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ON THE ABSOLUTE HAUSDORFF SUMMABILITY
OF A FOURIER SERIES

S. N. LAL AND Si1YA RAM

In this paper a theorem on the absolute Hausdorff sum-
mability of a series associated with a Fourier series has been
established. This theorem unifies and extends various known

results.

1. Let p, be a sequence of real or complex numbers and write
Ape, = p, Ape, = A7, — 47, pz= 1.

If S, denotes the sequence of partial sums of the series >, @y,
the transformation

= 3 (A" 1)S,

defines the sequence {¢,} of (H, /t) means or the Hausdorff means [3, 12]
of the sequence {S,}. The series >, a, is said to be summable (H, r)
to the sum s if lim,_. ¢, = s and is said to be absolutely summable
(H, t) or summable |H, p| if

Dt — | < C.
n=1
In order that (H, /¢) should be a convergence preserving transfor-
mation it is necessary and sufficient that ¢, should be a moment con-
stant, that is, there exists a function y(x) of bounded variation in
0 < a2 <1, such that

1
1, = Sm"dx(x) , n=0,1,2 .
0

We may suppose without loss of generality that y(0) = 0. If also,
7(1) = 1 and x(+0) = x(0) = 0, so that y(x) is continuous at the origin,
then /¢, is a regular moment constant and (H, /¢ is a regular Haus-
dorff transformation [3]. It is known that the sequence to sequence
Hausdorff transformation is absolute convergence preserving or ab-
solutely regular if and only if it is a convergence preserving or regular
transformation of the same type [4, 8, 9].

In the case in which

x@=1-(10—-2), 6>0,

! Throughout the paper C denotes a positive constant not necessarily the same at
each occurrence.
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the method (H, t) reduces to the well known Cesaro method (C, ) [3,
12].

2. Let f(t) be a periodic function with period 27 and integrable
in the Lebesgue sense in (—x, 7). Let the Fourier series of f(¢) be

i (a, cosnt + b, sin nt) = i A1),
n=1 n=1
it being assumed that the constant term is zero.

The eth forward and backward fractional integrals of a function
g(x), which is Lebesgue integrable in (0, 1), are respectively defined
as

1

gi(®) = m

@ - wgdu
and

g-(x) = F—%ggl(u — 2 g(w)duw .

These integrals exist almost everywhere for ¢ > 0.
We write

mw=%vw+w+fm—m:

D(t) = ¢(t) ;
D,(t) = _f%“)S:(t — ) gwydu, a>0;

6u(t) = INa + DE°@(t), a=0;
Mn, x, t) = ﬁ] v(ﬁ’)s(u)x”(l — a)*™ cosvt ;

N(n, x, t) = é (;')t)e(v)x”(l — )" sin vt ;

Lig;m, t) = _i_ 3 (fj)e(u) sin vtg;x"(l — a)dy(w) ;

v

1

d
s, u) = ————\ (t — w)y*=L(; n, t)dt ;
0t m, ) = ey | (6 = 0 G L 0
1 v 4
im, u) = —————\ v*—I(y; m, v)dv .
J(; m, w) ['(1+a)gov o (; m, v)dv

3. In this paper we establish the following:

THEOREM. Let ¢(t) be a positive and monotonic mondecreasing
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function of t such that

(3.1) hgmwggﬁf:q%%»,«kw<mk>m
and

(3.2) S:e(%)m%(m <C.

If

either (a) x(u) = g% (w) + C,
or (b)) x) = gv,w) + C,

O=a<v<l)

for some function g(u) which is Lebesgue integrable in (0, 1), then
the series >, e(n)A,(t) is summable | H, (t| at the point t = x, it being
assumed that the transformation (H, pt) is convergence preserving.

