UNICOHERENT COMPACTIFICATIONS

M. H. CLAPP AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions for the Freudenthal compactification of a rimcompact, locally connected and connected Hausdorff space to be unicoherent. We give several necessary and sufficient conditions for a locally connected generalized continuum to have a unicoherent compactification and show that if such a space X has a unicoherent compactification, then γX is the smallest unicoherent compactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, $H \cdot K$ is connected whenever X = H + K where H and K are closed connected sets. A continuum is a compact connected metric space and a generalized continuum is a locally compact, connected, separable metric space. By a mapping we will always mean a continuous function. If B is a subset of a space X, the closure of B in X will be denoted by $\operatorname{cl}_X B$ and the boundary of B in X will be denoted by $\operatorname{Fr}_X B$. An open set (respectively, a closed set) of a space X will be called a γ -open (respectively, γ -closed) subset of X provided it has a compact boundary in X. A space is rimcompact (or semicompact) provided every point has arbitrarily small neighborhoods with compact boundaries. All compactifications considered here are Hausdorff.

- In [7] K. Morita showed that for any rimcompact Hausdorff space X there exists a topologically unique compactification γX of X satisfying:
- (a) For every point x of γX and every open set R of γX containing x there exists an open set V of γX containing x such that $V \subset R$ and $\operatorname{Fr}_{\tau_X} V \subset X$.
- (b) Any two disjoint γ -closed subsets of X have disjoint closures in γX .

Furthermore if C is any compactification of X satisfying (a), there exists a mapping h of γX onto C such that $h \mid X$ is the identity map. The compactification γX of X is called the Freudenthal compactification of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is γ -unicoherent if whenever X = H + K, where H and K are γ -closed and connected sets, $H \cdot K$ is connected.

THEOREM 1. If X is a locally connected, connected, rimcompact Hausdorff space, then γX , the Freudenthal compactification of X, is

unicoherent iff X is γ -unicoherent.

Proof. Suppose that X is γ -unicoherent and γX is not unicoherent. Then $\gamma X = H + K$ where H and K are closed and connected sets and $H \cdot K$ is not connected. Let $H \cdot K = A + B$ be a separation of $H \cdot K$ and let U and V be open subsets of γX containing A and B respectively such that $\operatorname{cl}_{\gamma X} U \cdot \operatorname{cl}_{\gamma X} V = \Phi$ and $(\operatorname{Fr}_{\gamma X} V + \operatorname{Fr}_{\gamma X} U) \subset X$. By Propositions (2.8) and (4.1) of [1], γX is locally connected so if C denotes the component of U + V + H that contains H and D denotes the component of U + V + K that contains K, C and D are open connected subsets of γX such that $(\operatorname{Fr}_{\gamma X} C + \operatorname{Fr}_{\gamma X} D) \subset X$. By Lemma 5 of [6], $C \cdot X$ and $D \cdot X$ are connected so that $L = \operatorname{cl}_X (C \cdot X)$ and $M = \operatorname{cl}_X (D \cdot X)$ are γ -closed and connected subsets of X. Furthermore X = L + M and $L \cdot M$ is not connected. This contradicts our hypothesis that X is γ -unicoherent and thus γX must be unicoherent.

Now suppose that γX is unicoherent and X is not γ -unicoherent. Then X = H + K where H and K are γ -closed and connected subsets of X and $H \cdot K$ is not connected. Let $H \cdot K = A + B$ be a separation of $H \cdot K$ and let H', K', A' and B' denote the closures of H, K, A and B, respectively, in γX . Since the boundary of $H \cdot K$ in X is a subset of the union of the boundaries of H and K in $X, H \cdot K$ and hence A and B are γ -closed subsets of X. Then by property (b) of Morita's characterization of γX , A' and B' are disjoint closed subsets of γX . We now argue that $H' \cdot K'$ is a subset of A' + B'. Suppose to the contrary that there exists a point x in $H' \cdot K'$ that does not belong to A' + B'. Let U be any open subsets of γX containing x such that U does not intersect A' + B' and such that $\operatorname{Fr}_{rx} \subset X$. Let Q be the component of U that contains x and note that $\operatorname{Fr}_{rx}Q$ is a subset of X and Q is an open subset of γX . Then since X is dense in γX and x is a limit point of H' and K', $Q \cdot H$ and $Q \cdot K$ are nonempty sets. But by Lemma 5 of [6], $Q \cdot X$ is connected and since Q misses $H \cdot K$, $Q \cdot X$ must lie entirely in H or K. Of course this implies that either $Q \cdot H$ or $Q \cdot K$ is empty and this is a contradiction. Thus $H' \cdot K' = A' + B'$ and this contradicts the unicoherence of γX . Therefore X is γ unicoherent.

