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ON THE ABSOLUTE HAUSDORFF SUMMABILITY
OF A FOURIER SERIES

S. N. LAL AND SIYA RAM

In this paper a theorem on the absolute Hausdorff sum-
inability of a series associated with a Fourier series has been
established. This theorem unifies and extends various known
results.

1* Let μn be a sequence of real or complex numbers and write

40 f, __ .. Apfl _ /IP-it, /lp~1fl T> > 1

If Sn denotes the sequence of partial sums of the series Σ~=oα*>
the transformation

defines the sequence {tm} of (H, μ) means or the Hausdorff means [3, 12]
of the sequence {Sn}. The series Σ ^ is said to be summable (H, μ)
to the sum s if lim^^ tm = s and is said to be absolutely summable
(H, μ) or summable [ H, μ \ if

In order that (H, μ) should be a convergence preserving transfor-
mation it is necessary and sufficient that μn should be a moment con-
stant, that is, there exists a function χ(x) of bounded variation in
0 ^ x ^ 1, such that

μn = [xndχ(x) , ϊi = 0, 1, 2,
Jo

We may suppose without loss of generality that χ(0) = 0. If also,
= 1 and χ( + 0) = χ(0) = 0, so that χ(x) is continuous at the origin,

then μn is a regular moment constant and (H, μ) is a regular Haus-
dorff transformation [3]. It is known that the sequence to sequence
Hausdorff transformation is absolute convergence preserving or ab-
solutely regular if and only if it is a convergence preserving or regular
transformation of the same type [4, 8, 9]

In the case in which

χ(x) = 1 - (1 - x)> , δ > 0 ,

1 Throughout the paper C denotes a positive constant not necessarily the same at
each occurrence.
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440 S. N. LAL AND S. RAM

the method (H, μ) reduces to the well known Cesaro method (C, δ) [3,
12].

2 Let f(t) be a periodic function with period 2π and integrable
in the Lebesgue sense in (— TΓ, TΓ). Let the Fourier series of f(t) be

CO CO

Σ (an cosnt + bn sin nt) = Σ AJt) ,

it being assumed that the constant term is zero.
The εth forward and backward fractional integrals of a function

g(x), which is Lebesgue integrable in (0, 1), are respectively defined
as

gt{χ) = -±-

and

I (v, - χγ-ι

J" £ X ' Γ(ε)Jχ

These integrals exist almost everywhere for ε > 0.
We write

Φ(t) = ±-{f(x + ί) + / ( * - «)}
Δ

Φo(t) = Φ(t)

t — u)0C~1φ(u)du , a > 0

φa{t) = Γ(a + l)ί-"Φβ(ί) , a ^ 0

M(n, x, t) = Σ υί^eWa ^l - .t;)M"1 cosvί

N(n, x, t) = Σ (y )e(v)a;1'(l - «)"- sin vt

L(χ; w, ί) = i i ί j W ) sinυίίVα - ίc)-'dχ(a )
7£ v=i \ ^ / Jo

J(χ; n, u) = —-1—-ί V-f I(χ; w, ̂ )d^ .
JΓ(1 + a) Jo di;

3* In this paper we establish the following:

THEOREM. Let ε(t) be a positive and monotonic nondecreasing
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function of t such that

() Σ 1+r

ni-a = °(£(-f)) ' (0<t<π,k>π)
«=[i/ίj+i n+r~atr a V V t JI

and

(3.2)

If

either (a) χ(u) = gΐ+r(u) + C , (Q < α < 7 < i)

or (b) χ(%) = flfΓ+r(^) + C ,

/or some function g(u) which is Lebesgue integrable in (0, 1), then
the series Σ ε(ri)An(t) is summable \ H, μ \ at the point t = x, it being
assumed that the transformation (H, μ) is convergence preserving.

Taking e(t) = 1 and a = 0 the above theorem reduces to a recent
result on the absolute Hausdorff summability of a Fourier series ([11],
Theorem 1) which in turn includes2 a result of Bosanquet ([1], Theo-
rem 1) on the absolute Cesaro summability of a Fourier series and
the case 0 < a < 1 covers another result on the absolute Cesaro
summability of a Fourier series ([2], Theorem 1). Also for a = 0
choosing ε(t) = tβ and 7 = β + 3 (β > 0, d > 0) we get another result
([10], Theorem 1) on the absolute Hausdorff summability which is
known to include a theorem on the absolute Cesaro summability of
the series Σ wM.n(£) due to Mohanty ([6], Theorem 1). Further
choosing ε(t) = log (1 + t) we get (cf. [7])

THEOREM A. //

[π\ogλ\dφa(t)\<C (k>π)
Jo t

and
either (a) χ(u) = gΐ+7(u) + C , ( o < α < 7 < l )

or (b) χ(u) = g7+r(u) + C ,

for some function g(u) which is Lebesgue integrable in (0, 1), then
the series Σ log (^ + ΐ)An(t) is summable \H, μ\, at the point t = x,
it being assumed that the transformation (H, μ) is convergence pre-
serving.

