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MEROMORPHIC FUNCTIONS WITH NEGATIVE ZEROS
AND POSITIVE POLES AND A THEOREM

OF TEICHMULLER

JACK WILLIAMSON

Let ^K denote the class of meromorphic functions of
finite order λ whose zeros lie on the negative real axis and
whose poles lie on the positive real axis. Let J7~\ denote
the class of functions belonging to ^K whose zeros and poles
are symmetrically located along the real axis.

In the study of certain aspects of the value distribution
properties of meromorphic functions of order λ < 1, the class
^f\, λ < 1, has recently been found to display certain striking
and useful extremal properties, while earlier results on the
subclass J^λ, λ < 1, have been important as a guide to the
possible values of their Nevanlinna deficiencies. In this note
the class ^ T , λ > 1, is studied and it is concluded that certain
extremal properties displayed by ^€χ for λ < 1 do not extend
to the case λ > 1.

Introduction* This note is concerned with Nevanlinna's theory

of meromorphic functions. We will assume familiarity with the

standard notation and terminology of that theory. The order λ and

the lower order μ of a meromorphic function / are defined by the

familiar relations

λ = λ(/) = lim sup Ml^fl; μ = μ{f) = K m i n f log T(r, f) #
r-oo logr *•-><» l o g r

In 1939, Teiehmϋller [12] proved

THEOREM A. Let f e ^?fλ for 0 ^ λ < 1 and assume that the

zeros {an} and the poles {bn} of f satisfy

(1) an=-bn ( n = l , 2 , . . - ) .

If

( 2 ) u = l-δφ, / ) , v = l - a ( o o , / )

then

(3) u = v^co

Although the hypothesis (1) of Teichmiiller's theorem is quite

restrictive, the theorem is important as a guide to possible relations
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between pairs of deficiencies of meromorphic functions of order less
than one. Indeed, A. A. GoΓdberg [7] later showed that (3) remains
valid for any meromorphic function of order less than one whose
zeros {an} and poles {bn} satisfy

(4) \an\ = \bn\ {n = l,2, • • • ) •

Then, in 1960, using an important lemma of GoΓdberg [7] on the
extremal growth properties of the functions in the class ^ C , λ < 1,
Edrei and Fuchs [4] characterized the possible values of the pair
(δ(0, / ) , ̂ (oo, /)) for meromorphic functions of order less than one.
If u and v have the same meaning as in (2) then their result1 is

THEOREM B. Let f be a meromorphic function of order λ, 0 <
λ < 1. Then, in addition to the trivial inequalities, 0 ^ u ^ 1 and
0 ^ v ^ 1, u and v satisfy

( 5 ) u2 + v2 — 2uv cos 7Γλ ^ sin2 7rλ .

Ifu< cos πX, then v = 1; and ifv< cos TΓλ, then u — 1. Further,
all values u and v compatible with these restrictions are actually
possible.

It is quite clear that Theorem B contains the results of Teichmϋ-
ller-GoΓdberg as a special case.

Although the extension of Theorem B to functions of order greater
than one having arbitrarily distributed zeros and poles seems an
exceedingly difficult problem, its extension to the class ^ C , 1 < λ <
°o, is suggested by recent results of Hellerstein and Shea [8] which
characterize the possible values of the pair (J(0, / ) , J(^, /)) [A(c, f)
denotes the Valiron deficiency of the value c for /] for functions /
in this class and by the "symmetry" of the results giving bounds for
Valiron deficiencies and the results giving bounds for Nevanlinna
deficiencies of functions in ΛZX (compare e.g., Theorems 1 and 2 [10]
and Theorems A and B [8]). In particular, Hellerstein and Shea [8]
obtained the following complement of Theorem A.

THEOREM C. Let f e ^/£Ί for some finite non-integral value of X
and let q be the integer determined by

(6) q < X < q + 1 .

//

(7) x= i-j(o,/) f r = 1-4(00,/)

Edrei [1] has sharpened Theorem B by replacing 1 with μ, throughout.
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and (1) holds, then

( 8 ) X = Y<J

cos (f)\
? + l

cos (f
q + 2 cos -

'π\
\ 2

(q even)

(g odd)

The main purpose of this note is to show that Theorem C does
indeed suggest the correct extension of Theorem A.

