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UNICOHERENT COMPACTIFICATIONS

M. H. Craprp AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions
for the Freudenthal compactification of a rimcempact, locally
connected and connected Hausdorff space to be unicoherent. We
give several necessary and sufficient conditions for a lecally
connected generalized continuum to have a unicoherent com-
pactification and show that if such a space X has a unicoherent
compactification, then yX is the smallest unicoherent com-
pactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, H- K
is connected whenever X = H + K where H and K are closed connected
sets. A continuum is a compact connected metric space and a gen-
eralized continuum is a locally compact, connected, separable metric
space. By a mapping we will always mean a continuous function.
If B is a subset of a space X, the closure of B in X will be denoted
by cly B and the boundary of B in X will be denoted by Fry B. An
open set (respectively, a closed set) of a space X will be called a
v-open (respectively, v-closed) subset of X provided it has a compact
boundary in X. A space is rimcompact (or semicompact) provided
every point has arbitrarily small neighborhoods with compact bound-
aries. All compactifications considered here are Hausdorff.

In [7] K. Morita showed that for any rimcompact Hausdorff
space X there exists a topologically unique compactification vX of X
satisfying:

(a) For every point = of vX and every open set R of vX con-
taining x there exists an open set V of vX containing # such that
VcR and Fr,,Vc X.

(b) Any two disjoint v-closed subsets of X have disjoint closures
in vX.

Furthermore if C is any compactification of X satisfying (a), there
exists a mapping & of vX onto C such that &|X is the identity map.
The compactification vX of X is called the Freudenthal compactification
of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is v-unicoherent
if whenever X = H + K, where H and K are v-closed and connected
sets, H-K is connected.

THEOREM 1. If X is a locally connected, conmnected, rimcompact
Hausdorff space, then X, the Freudenthal compactification of X, is
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unicoherent iff X is v-umicoherent.

Proof. Suppose that X is v-unicoherent and vX is not unicoherent.
Then vX = H + K where H and K are closed and connected sets and
H-.K is not connected. Let H-K = A + B be a separation of H-K
and let U and V be open subsets of vX containing A and B respec-
tively such that cl,,U-cl.,V = @ and (Fr,,V + Fr,,U)c X. By
Propositions (2.8) and (4.1) of [1], vX is locally connected so if C
denotes the component of U + V + H that contains H and D denotes
the component of U + V + K that contains K, C and D are open
connected subsets of vX such that (F»,xC + Fr,yD)cX. By Lemma
5 of [6],C-X and D-X are connected so that L = ¢l (C-X) and M =
cly(D.X) are v-closed and connected subsets of X. Furthermore X=
L + M and L-M is not connected. This contradicts our hypothesis
that X is v-unicoherent and thus vX must be unicoherent.

Now suppose that vX is unicoherent and X is not v-unicoherent.
Then X = H + K where H and K are 7v-closed and connected subsets
of X and H-K is not connected. Let H-K = A + B be a separation
of H-K and let H’, K’, A’ and B’ denote the closures of H, K, A and
B, respectively, in vX. Since the boundary of H-K in X is a subset
of the union of the boundaries of H and K in X, H-K and hence A
and B are v-closed subsets of X. Then by property (b) of Morita’s
characterization of vX, A’ and B’ are disjoint closed subsets of vX.
We now argue that H’-K’ is a subset of A’ + B’. Suppose to the
contrary that there exists a point x in H’. K’ that does not belong to
A’ + B'. Let U be any open subsets of vX containing % such that
U does not intersect A’ + B’ and such that Fr,, c X. Let @ be the
component of U that contains # and note that Fr,,Q is a subset of X
and @ is an open subset of vX. Then since X is dense in vX and z is
a limit point of H’ and K’, @-H and Q- K are nonempty sets. But by
Lemma 5 of [6], @-X is connected and since @ misses H-K, Q-X
must lie entirely in H or K. Of course this implies that either Q- H
or Q-K is empty and this is a contradiction. Thus H'-K' = A’ + B’
and this contradicts the unicoherence of vX. Therefore X is ~v-
unicoherent.