4. We require the following lemmas for the proof of our theorem.
2 While this paper was in press, a paper due to B. Kuttner and N. Tripathi (Quart.

J. Math., 22 (1971), 229-308) appeared in which it is shown that Tripathi's theorem
can be deduced from the result of Bosanquet.
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LEMMA 1 [4] Let {tn} and {Sn} be the partial sums of the series
Σ bn and Σ an respectively. Then the sequence to sequence transfor-
mation

t. = Σ

com be put in the series to series form as

K = - Σ

6 0 = α 0 .

LEMMA 2 [5]. // g(α ) and h(x) are Lebesgue integrable in (0, 1),
then for e > 0

S i ri

gt(x)h(x)dx = \ g(x)hτ(x)dx .
o Jo

LEMMA 3.

)
nt /

and

I2 = \XM{n, 1- v, t)dv = θ(^λ
Jo \ t /

uniformly for x in (0, 1).

Proof. By AbeFs transformation, we have

sin

^—} Σ

nj

where

We observe that ε(v)pv(%) (1 ̂  v ^ n — 1) is a nondecreasing function
of v for fixed x, since by hypothesis ε(v) is non-decreasing and
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v + ι Jo W(υ-l)

Hence

4-) Σ

nt /

I 2 can be similarly estimated. Hence the lemma.

LEMMA 4. For 0 < 7 < 1,

*(l - x- uy~ιN(ny 1-u, t)du =
nrtr

and

J2 == [~s(i - x - uy-'Min, 1-u, t)du =
Jo \nr~HrJ

uniformly for x in (0, 1).

Proof. Since

I N(n, 1 - u, t) I ̂  e(n) ]
(4.1)

^ ε(π)

we have

Ji = ('""(I - x- uy~ιN{n, 1-u, t)du
Jo

(4.2) = O ( ε ( w ) ) Γ ( l - x -



444 S. N. LAL AND S. RAM

if x > 1 - lint.
On the other hand if x < 1 — 1/nt, write

/i = ('""(I - x - uy-'Nin, 1 - u, t)du
Jo

_ χ __
(4-3) f l _

+ I (1 - x - uy-'Nin, 1 - u, t)du
Jl—x—llnt

say. Since 7 < 1 and (1 — x — u)r~ι is an increasing function of u,

<Λ AX {nty~ι

nψJ

by the application of the estimate Iι of Lemma 3.
And using the estimate (4.1) we have

(4.5) Jλ 2 = 0{ε{n))*\ (1 - x -
J i / ί nrt

A combination of the estimates in (4.4) and (4.5), in view of (4.3),
yields

(4.6) J, = θ(f)

when x < 1 — 1/wί. Hence, in view of the estimates in (4.2) and (4.6),
the first part of the lemma follows. The second part follows on similar
lines.

5* Proof of the theorem* In view of the definition and Lemma 1,
the absolute Hausdorίf summability of the series Σ ε(n)An(x) is equiva-
lent to the absolute convergence of the series Σ~=i bn, where

We first consider the case a = 0.
Since

Av(x) = — \πφ(t) cos vtdt
π Jo

π Jo v
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and the transformation (H, μ) is convergence preserving,

nπ

, x, t)dχ(x) ,

and therefore

π Jo

+

(n, x, t)dχ(x)

M[N(n,x,t)dχ(x)\].
n I Jo IJ

Since

it is clear that we have to show that uniformly in 0 < t ^ π,

(5.1) Σi = LΣ -

and

(5.2)

Clearly

= Σ —
/

, », t)dχ(x)

, a?, ΐ)| ^ ±(f)e(v)x»(l - xY

nts(ri)

nte(n)

and therefore

Σ i

the function χ(&) being of bounded variation in (0, 1). This completes
the proof of the estimate in (5.1). We now proceed to establish (5.2).