For convenience denote by j?"x the class of functions belonging
to ^€J whose zeros {an} and poles {bn} satisfy (1). Moreover, in each
of the following theorems we will assume that λ satisfies (6) for some
integer q Ξ> 1 and that k — 2[(q + l)/2]. We then prove

THEOREM 1. Let f e ^ Ί and assume that u and v are defined
by (2). Then for any p satisfying

P S λ

we have

( 9 ) U = V ^ J

cos

2 cos ^
{k-l^pS

C0S(^

k + 1

THEOREM 2. Let f e ^ Ί and assume that X and Y are defined
by (7). Then for any p satisfying

μ S p ^ λ

we have

(10) = Y< J
COS

7ψ\
2 /

k + 1
(k < p S k + 1)
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THEOREM 3. Let f e J7~λ and let N(r) denote the common value
of N(r, 0) and N(r, oo). Assume that

(ID

Then

(12)

lim = L .

L = J cos(f + k- 1

(13)

and

k + 1

T(r, /) = (! + o(l))r)f(r)

(k < λ < k + 1)

(14) %(r, 0) ΞΞ w(r, oo) = (λL + o(L))rV(r)

where ψ(r) is a slowly varying function; i.e.,

(r—oo)

(r-*- oo)

(15) = 1 for σ>l .

We remark that Theorem 2 sharpens Theorem C by taking into
account the lower order of / while Theorem 3 extends a tauberian
result of Edrei and Fuchs [5, Theorem 1] to the functions J7~λ, X >
1. This latter observation together with Theorem 4 of [8] suggest
that the tauberian result of Edrei and Fuchs may be valid for higher
orders.

1* Basic lemmas* The proofs of Theorems 1 — 3 depend on three
lemmas which we now introduce. The first involves the notion of
Polya peaks.

LEMMA 1. Let G(t) be a real, continuous, non-decreasing, un-
bounded function defined for t^tQ>0, of order X and finite lower
order μ2. Then to each finite p satisfying μ ^ p ^ λ corresponds an
increasing, unbounded, positive sequence {rn} called a sequence of Polya
peaks of the first (second) kind, order, p and a triple of positive
sequences {en}, {rf

n}, and {r"} such that

log G(t)
log £

JogGjt)
—

log t
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(1.1) l imr; = l i m ^ = oo; limεΛ = l i m ^ = 0
rn rn

and such that

G(t) rg (1 + εn)(±jG(rn) (K ^ t ^ <')j
(1.2) Tn

(G(t) ^ (1 - εn){±jG(rn) (K ^ t ^ <')

For a proof of this lemma the reader can consult [1], [2], [4],
and [11].

The next lemma is due to Shea [11, Lemma 3].

LEMMA 2. Let h(z) be an entire function having only negative
zeros which is a finite or infinite product of primary factors of genus
9. If

(1.8) Z,(t, r, β) = ί = ^ ( ^ ) g + r t l ^ t ' S i n i ' +

2

1 ) / 9 to £ 0, I/SI <7Γ V ί / ί2 + 2ίr cos /9 + r2

(1.4) Mβ \og\h(reiθ)\dθ = ΓiV(ί, 0)Kq(t, r, β)dt
π Jo Jo

and

(1.5) lim ΓiV(ί, 0)ίΓff(ί, r, /3) - iV(r, 0) .

Moreover, if

(1.6) k = 2[i±i]

then

Jo ί Λ , 1, /3) + ^ ( s , 1, π -
(1.7) ° ^

(k-l<ρ<k + l, 0<\β\<π).

We remark here that while (1.7) is not explicitly stated in [11],
it is an easy consequence of an elementary contour integration and
the fact that
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Kd 1 R) 4- K(* 1 π R) - 2 »~k S* s i n ( f e + 1 ) / 9 ~ s i n ^k ~~J±q\s, l , μ) -t- J^g\Sy L, π — p) — — s —
π s4 — 2s2 cos 2β + 1

(0 < \β\ < π) .

