is compact). In that case C = BA is a Cartan
subgroup of G; in fact, t) = Lie algebra of Ad (C) is a Cartan sub-
algebra of g and C = centralizer (t)).

Two parabolics P19 P2 are called associate if the corresponding
Cartan subalgebras t)u t)2 are conjugate (under G or Int g). The number
of associativity classes is finite, and for each we get a distinct family
of continuous series representations as follows: take λ in the discrete
series of M, v e A, and form Ind? 7, 7(man) = v(α)λ(m). The discrete
series of the reductive group M is somewhat complicated since M is
disconnected in general. It can be worked out using arguments similar
to those in [13, §4], where the corresponding problem for Lie groups
was solved. In any event, exactly as in the Lie case, the Plancherel
measure lives on these series and can be computed quite explicitly.
The precise result is in complete analogy with Harish-Chandra's for-
mula for semisimple Lie groups [10, p. 545].
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