Putting
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we have
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χ(x) == g++r(x) + C

»=[i/ί]+ι

(5.3)

= Σ —\\19Ϊ(x)N(n,x,t)dx
«=[i/tj+i n I Jo

= Σ —\[g(x)Nr-(n,x,t)dx\

(by the application of Lemma 2)

Σ Nr~(n, x, t) I )dx ,

where N~(n, x, t) means the 7th backward fractional integral of
N{n, x, t) regarded as a function of x. By the application of Lemma 4
we get

Nf(n, x, t) = T77-Ί\ (u - xy~ιN{n, u, t)dι

(5.4)

and therefore

Σ

and this completes the proof of (5.2). The proof of the estimate in
(5.2) in the case when

χ(x) =

dt

follows on similar lines.
We now consider the case 0 < a < 1- We have

K = -\rφ{t)jτ{- Σ (ί)Φ) sin vt\x\l - xr-dχ(x)
nio dt\ π >-=i \ y / Jo

= -[φWiL& , n, t)dt
nU dt

(5.5) = -[^-L(χ; n, t)(
nUdt \Γ(1

X \\t - u)-"dΦa(u))
— α)Jo /

—=^ -\'dΦa(u)\\t ~ u)-"jτL(r> n, t)dt
nΓ(l — α)Jo J« dt

dt
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= —\ I(χ; n, u)dΦa{u)

= —Φa(π)I(χ; n, π) - l-φa(π)J{χ) n, π) + — ί J(χ; n, u)dφa(u) ,
n n njo

and therefore in order to prove the theorem we have to show that

(5.6) ±n
»=1

(5.7) Σ.n-1\J(χ;n,π)\<C

and

(5.8) Σ n-1 \J(χ; n,u)\= θ ( ε ( A
i \ \u

uniformly in 0 < u ^ π.

We show that all the above estimates are true^with

χ(x) = g++r(x) + C .

The method of proof for %{%) = gΓ+r(x) + C will be similar.

For sake of brevity we write g+ for gf+7. We have

I(g+; n, u) = X ί ] + " '
_

say. Now

n

- x)n~v cos

\t - u)-«dt[g+(x)M(n, x, t)dx
JπΓ(l — a) u

* \t - u)-adtΫg{x)M^{nJ x, t)dxz

JπΓ(l — a) J«

πΓ(l-
(t - u)-adt\ g(x)dx

3 Mr (nt x, t) is 7-th backward fractional integral of M(n, x, t) regarded as a func-
tion of x.
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x Γ \l - x - v)r-ιM{n, 1 - v, t)dv
Jo

ψλ[+n \-r(t - U)-°dt\\g{x)\dx
r / J w Jo

by the application of the estimate of J2 in Lemma 4 and using the
fact that g(x) is Lebesgue integrable in (0, 1).

Also

I2(g+; n, u) = — - i -[ (t - u)-«j-L{g+) n, t)dt

, (u + n~ι < ζ < π)
Γ(l- a)U+n

where

+; n, t) = "IJ^Σ^O'Ml - *)""" s i n

2 Γ1

= —\ gf(%)N(n, x, t)dx
π Jo

2 f1

= — g(x)Ni(n, x, t)dx
π Jo

—-—[1g(x)dx[~X(l - x - vy~ιN(n, 1 - v, t)dv
πΓ(j) Jo Jo

byAthe application of the estimate of Jι in Lemma 4 and the Lebesgue
integrability of g(x) in (0, 1). Hence

; n, u) = O

Thus we have shown that

(5.9) I(g+; n, n) =
nr

Using this estimate we have
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and this completes the proof of (5.6).
If in particular we suppose that φ(t) — 1 for all t, in which case

φa(t) = 1 for all t and bn = 0 for every n, we obtain from (5.5) and
the estimate in (5.9)

0 = θ( e(n^ λ - J(g+; n>
V 1+ )n1+γ-a ) n

and therefore

(5.10) J(g+; n, π) =

Hence

Σ n-ι\J(g+; n,π)\^C± -^L < C ,
Λ=I »=i n + r

and this establishes the estimate in (5.7). Now it remains to establish
(5.8). We note that

I(χ; n > u ) = Ϊ V M Γ + L > - u)~aίL{χ; n>t)dt

= 0(ne(n)) j \t -

7Γ 7^(1 — α ) "=i

x \ cos vί dί (w + n"1 < ζ < TΓ)
Ju+ίt""1

and therefore

(5.11) = 0(n"uaε(n)) +

= 0(nauaε(n)) .

Also

Γ(α + l)[J(χ; », π) - J(χ; n, it)] = [vα/(χ; », v]l - aivf-'Kχ; n, v)dv

and therefore
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J(g+; n, u) = J(g+; n, π) - 1 \val{g+; n, v)*u

Γ(a +

ί Φ ) + θ( £(n)

nr~a' \ nγ~aur~a

using the estimates in (5.9) and (5.10). Now by the application of
the estimate in (5.11) and (5.12) we have

Σ ra-VGΛ; n, u)\ = Σ
[ / ]

0(1)

uniformly in 0 < ^ ^ TΓ. This completes the proof of the estimate in
(5.8). Hence the theorem.

We are thankful to the referee for his kind advice.
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