The following is our main Lemma.

LEMMA 3. Let

(1.8) h(z) = Π (l ~ —) exp Γ± M—)J

denote a convergent Weierstrass product of genus q ^ 1 having only
negative zeros an, let

(1.9)
(- z)

and let k — 2[(q + l)/2]. Then for each r > 0 ίfeere e«isί functions
at = αi(r) i = 0, , k and χ = χ(r) satisfying

(1.10)

( i )

(ϋ)

0 ^ <x0 ^

1) " ' " 2(A? + 1)

(iii) αy = 7Γ - αA.y i = 0, , Λ

(iv) χ(r) = 1 if a0 = 0 αm£ 0 otherwise

such that if a{r) = (α0, , αΛ), i/

(1.11) Hq(sf a{r)) - Σ ( - D W « , 1, «i) + i? (β, 1, re - aό)}
3 = 0

and if

(1-12)

then

N(t) = N(t, lλ = N(t, g)\
v 9}

(1.13) T(r, g) = M
r

where

(1.14) 0 <; V(τ, r, R) *

±, a(r))dt + 2χ(r)N(r) + η{τ, r, R)

^ ) T(2τ, g) + ( | ) T(2R, g)\
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holds whenever

(1.15) 0 < 2τ ^ r ^ ^-R
Δ

(B > 0 is an absolute constant).
Further, if α0*, •••,#* denote any fc + 1 constants satisfying

inequalities (1.10) (i)—(iii) ίλβtt

\5 / U, S :A: J-/(1.16)

(1.17)

* . (

Γ(r,fl

s, α

All

*)

i

~ 2π 1 + s84

.(V(ί)fl-/i-,
7» Jo

where χ* — 1 £/ α0* = 0 and 0 otherwise.
We omit the proof of this Lemma since it parallels so closely the

proofs of Lemma 3.3 and Main Lemma of [10].

2* The growth of functions in the class ^ J In this section
we make some observations concerning the relative growth of functions
in the class ^tx which are necessary for the proofs of Theorems 1
and 2.

If / 6 ^ ^ and /(0) = 1, then, as is well known, we can write

ΠE(±, q)
(2.1) f(z) = eQ{Z) - ^ — - = eQ{β)g(z)

ΠE(± ,)

where E(u, q) is the Weierstrass primary factor of genus q, where q
is the smallest nonnegative integer for which

(2.2) ΣC—-— +

and where Q{z) is a polynomial of degree d ^ λ. If d > q, f is
dominated by the exponential factor eQ{z) and it is easy to show that

(2.3) T(r, f) - T(r, eQ) ~ ard (0 < a = constant)

and that

(2.4) Km N<T> 0 ) = lim N<r> ^ = 0 .
V ^ — Γ(r,/) — Γ ( r , / )

Thus the asymptotic behavior of T(r, f) and of the ratios
N(r,0)/T(r,f), N(r, oo)/T(r, f) is completely determined when d > q.
Accordingly, there will be no loss of generality if, in the remainder of
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this section, we assume that d ^ q. (Of course if, as in the hypotheses
of Theorems 1 — 3, we assume that λ satisfies (6) then d ^ q is
immediate.)

We will now obtain lower bounds on T(r, / ) . To that end assume
that q ^ 1, set k = 2[(q + l)/2], Λ{t) = N(t, 0) + N(t, oo), and choose

(2.5) gf(r) =

Γ-JL iLl
L 2' 2J

if A: = = 1, 2,

Then

T(r, f) — m(r, f) + N(r, oo)

^ — ί log I f(reiβ) I dθ + N(r, *
(2.6) 2τrW)

= ^ - j ( ( log \g{τei9)\dθ + iV(r, oo) + _Lf Re Q{rei9)dθ .