We need the following notation and definitions. Let S^1 denote the unit circle in the complex plane, let $I_1 = \{z = e^{i\theta} \colon 0 \le \theta \le II\}$ and let $I_2 = \{z = e^{i\theta} \colon II \le \theta \le 2II\}$. For any space W let $\mathscr{L}(W)$ denote the set of mappings of W into S^1 and let $\mathscr{L}_j(W)$ be the set of all mappings of W into I_j , j = 1, 2. For each $f \in \mathscr{L}_j(W)$, j = 1, 2, let $B_j(f)$ denote the set of all points $t \in I_j$ such that $\operatorname{Fr} f^{-1}(t)$ contains a compact set K that separates W into two disjoint open sets M and N where f maps M into the arc from 1 to f on f and f maps f into the arc from f to f on f so f into the f such that f into f i

 $B_2(f|f^{-1}(I_2))$ is dense in S^1 .

THEOREM 2. Suppose that X is a locally connected, rimcompact Hausdorff space. A necessary and sufficient condition that γX be unicoherent is that every element of E(X) be nullhomotopic.

Proof of the necessity. Suppose that γX is unicoherent and let f be an element of E(X). For j = 1, 2, there exists a point $t_j \in I_j$ such that $\operatorname{Fr}_X f^{-1}(t_i)$ contains a compact set K_i that separates $f^{-1}(I_i)$ into two disjoint open sets M_j and N_j where f maps M_j into the arc from 1 to t_i on I_j and f maps N_j into the arc from t_j to -1 on I_j . Then if we let M denote $K_1 + K_2 + M_1 + M_2$ and let N denote $K_1 + K_2$ $N_1 + N_2$, X = M + N and the boundaries (relative to X) of M and N are subsets of $K = K_1 + K_2$. We assert that the boundaries of $M_0 = \operatorname{cl}_{7X} M$ and $N_0 = \operatorname{cl}_{\gamma X} N$ relative to γX are also subsets of K. In order to see this suppose that x is an element of the boundary of M_0 and $x \notin$ Then since γX is locally connected, there exists an open connected set R of γX containing x such that $R \cdot K = \emptyset$ and $\operatorname{Fr}_{\gamma X} R \subset X$. Then $R \cdot M \neq \Phi$ and $R \cdot (X \setminus M) \neq \Phi$ since X is dense in γX . Furthermore $R \cdot X$ is connected by Lemma 5 of [6] and so $R \cdot X$ is a connected subset of X that meets M and $X\backslash M$. This implies that R meets K and this contradicts our selection of x. Hence the boundaries of M_0 and N_0 in γX are subsets of K. Also by Theorem 3 of [7], M_0 and N_0 are topologically equivalent to γM and γN respectively. Then by Lemma 1 of [3], $f \mid M$ has a continuous extension f_M to M_0 and f|N has a continuous extension f_N to N_0 . Then since $N_0 \cdot M_0 \subset$ K, the function h of γX into S^1 defined by $h \mid M_0 = f_M$ and $h \mid N_0 = f_M$ f_N is continuous. By Lemma (7.4) of [9, p. 228], h is exponentially representable on γX , i.e. there exists a real valued function θ on γX such that $h(x) = e^{i\theta(x)}$ for all $x \in X$. It is evident that this implies that f = h | X is exponentially representable an X and by Theorem (6.2) of [9, p. 226], f is nullhomotopic.