Taking &(¢) = 1 and a = 0 the above theorem reduces to a recent
result on the absolute Hausdorff summability of a Fourier series ([11],
Theorem 1) which in turn includes® a result of Bosanquet ([1], Theo-
rem 1) on the absolute Cesiaro summability of a Fourier series and
the case 0 < a <1 covers another result on the absolute Cesaro
summability of a Fourier series ([2], Theorem 1). Also for @ =0
choosing ¢(t) = t* and vy =8 + 0 (8 > 0,0 > 0) we get another result
([10], Theorem 1) on the absolute Hausdorff summability which is
known to include a theorem on the absolute Cesiaro summability of
the series > nfA,(t) due to Mohanty ([6], Theorem 1). Further
choosing ¢(t) = log (1 + t) we get (cf. [7])

THEOREM A. If

| 1og %Idm(m <C (k>

and
etther (a) x(w) = g7, (w) + C,
or (b) ) =g, (w)+ C,

D=a<ry<]

for some fumction g(u) which is Lebesgue integrable in (0, 1), then
the series >, log (n + 1)A,(t) ts summable | H, pt|, at the point t = x,
it being assumed that the transformation (H, pt) is convergence pre-
serving.

4, We require the following lemmas for the proof of our theorem.

2 While this paper was in press, a paper due to B. Kuttner and N. Tripathi (Quart.
J. Math., 22 (1971), 229-308) appeared in which it is shown that Tripathi’s theorem
can be deduced from the result of Bosanquet.
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LEMMA 1 [4]. Let {t,} and {S,} be the partial sums of the series
30, and >, a, respectively. Then the sequence to sequence transfor-
mation

ty =

0

m\, jm—n
(W)=,
can be put in the series to series form as

I (m‘ —n
bm — E’nz:‘a ’I’l/)(d #’n)nan ’
by=a,.

LEMMA 2 [5]. If g(x) and W) are Lebesgue integrable in (0, 1),
then for € >0

| @z = | g@h: @da .
LEMMA 3.

I = S:N(n, 1— v, tydv = o(%gl)

and

I = SxM(n, 1— v t)dv = o(fizﬂ> :

0
uniformly for x in (0, 1).

Proof. By Abel’s transformation, we have

I, = S(z (’j)e(u)(l — Vv sin ut)dv

- So[g A”{Cj)e(” )1 = v)”v”“”} % sin rt
+ (Z)s(n)(l — v)”él sin vt]dq;

= 0( 1) & 146 + o),

t/ =t nt

where
AV —v v
py(x)=(”>g vl —v)ydy, 1<y<=n—1).
0

We observe that e(v)p(x) (1 <v < n — 1) is a nondecreasing function
of v for fixed =z, since by hypothesis ¢(v) is non-decreasing and
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p.(x) = (ﬁ)g:v"“"(l — v)dv
:(@Lﬁwa—me+<@m—wyw%ﬂ_me

¥ v+1 k v — 1)k
=5+ 1)8:”"‘““%1 — W) ¥dy — (D—il—)(ﬁ)mn—»u — gy
< Pura(®) «

Hence

L= 0(L) S et + V@) — @] + 0(<)

! nt
- o(e(_">§:(1 — o)yd + 0<L”))

I, can be similarly estimated. Hence the lemma.

LEMMA 4. For 0 < v < 1,

J, = S:_x(l —a—u)"'N(n,1 — u, t)du = O(%)

and

Jo= [T oM, 1w, au = o 200)

uniformly for x in (0, 1).

Proof. Since

N, 1 =, 8)] = o) (7))t — wpur

(4.1)
= ¢(n)
we have
J, = Sl—x(l — & — W Nm, 1 — u, t)du
(4.2) - O(e(n))gz—x(l — & — wydu

o).

nrer
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if >1— 1/nt.
On the other hand if # < 1 — 1/nt, write

1

J = S 1 — & — w N, 1 — u, Hdu
0

S‘l—x—l/nt

1—2—u)"Nn,1—u,tdu

(4.3) D
+ S (=@ — uy N, 1 — u, t)du
1—z—1/nt

=dJ, + J1,2 ’

say. Since vy <1 and (1 — # — )" is an increasing function of u,

» Jos = -(#g;_x_umN(n, 1— u, t)du, (o <p<l—u-— %)
_ ofzm)
nrer

by the application of the estimate I, of Lemma 3.
And using the estimate (4.1) we have

fl—z
1—

(4.5) Jo2 = O(e(m)) |

z—

— 2 — wyidu = o £
1/m(l x — u)y'du O< nTﬂ) .