To obtain a lower bound for the first integral on the right hand
side of inequality (2.6), we observe that / e ^ ^ implies that \g{reiβ)\
is an even function of θ and apply Lemma 2 to get

(2.7)

if k =

(2.8)

-Lί log\g(rei6)\dθ^

'— 1, 2, , while

M \og)g(rei°))dθ^ζ
2π JίΠr) 27Γ Jθ tk

~N(r,

+ jv(r, 0)

if fc = 4 ^ + 2 , ^ - 0,1, 2, . . . .
To estimate the second integral on the right hand side of in-

equality (2.6) write

(2.9) Q(Z) = azd + a Φ 0 .

Thus,

(2.10) Re Q{reiθ) - \a\rd cos (f + dβ) + o(rd) (r -> oo)

where ^ = arg α. Since

(2.11) — f cos (α/r + 2j0)d# = 0 for i = 1, 2, - -
2π J^(ί )

and since d<,q^k, it follows from (2.10) and (2.11) that

(2.12) ΛJ Re Q(reiθ)dθ = O^" 1) (r -> oo) .
2π JVίr)
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Thus (2.6)—(2 8) and (2.12) imply that

(2.13) ^ M 4 » + 0(l) (r—).
rk ι 2τrJo tk

In view of the fact that

(2-14)

The integral in (2.13) tends to °o with r, so that

(2.15) lim JtiΛ = co and μ(f) ^ k - 1 .

Moreover, in view of the obvious inequalities

(2.16) T(r, g) = T(r,fe~Q) rg T(r, f) + O(rd) ^ T(r, g) + O(rd)

(2.15) implies that

(2.17) Γ ( r , / ) ~ T(r,g) if d £ k - l .

Note that for q odd, k = q + 1, so that (2.17) is always true by
virtue of our assumption on d.

We conclude this section with a final observation concerning
functions in ^\. We will show that / G ^ , g(^ 2) even, and Q(z)
of degree q imply that μ(/) ^ q.

To that end, we start from the well-known representation

(2.18) log h(z) = (- 1)« ζn(t, ^ ) _ | ΐ _ - ^ ί (| arg ^ | < TΓ)

due to Valiron [13, p. 237], valid for any canonical product h(z) of
genus q, having only negative zeros. Thus, since / G ^ implies

(2.19) f(z) = eQ{z) h^ = eQ{z)g(z)
h(-z)

for some canonical product h(z) of genus q, having only negative
zeros, we have

(2.20) log I /(re") | = log | g(reiθ) \ + Re Q(reiθ)

where, in view of (2.18)

* 1

(2.21) log Ig(re")|| = 2 Γ
Jo

V ' h ) * c o β (g + l)g - eoβ (g -

s* — 2s2 cos 2^ + 1
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Note that there exists 6 = ε(q) > 0, independent of r, such that

\og\g{reiβ)\ > 0

| L - β > | L + e l u Γ | L β f | L +
2q 2q A L2q 2q

Since by assumption Q(z) = az9 + , a Φ 0, g (^ 2) even, we have

(2.23) Re Q(reiθ) = \ a \ rq cos (ψ + ?0) + o(r?) (r ~> oo)

where α/r = arg a. Since cos (^ + qθ) ̂  0 for θ = — 3τr/2g or for 0 =
3π/2g, there exists a measurable subset £? of Iq, independent of r,
such that

(2.24) cos (ψ + qθ) > 0 for θ e if .

It now follows from (2.21) - (2.24) that

(2.25) T(τ, f) ^ m(r, f) ^ ί log | /(re") | dθ ^ iΓr?(l + o(l)) (r — oo)

for some positive constant iΓ, depending only on g. This clearly
implies that μ(f) ^ q.

3* Proof of Theorems 1 and 2 Let ^ be any number
satisfying

(3.1) μ ^ /O ̂  λ .

Since we are assuming λ is non-integral, it is sufficient to prove (9)
and (10) for k - 1 < p < k + 1, p Φ k. The cases ρ = k, k-l,k + l
will then follow by continuity.

Proof of Theorem 1. Let σ be any number satisfying

lim sup J ^ r ) < a

where N(r) denotes the common value of N(r, f) and JV(r, 1//). Then
for ί0 ( = ίo((7)) sufficiently large we have

(3.2) N(r)<σT(r,f) r ^ t0 .

Denote by {rn} a sequence of Pόlya peaks of the first kind, order p,
for T(r, f) and let {εn}, {r'n} and {r") be the associated sequences.
Since

(3.3) lim r'n = l i m ^ = l i m ^ =
rn r'
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we can choose n0 so large that for n ^ n0

(3.4) rr: ^ 4τn and — rn ^ r'n έ t0 .

Fix n 2; n0 and set

(3.5) r = τM = τ'n, r = rn and R = Rn = -!-<' .

With this choice of r, r and i2, 2τw ^ rn £ (1/2)Λw.
Iffc — l<ι<9<fc and <? is odd, then & — 1 — q and (2.17) implies

that

(3.6) T(r,/) ~ Γ(r, 0) ( r — o o ) .

If Λ — ! < / ? < & and g is even, then (3.1) implies that μ(f) < k (=
g). Thus the concluding observation of §2 implies that dgQ(z) = d ^
9 - 1 = ft - 1; hence, by (2.17), (3.6) is valid.

If, on the other hand, k < p < k + 1 (i.e., g even, q — k), then
we can assume that

(3.7) r5 = o(Γ(rn,/)) {n-+ - )

(cf. the proof of Lemma 1). Consequently, (2.16) implies that (3.6) is
valid along the sequence {rn}.

Thus, if k — l<p<k+l, pΦk, the above remarks and Lemma
3 imply that

(1 + 0(1))T(rn, f) - λ\RnN(t)Hq(^, a(rn))dt + 2χ(rn)N(rn)

+ V(?n,rn,Rn) (n->oo).

Using (3.2), (1.16) and the nature of the sequence {rn} we find that

\ ( ± , a(rn))dt + 2χ(rn)N(rn)

^ ^ Γ ; T(t, f)
(3.9) J

^ Γ ; T(t, f)H,(±, a(rn))dt + 2χ(rn)σT(rn, f)

^ (1 + εn)σT(rn> f)\λ[*(±)PHt(^-, a(rn))dt + 2χ(rj}

^ (1 + εJσTίn, f){\~sΉq(s, a(rn))ds + 2χ(r.)} .

Using (1.7), (1.11) and (1.10) (iii), (iv) we find that
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s, a(rn))ds + 2χ(rn) =
i - "ι)P

(3.10)

COS
hsd«~ »"" cos ( I - - ! } .

Thus from (3.8) - (3.10) we deduce that

(1 + o{l))T{τn, f)

(3.11) cos ( |

η(τn, rn, Rn) (n

If A; - 1 < jθ < k, we use (1.14), (3.5), (3.6) and the nature of the
sequence {rn} to get

0 <: rj{τn, rn,

(3.12)

If A; < jθ < A; + 1, then we use (1.14), (3.7), and the obvious inequality

T(τ, g) ^ T(r, f) + 0{rk)

to get

0 ^ 1T(2Rn,

(3.13)

•=o(2Xr.,/))

Combining (3.11) and (3.12), (3.13) we obtain

0(1)) ̂  (1 + e.)σ- -^—rτ{2(~ Wβcos ( f ~ a°
| ( T ) |(3.14)

+ fc - l | + 0(1)

For k - 1 < p <k, (1.10) (i) implies that

) .



MEROMORPHIC FUNCTIONS WITH NEGATIVE ZEROS 807

(3.15) cos ( ! - cos

Thus for k - 1 < p < k (3.14) and (3.15) imply that

(3.16) 1 < σ J2 cos Ά) I + k - l l .

If A; < p < k + 1, it follows immediately from (3.14) that

(3.17) σ-
k+1

cos

The assertion from Theorem 1 now follows from (3.16) and (3.17)
and the definition of σ.

Proof of Theorem 2. First we observe that if k <p<k + l; that
is, if q is even and q < p < q + 1, then (10) is an immediate consequence

of (8) and (3.1) since | cos(7Γ̂ /2) \/(k + 1) is a decreasing function of p.
Thus the case k — 1 < p < k remains. First we remark that if

λ! and μx denote the order and lower order of N(r) then, since λ is
non-integral, μί ^ μ ^ λ = λlβ

Let {r%} be a sequence of Pόlya peaks of the second kind order p
for N(r) and let {εw}, « } and {r"} be the associated sequences. Set
α* = 0, a* = Go - fc + 2j)2p/2π j=l, ---,k/2 and use (1.16), (1.17) and
(3.6) to obtain

( +
(3.18) -j p r / . v

^_1 n

fN(t)Hq(*-, a*)dt

By the nature of the sequence {rn}, (1.1) and the choice of

(3.19) -- (1 - εn)N(rn){\r"ίrnsrHq(s, a*)ds + 2}

- (1 -
2 cos

COS

{%•



J. WILLIAMSON

(3.20)

Combining (3.18) and (3.19) we obtain

(1 + o(l))T(rn, f)

^ (1 - e,)N(rn)
cos ;τ) + k-1

cos(f)
0(1) (n-

In view of (1.1), the case for k — 1 < p < k now follows from
(3.20) by dividing by T(rn, f) and letting %-^oo#

4* Proof of Theorem 3* First, we observe that hypothesis (11)
together with (9) and (10) implies that μ = λ and that L is given
by (12). The fact that μ — λ and that λ satisfies (6) implies that

(4.1) r« = o(T(r,g)) (r-+<*>)

and hence, in view of inequalities (2.16), that

(4.2) Γ(r, /) ~ T(rf g) .

Conclusion (13) now follows from (4.1) and Lemma 3 in virtually
the identical way in which the proof of Theorem 1 of [9] follows
from Lemma 1 of [9] and (1.16) of [9]. Once (13) is established it
follows easily from (11) that

(4.3) N(r, 0) Ξ= N(r, <*>) = (L + o(l))rλψ(r) (r

where ψ(r) satisfies (15). A straightforward tauberian argument [see
e.g. 5, §6] then yields (14).

5* Concluding remarks*
1. Let q (*> 1) be a given positive integer, k = 2[(q + l)/2], μ

and λ any numbers satisfying

k - 1 ^ μ q + 1

and

(5.1) σ(ρ) =

cos

- '•¥) k-1

cos(^)

(k - 1 ^ p ^ k)

(k < p ^ k + 1) .

Then, proceeding along the lines of §6 of [10], it is not difficult
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to construct functions g(z) belonging to ^ , having lower order μ,
such that

(5.2) X = Y = min σ{ρ) < max σ(ρ) — u = v .

The functions will be of the form

(5.3) g(z) = J&L
h(- z)

where h{z) is a canonical product of genus q having only negative
zeros. In view of (6.2) such functions clearly show that Theorems 1
and 2 are best possible and also show that the bound on the lower
order of functions in ^ λ given by (2.15) is sharp.

2. In the introduction we alluded to the difficulty of extending
Theorem B, the "ellipse" problem for meromorphic functions, to
functions of order greater than one. While the functions in the class
^ C , λ < 1, are the "extremal" functions for the solution to the
"ellipse" problem for meromorphic functions of order λ < 1 (as indicated
in the proof of Theorem B and by the examples showing the best
possible nature of inequality (5)), this does not appear to be the case
if λ > 1. Indeed, whatever the solution to the "ellipse" problem for
functions of order λ, lower order μ ^ 1, estimates obtained by Edrei
[1, Theorem 4a] (see also [3], Theorem 1) show that for such functions

(5.4) u + v ^ max | s i n 7 Γ p l (0 < A < 12)
μ*p*λ Ap+λ. sin πp

hence, the "extremal" functions, of say regular growth (i.e., λ = μ),
would have to satisfy

(5.5) w + v-^0as λ->g = a positive integer .

However, as indicated by Theorem 1, the functions in ^\ having
regular growth satisfy

(5.6) liminf (u + v) ^ 2/(q + 1) as λ—>q = a positive, even integer .

Thus, the behavior of functions in ^\ for λ near positive, even
integers indicates that the class ^ λ is probably not the class of
"extremal" functions for the solution to the "ellipse" problem for
meromorphic functions of order λ > 1.
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