We need the following notation and definitions. Let S*' denote
the unit circle in the complex plane, let I, = {# = ¢"”: 0 < 0 < IT} and
let I, ={z=¢":11 <6 <2II}. For any space W let .27 (W) denote
the set of mappings of W into S' and let .4 (W) be the set of all
mappings of Winto I;,7 = 1,2. Foreach fe . o5(W),7 =1, 2, let B;(f)
denote the set of all points ¢ € I; such that Fr f(¢) contains a compact
set K that separates W into two disjoint open sets M and N where
f maps M into the arc from 1 to ¢ on I; and f maps N into the arc
from ¢ to — 1 on I;. Finally let E(W) = {f e o7 (W): B(f| /(1)) +
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By(f | f(I,)) is dense in S'}.

THEOREM 2. Suppose that X is a locally connected, rimcompact
Hausdorff space. A mecessary and sufficient condition that vX be
unicoherent is that every element of E(X) be nullhomotopic.

Proof of the necessity. Suppose that ¥vX is unicoherent and let f
be an element of E(X). For j = 1,2, there exists a point ¢; € I; such
that Fry f7'(t;) contains a compact set K; that separates f'(I;) into
two disjoint open sets M; and N; where f maps M, into the arc from
1 to ¢; on I; and f maps N; into the arc from ¢; to — 1 on I;. Then
if we let M denote K, + K, + M, + M, and let N denote K, + K,
N, + N,, X = M + N and the boundaries (relative to X) of M and N are
subsets of K = K, + K,. We assert that the boundaries of M, = ¢l M
and N, = cl,;N relative to vX are also subsets of K. In order to
see this suppose that = is an element of the boundary of M, and x ¢
K. Then since vX is locally connected, there exists an open connected
set R of vX containing « such that R-K = @ and Fr,,Rc X. Then
R-M =+ @ and R-(X\M) # @ since X is dense in vX. Furthermore
R.-X is connected by Lemma 5 of [6] and so R-X is a connected
subset of X that meets M and X\M. This implies that R meets K
and this contradicts our selection of x. Hence the boundaries of M,
and N, in vX are subsets of K. Also by Theorem 3 of [7], M,
and N, are topologically equivalent to vM and YN respectively.
Then by Lemma 1 of [3], f|M has a continuous extension f, to M,
and f|N has a continuous extension fy to N,. Then since N,-M,C
K, the function % of vX into S' defined by 2|M, = f, and h|N, =
fx is continuous. By Lemma (7.4) of [9, p. 228], h is exponentially
representable on vX, i.e. there exists a real valued function 6 on vX
such that A(x) = ¢ for all xe X. It is evident that this implies
that f = h|X is exponentially representable an X and by Theorem
(6.2) of [9, p. 226], f is nullhomotopic.

Proof of the sufficiency. Suppose that every element of E(X) is
nullhomotopic and suppose that vX is not unicoherent. Then by the
proof of Theorem 1 there exists closed and connected sets H and K
of vX such that H-K is not connected, Fr H and Fr K are subsets
of Xand L = H-X and M = K-X are connected. Let H-K = A +
B be a separation of H- K. We note that L and M are v-closed subsets
of and thus by Theorem 3 of [7], ¥L is homeomorphic to H and vM
is homeomorphic to K. It then follows from Lemma 2 of [3] that
there exists a mapping f of H into I, such that f(4) =1, f(B) = —1
and B/(f|H-X) is dense in I,. Similarly there exists a mapping ¢
of K into I, such that g(4) =1,9(B) = — 1 and B)g|K-X) is dense
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in I,. Then if we define h: v X—S' by h|H=f and h|K =g we
have that & is continuous and % = 4| X is an element of E(X). Then
by our hypothesis and Proposition 6.2 of [9, p. 226], k is exponentially
representable, i.e. there exists a real-valued mapping ¢ on X such
that for each z ¢ X, k(x) = ¢®. But then 6(A4) {0, =217, +41I, ...}
and (Byc{+1I, +31I, -.-} and so if a € 8(A) and be #(B), the interval
[a, b] lies in 6(A)-0(B) since L and M are connected. This is a con-
tradiction since then k(L)-k(M) would then contain a semicircle
whereas it consists of the points —1 and 1. Hence vX is unicoherent.