Proof of the sufficiency. Suppose that every element of E(X) is nullhomotopic and suppose that γX is not unicoherent. Then by the proof of Theorem 1 there exists closed and connected sets H and K of γX such that $H \cdot K$ is not connected, Fr H and Fr K are subsets of X and $L = H \cdot X$ and $M = K \cdot X$ are connected. Let $H \cdot K = A + B$ be a separation of $H \cdot K$. We note that L and M are γ -closed subsets of and thus by Theorem 3 of [7], γL is homeomorphic to H and M is homeomorphic to M. It then follows from Lemma 2 of [3] that there exists a mapping M of M into M is dense in M in M is dense in M in M

in I_2 . Then if we define $h: \gamma X \to S^1$ by $h \mid H = f$ and $h \mid K = g$ we have that h is continuous and $k = h \mid X$ is an element of E(X). Then by our hypothesis and Proposition 6.2 of [9, p. 226], k is exponentially representable, i.e. there exists a real-valued mapping θ on X such that for each $x \in X$, $k(x) = e^{i\theta(x)}$. But then $\theta(A) \subset \{0, \pm 2\Pi, \pm 4\Pi, \cdots\}$ and $\theta(B) \subset \{\pm \Pi, \pm 3\Pi, \cdots\}$ and so if $\alpha \in \theta(A)$ and $b \in \theta(B)$, the interval [a, b] lies in $\theta(A) \cdot \theta(B)$ since L and M are connected. This is a contradiction since then $k(L) \cdot k(M)$ would then contain a semicircle whereas it consists of the points -1 and 1. Hence γX is unicoherent.

DEFINITION. A connected space X is said to be weakly unicoherent if whenever X = H + K where H and K are closed and connected sets and K is compact, $H \cdot K$ is connected.

Theorem 3. Let X be a locally connected generalized continuum. A necessary and sufficient condition for γX to be unicoherent is that X be weakly-unicoherent.

Proof of the necessity. Suppose that γX is unicoherent. Since X is locally compact, X is open in γX and $X^* = \gamma X \backslash X$ is closed. Then by Theorem (2.3) of [2], $X = \gamma X \backslash X^*$ is weakly-unicoherent.

Proof of the sufficiency. Suppose that γX is not unicoherent. Then as in the proof of Theorem 1, γX has a representation $\gamma X =$ P+Q where P and Q are open connected subsets of γX , the boundaries of P and Q in γX are subsets of X, $\operatorname{cl}_{\tau x} P \cdot \operatorname{cl}_{\tau x} Q = A + B$ where A and B are disjoint nonempty closed sets and P has a nonempty intersection with both the boundary of A and the boundary of B. By Lemma 5 of [6], $P' = P \cdot X$ is a connected open subset of X and thus is arcwise connected. Furthermore since the boundaries of Aand B are subsets of X there exists an arc $\alpha\beta$ in P' such that $\alpha\beta\cdot A =$ α and $\alpha\beta\cdot B=\beta$. Let R be the component of $P'\setminus (A+B)$ that contains $\alpha\beta(\alpha+\beta)$ and let W be an open subset of γX containing A such that $B \cdot \operatorname{cl} W = \phi$ and the boundary of W is a subset of X. $R \cdot \operatorname{Fr}_{\tau_x} W$ is a nonempty compact subset of R and there exists a continuum K_0 of X such that $H \subset K_0 \subset R$. Let K be the union of K_0 together with all the components of $R \setminus K_0$ with boundary entirely in K_0 , i.e. having no boundary points in $X \cdot (A + B)$. Then K separates R since $W \cdot R$ contains a subarc $\alpha b \setminus \alpha$ from some point $b \in \alpha \beta$ and $X \backslash \operatorname{cl}_x W$ contains a subarc $\alpha \beta$ of $\alpha \beta$. But $X \backslash K$ is connected since $X \setminus K$ is the union of the closure of Q in X plus all of the components of $X \setminus (A \cdot B)$ except R plus all of the components of $R - K_0$ having a boundary point in $X \cdot (A + B)$. This contradicts Whyburn's characterization of weak-unicoherence in [8, p. 185].