A combination of the estimates in (4.4) and (4.5), in view of (4.3),
yields

— of &m)°
(4.6) J, = O(W)
when # < 1 — 1/nt. Hence, in view of the estimates in (4.2) and (4.6),
the first part of the lemma follows. The second part follows on similar
lines.

5. Proof of the theorem. In view of the definition and Lemma 1,
the absolute Hausdorff summability of the series >, e(n)A4,.(x) is equiva-
lent to the absolute convergence of the series >.7., b,, where

n

by = — 33 o[} )4 )e@) (o) -

v=1

We first consider the case a = 0.
Since

A(z) = %S::ﬁ(t) cos vt di

2 (*sin vt
=2 ds(t) ,
ﬂ'So b2 ¢()
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and the transformation (H, y) is convergence preserving,
= — —2— § < n v _ n—y ot
b, = n S0d¢(t)so<§(v)5(”)x (1 — )" sin vt)dx(a;)
2 (" (1
= — 2 ap)| Nen, o, titx(a) ,
nwJo 0
and therefore

S 16,0 = 2{ s [ 2 £ | | N, =, )|

o

+ i > 1—’,1;1 S:N(n, x, t)dx(x)u .

=[]+

Since
[ e(£ s < C,

it is clear that we have to show that uniformly in 0 < ¢ < 7,

6 m= 82 [em oaa] = of(5)).
and

oo =5 3 nomn] = oe(2).
Clearly

| Nn, 2, 9)] < 3 (jj)s(u)xva — 2t
< nte(n) zzz(ﬁ)x(l — o

< nte(n) ,

and therefore

M\

N(n, @, )dz(2)|

=S

=l
n
ni

PR

[1\¢

21 =
= 5 250 jay (o))
. k
= o(«(3)) -
the function y(x) being of bounded variation in (0, 1). This completes

the proof of the estimate in (5.1). We now proceed to establish (5.2).
Putting

n=1
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1@ = gfi(@) + C

we have
(5.3)

- 3 i{ S‘g(x)N,—(n, v, t)da|
nlJo

n=[1]t]+1

(by the application of Lemma 2)

1 oo

= [lo@I(_ > Linee, o b))s,
0 n=[1/t]+1 N,

where N, (n, «,{) means the ~vth backward fractional integral of

N(n, z, t) regarded as a function of . By the application of Lemma 4

we get

N-(n, o, t) = F(l_%g(u — @) N(n, u, H)du

7

= o(2),

n'er

(5.4)

and therefore

So=0) 3 (o) do

n=[17t1+1 RLTTET

and this completes the proof of (5.2). The proof of the estimate in
(5.2) in the case when

1) = gi(®) + C

follows on similar lines.
We now consider the case 0 < o < 1. We have

b, = %g:gs(t) 0%(% > (jj)e(u) sin vtS;x”(l — a:)”‘”dx(x))dt

102 Lo
= {502 Lz m, it

(6.5 = %SZ%L(X; n, &)

-1
nl'1l— «a)

1
I’'l—a

gbme@—Mﬂ%ummww

S:(t — u)‘“d@a(u)>dt
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= _l_gﬁl(x; n, w)dP ()
nJo

= —1—070,(75)1(7(; n, T) — —1—Q>a(7r)J(x; n, ) + }—SEJ()(; n, U)d(w) ,
n n n o

and therefore in order to prove the theorem we have to show that

(5.6) S I0m | < C,

(5.7) S a7 m)| < C

and

(5.8) S, w170 m, 0 = o(«(£))

uniformly in 0 < u < 7.
We show that all the above estimates are truelwith

x(@) = gi (@) + C.