DEFINITION. A connected space X is said to be weakly unicoherent
if whenever X = H + K where H and K are closed and connected sets
and K is compact, H-K is connected.

THEOREM 3. Let X be a locally connected generalized continuum.
A necessary and sufficient condition for vX to be unicoherent is that
X be weakly-unicoherent.

Proof of the necessity. Suppose that vX is unicoherent. Since X
is locally compact, X is open in vX and X* = vX\X is closed. Then
by Theorem (2.3) of [2], X = vX\X* is weakly-unicoherent.

Proof of the sufficiency. Suppose that vX is not unicoherent.
Then as in the proof of Theorem 1,+vX has a representation vX =
P + Q where P and @ are open connected subsets of vX, the bound-
aries of P and @ in vX are subsets of X, cl,,P-cl,,Q = A + B where
A and B are disjoint nonempty closed sets and P has a nonempty
intersection with both the boundary of A and the boundary of B.
By Lemma 5 of [6], P’ = P-X is a connected open subset of X and
thus is arcwise connected. Furthermore since the boundaries of A
and B are subsets of X there exists an arc ag in P’ such that ag-A =
a and aB-B = B. Let R be the component of P\(A + B) that contains
aB\(a + B) and let W be an open subset of X containing A such that
B-clW = ¢ and the boundary of W is a subset of X. Then H =
R-Fr,, W is a nonempty compact subset of R and there exists a con-
tinuum K, of X such that Hc K,c R. Let K be the union of K,
together with all the components of R\K, with boundary entirely in
K, i.e. having no boundary points in X-(4 + B). Then K separates
R since W-R contains a subare ab\a from some point beaB and
X\cl,W contains a subarc ag of a@B. But X\K is connected since
X\K is the union of the closure of @ in X plus all of the components
of X\(A-B) except R plus all of the components of R — K, having a
boundary point in X.(A + B). This contradicts Whyburn’s charac-
terization of weak-unicoherence in [8, p. 185].
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COROLLARY 3.1. Let X be a locally connected generalized con-
tinuum. Then X 1s weakly-unicoherent iff X is v-unicoherent.

This corollary follows immediately from Theorems 1 and 3.

REMARK. The authors have been unable to discover a direct
proof of Corollary (3.1). In general the two types of unicoherency
are not equivalent and in the absence of local compactness, Theorem
3 is not wvalid.

ExamMpLE. Let Y = {z complex |1/2 < [z] < 1},

S = {z]|z] =1}, A a countable dense subset of S,
L, = Y.{ray from origin thru z}

C, = {z] lz] = v}, re[1/2,1];

Z = {C,-L,|r is rational, a € 4} .

The set Z is countable and densein Y. Let X =Y — Z. The set X is
evidently T,, connected and locally connected (in fact, path connected
and locally path connected), rim compact but not locally compact.
Moreover:

1. X is weakly-unichoherent. To see this, note that any con-
tinuum K < X has empty interior in X. If therefore X = H+ K, H
closed and connected and K compact and connected, then necessarily
the open set X — H is a subset of K, and thus empty. It follows
that H-K = K, which is connected.

2. X is not v-unicoherent. For let p,geS — A be two distinct
points. Then L,and L, are compact and disjoint subsets of X. Assume
0 < ARGp < ARGq. Then

H={ze X|ARGp £ ARGz < ARG} and
K ={2e¢ X|ARGq < ARG, < ARGp + 2r}

are closed, connected subsets of X such that X = H+ K, H- K= L, +
L, is compact but not connected.

3. vX is not unicoherent. To show this it is sufficient to show
that vX is just the set Y. To this end we use the characterization
of vX obtained by Morita [6]. We show that

(a) For any point v € vX and open set R of vX containing x, there
is an open set V of rX containing x such that Vc R and Fr,,VcX.

(b) Any two disjoint v-closed subsets of X have disjoint closures
in vX.
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That (a) holds is evident from the definition of X. To see that
(b) holds, let A and B be disjoint v-closed subsets of X and suppose
that pecl,y A-cl,; B. First of all we note that » cannot belong
to X for then it would lie in A.B which is empty. In particular p
does not lie in the compact set (FryA + Fr,B). By our construction
of X there exists an open subset V of Y containing p such that
V.FryA + FryB) = @ and V.X is connected. Since p belongs to the
closure of A in Y, V.X.A is not empty and since V.X misses Fry A4,
V.X must lie entirely in A. But this is a contradiction since V.X
must meet B. Therefore A and B have disjoint closures in Y.

DEFINITION. A mapping f: Xe Y is monotone provided for every
ye Y, f(y) is compact and connected.

THEOREM 4. If X is a locally commected generalized comtinuum
and Y 1s any unicoherent compactification of X, then there ewxists a
monotone mapping g of Y onto vX such that g|X s the identity.

Proof. Let Z denote the quotient space of Y obtained from the
decomposition whose only nondegenerate elements are the components
of Y\X and let p denote the natural map of Y onto Z. Then since
X is open in Y, Z is a Hausdorff compactification of X. Furthermore
since point inverses of p are connected, it follows from Proposition
(2.2.1) of [9], that Z is unicoherent. Also Z\X is totally disconnected
and by the maximality of vX there exists a mapping % of vX onto
Z such that h|X is the identity and A(vX\X) = Z\X. We assert that
h is a homeomorphism. In order to prove this we need only show
that % is one-to-one on vX\X. To this end let ¢, yevX, 2 + vy and
suppose that h(x) = h(y). There exists a connected and open set R
of vX containing « such that y¢cl, R = Kand Fr, Rc X. Then Z =
MK) + h(vX\R) and h(K)-h(vX\R) = h{z) + h(Fr R) is not connected.
This contradicts the unicoherence of Z and hence % must be a homeo-
morphism. Then g = h™'op is the desired monotone mapping.

COROLLARY 4.1. Suppose that X is a locally connected generalized
continuum. Then X has a unicoherent compactification if and only
if vX 1s unicoherent.

Proof. This result follows immediately from Theorem 4 and the
fact that monotone images of compact unicoherent continua are uni-
coherent.

THEOREM 5. Suppose that X is a locally commected generalized
continuum. Then the following are equivalent
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(i) X 1is weakly-unicoherent

(ii) X s unicoherent

(iii) X 14s v-umicoherent

(iv) X has a wunicoherent compactification

(v) every mapping of X into S' with compact boundaries of
point tnverses is null-homotopic.

Proof. The equivalence of (i)—(iv) has been established in Theorems
(1) — (4). As an immediate consequence of Theorem (3.3) of [2], we
have that (v) implies (i) and (ii) implies (v) follows from Theorem 1
of this paper.

DEFINITION. A connected space X is said to have the complementa-
tton property provided whenever K is a compact set in X, X/K has
at most one component with a non-compact closure. See [2] for some
characterizations of this property.

THEOREM 6. Let X be a locally connected generalized continuum
and let Y be any wunicoherent, locally connected continuum. There
exists a unicoherent compactification Z of X with Z\X homeomorphic
to Y if and only if X is weakly-unicoherent and has the complemen-
tation property.

Proof of the mecessity. Suppose that Z is a unicoherent compac-
tification of X and Z\X is homeomorphic to Y. Then by Theorem
(4.2) of [2], X is weakly-unicoherent and has the complementation
property.

Proof of the sufficiency. Suppose that X is weaklyunicoherent
and has the complementation property. Then by Theorem (2.2) of
[5] there exists a compactification Z of X with Z\X homeomorphic
to Y and by Theorem (4.2) of [2], Z is unicoherent. This completes
the proof.

REMARK. It appears to be difficult to establish results concerning
the unicoherence of a compactification of an arbitrary completely regular
space. We can show that the Freudenthal compactification of a
rim-compact, locally connected <v-unicoherent space is the smallest
unicoherent compactification of X with vX\X zero-dimensional.
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