Corollary 3.1. Let X be a locally connected generalized continuum. Then X is weakly-unicoherent iff X is γ -unicoherent.

This corollary follows immediately from Theorems 1 and 3.

REMARK. The authors have been unable to discover a direct proof of Corollary (3.1). In general the two types of unicoherency are not equivalent and in the absence of local compactness, Theorem 3 is not valid.

Example. Let $Y=\{z \text{ complex } |1/2 \leq |z| \leq 1\}$, $S=\{z|\ |z|=1\},\ A \text{ a countable dense subset of }S\text{ ,}$ $L_z=Y\cdot\{\text{ray from origin thru }z\}$ $C_r=\{z|\ |z|=r\},\ r\in[1/2,1];$ $Z=\{C_r\cdot L_a|r\text{ is rational, }a\in A\}\text{ .}$

The set Z is countable and dense in Y. Let X = Y - Z. The set X is evidently T_2 , connected and locally connected (in fact, path connected and locally path connected), rim compact but not locally compact. Moreover:

- 1. X is weakly-unichoherent. To see this, note that any continuum $K \subset X$ has empty interior in X. If therefore X = H + K, H closed and connected and K compact and connected, then necessarily the open set X H is a subset of K, and thus empty. It follows that $H \cdot K = K$, which is connected.
- 2. X is not γ -unicoherent. For let $p, q \in S A$ be two distinct points. Then L_p and L_q are compact and disjoint subsets of X. Assume $0 \le ARGp < ARGq$. Then

$$H = \{z \in X \mid ARGp \le ARGz \le ARG_q\}$$
 and $K = \{z \in X \mid ARGq \le ARG_z \le ARGp + 2\pi\}$

are closed, connected subsets of X such that X = H + K, $H \cdot K = L_p + L_q$ is compact but not connected.

- 3. γX is not unicoherent. To show this it is sufficient to show that γX is just the set Y. To this end we use the characterization of γX obtained by Morita [6]. We show that
- (a) For any point $x \in \gamma X$ and open set R of γX containing x, there is an open set V of rX containing x such that $V \subset R$ and $\operatorname{Fr}_{\gamma X} V \subset X$.
- (b) Any two disjoint γ -closed subsets of X have disjoint closures in γX .

That (a) holds is evident from the definition of X. To see that (b) holds, let A and B be disjoint γ -closed subsets of X and suppose that $p \in \operatorname{cl}_{\gamma X} A \cdot \operatorname{cl}_{\gamma X} B$. First of all we note that p cannot belong to X for then it would lie in $A \cdot B$ which is empty. In particular p does not lie in the compact set $(\operatorname{Fr}_X A + \operatorname{Fr}_X B)$. By our construction of X there exists an open subset V of Y containing p such that $V \cdot (\operatorname{Fr}_X A + \operatorname{Fr}_X B) = \Phi$ and $V \cdot X$ is connected. Since p belongs to the closure of A in Y, $V \cdot X \cdot A$ is not empty and since $V \cdot X$ misses $\operatorname{Fr}_X A$, $V \cdot X$ must lie entirely in A. But this is a contradiction since $V \cdot X$ must meet B. Therefore A and B have disjoint closures in Y.

DEFINITION. A mapping $f: X \in Y$ is monotone provided for every $y \in Y$, $f^{-1}(y)$ is compact and connected.

THEOREM 4. If X is a locally connected generalized continuum and Y is any unicoherent compactification of X, then there exists a monotone mapping g of Y onto γX such that $g \mid X$ is the identity.