The method of proof for y(x) = g3, (%) + C will be similar.
For sake of brevity we write g* for g;.,. We have

1 utn—1 _ d
I +; ) = S t— “—L +; ) t)dt
(9% n, u) T —a)e (¢ — w7 Llg" n, 1)
1 S o,
- = t —u)*—=L(g* t)dt
HD e P e
= IL(g"5 n, w) + I(97; n, u) ,
say. Now
I(g%;m, u) = ——2——Su+n—1(t — u)’“dtSlg+(x)
e (1l — a)de o

X <;;v<g)s(v)x”(l — )" cos ut)dac

2 g“"_ (t — u)““dtglg,*(x)M(n, %, t)dz
0

T I — )
=2 ("6 wyeat| oo g
T — ) t— dt M: . t)ds
(1l — @) Ju (t—w) 09(9«) ~(n, , t)de
2 §u+n"1 . Sl
- t— dt d
ATA —arm)). 7w g@d

3 M;(n,x,t) is yth backward fractional integral of M(n, z,t) regarded as a func-
tion of .
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1—z
% S (1 — & — o)~ Mn, 1 — v, )dv
0

= O(M)gjﬂt—r(t - u)‘“dtg:l (@) |

nrt

- o(ﬂ_) ,

nru’

by the application of the estimate of J, in Lemma 4 and using the
fact that g(x) is Lebesgue integrable in (0, 1).

Also
Ligt i u) = — 1 S (t — u)—aiL(gh n, H)dt
’ 'l — a)Juta ’
- Y D1t m, Odt, @+ nt< <)
TA = @duwenagt 7
where
Lig*sm, t) = ( > (Zj’)e(u)x’(l — )" sin vt)g;f(x)dx

2
2]

= 2{ g/@ N, v, s
Vs
ES 9(@)N;(n, z, t)dx
T

_ 2 ey _
- = )Sg(x)dxg (1 — & — vy~ Nn, 1 — v, H)dv

= o(2){ | g(a) da

-o22).

by, the application of the estimate of J, in Lemma 4 and the Lebesgue
integrability of g(x) in (0, 1). Hence

I(g*; m, u) = O(_ﬂﬂ) )

nu’

Thus we have shown that

(5.9) I(g*;n, ) = O( &(n) > .

n’—*y’

Using this estimate we have

S Igm = S S < c,

1+7—a
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and this completes the proof of (5.6).

If in particular we suppose that ¢(¢f) = 1 for all ¢, in which case
#.(t) = 1 for all ¢ and b, = 0 for every n, we obtain from (5.5) and
the estimate in (5.9)

0= 0( &(n) ) _ Jgtn,

nHrTe n

and therefore

(5.10) J(g*; m, T) = (5(”))

7T«
Hence

S Jgn Ml = ¢3S <,

1+r—a

and this establishes the estimate in (5.7). Now it remains to establish
(5.8). We note that

100 m, w) = Tll—_a)(g+— + S;n_l)(t - u)*”%L(X; n, t)dt

= 0<ne(n>>§“+"ﬂ(t —wat] (35 (e — 9@

v=1

2 . n—y
+2. r(1 i w 5 u( )s(v)gox (1 — &)y~ dy(x)
X SC _ cos vt dt w+nt<l<n)

= O(we(m)) + O(ne(w)| |dx(@)| 3, (§ )t —

— O(n°s(n)) ,
and therefore
. o _ a p*t
JO; m, u) = 'F(T+_>[” 106 m, W ~ 7% )S 1(r; m, v)dw
(5.11) — O(n*ure(n)) + O(n"a(n))sov"‘ldv

= O(n*u®e(n)) .
Also

@+ VIO n, 7) — I n, )] = [o°I0 n, o) — aS w=I(y; m, v)dv

and therefore
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1
J(g*; m, u) = J(g*; n, 1) — ————[v*I(g"; n, v}
(g5 m, u) = J(g*; n, 7) F(1+a)[ (9 ]

a T
————\ v 'I(g%; m, v)d
+ Tt 1)Suv (9%; m, v)dv

= 0(21) + o( =) + o(S) "yriedy

n—e T—ag T "

= o(5=)

using the estimates in (5.9) and (5.10). Now by the application of
the estimate in (5.11) and (5.12) we have

(5.12)

e [1/u] e
>t [J(gt n, w)| = 2=,1 nJ(g"; n, w)| + %:UZI‘;H w7t J(g*t; m, w)

n=1
&(n)
+1 gty

= 0@) 'S} w~'e(n) + O) P

~ofe)).

uniformly in 0 < % < w. This completes the proof of the estimate in
(5.8). Hence the theorem.
We are thankful to the referee for his kind advice.
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