Proof. Let Z denote the quotient space of Y obtained from the decomposition whose only nondegenerate elements are the components of $Y \setminus X$ and let p denote the natural map of Y onto Z. Then since X is open in Y, Z is a Hausdorff compactification of X. Furthermore since point inverses of p are connected, it follows from Proposition (2.2.1) of [9], that Z is unicoherent. Also $Z \setminus X$ is totally disconnected and by the maximality of YX there exists a mapping h of YX onto Z such that $h \mid X$ is the identity and $h(YX \setminus X) = Z \setminus X$. We assert that h is a homeomorphism. In order to prove this we need only show that h is one-to-one on $YX \setminus X$. To this end let X, $Y \in YX$, $X \neq Y$ and suppose that X ontaining X such that X is exist a connected and open set X of YX containing X such that X is exist a connected and open set X of YX containing X such that X is exist a connected and open set X of YX containing X such that X is exist a connected and open set X of YX containing X such that X is exist a connected and open set X of YX containing X such that X is exist and X is not connected. This contradicts the unicoherence of X and hence X must be a homeomorphism. Then X is the desired monotone mapping.

COROLLARY 4.1. Suppose that X is a locally connected generalized continuum. Then X has a unicoherent compactification if and only if γX is unicoherent.

Proof. This result follows immediately from Theorem 4 and the fact that monotone images of compact unicoherent continua are unicoherent.

Theorem 5. Suppose that X is a locally connected generalized continuum. Then the following are equivalent

- (i) X is weakly-unicoherent
- (ii) γX is unicoherent
- (iii) X is γ -unicoherent
- (iv) X has a unicoherent compactification
- (\mathbf{v}) every mapping of X into S^1 with compact boundaries of point inverses is null-homotopic.

Proof. The equivalence of (i)—(iv) has been established in Theorems (1) - (4). As an immediate consequence of Theorem (3.3) of [2], we have that (v) implies (i) and (ii) implies (v) follows from Theorem 1 of this paper.

DEFINITION. A connected space X is said to have the *complementation property* provided whenever K is a compact set in X, X/K has at most one component with a non-compact closure. See [2] for some characterizations of this property.

THEOREM 6. Let X be a locally connected generalized continuum and let Y be any unicoherent, locally connected continuum. There exists a unicoherent compactification Z of X with $Z \setminus X$ homeomorphic to Y if and only if X is weakly-unicoherent and has the complementation property.

Proof of the necessity. Suppose that Z is a unicoherent compactification of X and $Z\backslash X$ is homeomorphic to Y. Then by Theorem (4.2) of [2], X is weakly-unicoherent and has the complementation property.

Proof of the sufficiency. Suppose that X is weaklyunicoherent and has the complementation property. Then by Theorem (2.2) of [5] there exists a compactification Z of X with $Z \setminus X$ homeomorphic to Y and by Theorem (4.2) of [2], Z is unicoherent. This completes the proof.

REMARK. It appears to be difficult to establish results concerning the unicoherence of a compactification of an arbitrary completely regular space. We can show that the Freudenthal compactification of a rim-compact, locally connected γ -unicoherent space is the smallest unicoherent compactification of X with $\gamma X \setminus X$ zero-dimensional.

REFERENCES

1. J. DeGroot and R. H. McDowell, Locally connected spaces and their compactifications, Illinois J. Math., 11 (1967), 353-364.

- 2. R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J., 34 (1967), 343-352.
- 3. ———, Some characterizations of the Freudenthal compactification of a semicompact space, Proc. Amer. Math. Soc., 19 (1968), 631-633.
- 4. H. Freudenthal, Neuaufbau der Endentheorie, Ann. of Math., (2), 43 (1942), 261-279.
- 5. K. D. Magill, Jr., A note on compactifications, Math Zeitschr., 94 (1966), 322-325.
- 6. K. Morita, On images of an open interval under closed continuous mappings, Proc. Japan Acad., **32** (1959), 15-19.
- 7. ———, On bicompactifications of semibicompact spaces, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 4 (1952), 222-229.
- 8. G. T. Whyburn, Open mapings on 2-dimensional manifolds, J. Math. Mech., 10 (1961), 181-198.
- 9. ——, Analytic Topology, Amer. Math. Soc. Colloq. Pub., Vol. 28 (1942).

Received April 27, 1971.

CALIFORNIA STATE COLLEGE AT FULLERTON AND VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY