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AUTOMORPHISMS AND EQUIVALENCE IN VON
NEUMANN ALGEBRAS

ERLING ST¢RMER

Let R be a von Neumann algebra acting on a Hilbert
space . Let G be a group and let £ — U; be a unitary repre-
sentation of G on 9 such that U;RU, =R for all tcG. Two
projections E and F in R are called G-equivalent, written
E ~_ F, if there is for each tcG an operator T.c® such
that £ = > 1e¢ T. T, F = > 1c¢ U T¥ T.U;. The main results
in this paper state that this relation is indeed an equivalence
relation (Thm. 1), that “semi-finiteness” is equivalent to the
existence of a faithful normal semi-finite G-invariant trace on
R+ (Thm. 2), and that “finiteness” together with countable
decomposability of R is equivalent to the existence of a faith-
ful normal finite G-invariant trace on R (Thm. 3).

There are two approaches which can be used to prove these
theorems. The most natural one would be to develop a comparison
theory for projections in R and then to construct the traces. This
can be done by means of modifications and extensions of the theory
developed by Kadison and Pedersen [4]. The other approach, which
we shall follow, is to consider the cross product R x G, and then
show that the canonical imbedding of R into the von Neumann algebra
R x G is close to being an isomorphism of R with the structure of
G-equivalence into R x G with the usual equivalence relation between
projections.

Our main theorems form a link between von Neumann algebras
and ergodic theory. If G is the one element group the equivalence
relation ~, reduces to the usual one defined by Murray and von
Neumann [8] for projections in a von Neumann algebra. We thus
obtain extensions of the theorems on existence of traces in finite and
semi-finite von Nemann algebras. If the von Neumann algebra R is
abelian we show (Thm. 5), using theorems on the existence of invariant
measures, that the equivalence relation ~, is the same as the one
defined by Hopf [3] in ergodic theory. He showed that, with some
extra assumptions, “finiteness” of the partial ordering is equivalent
to the existence of an invariant nomal state. Later on the “semi-
finite” case was taken care of by Kawada [6] in a well ignored
paper, and then independently by Halmos [2]. Thus our theorems
are also generalizations of well known results on invariant measures.

We refer the reader to the book of Dixmier [1] for the theory of
von Neumann algebras. The author is indepted to the referee for
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several valuable comments.

2. Statements of results. In the present section we state the
main results and definitions. The proofs will be given in §3.

THEOREM 1. Let R be a von Neumann algebra acting on a Hilbert
space . Let G be a group and t — U, a wunitary representation of
G on © such that U RU, =R for all teG. If E and F are pro-
jections in R we write E ~, F if for each te G there is an operator
T,cR such that

E=>TTF, FzéUt*T;"T,Ut.

teq

Then ~, is an equivalence relation on the projections in R.

REMARK 1. If G is the one element group then the equivalence
relation ~, is the same as the usual equivalence relation ~ for pro-
jections in a von Neumann algebra.

REMARK 2. If G is the additive group of R and the representa-
tion t — U, is the trivial representation, so U, = I for ¢t e G, then the
equivalence relation ~, is the one defined by Kadison and Pedersen
[4, Def. A].

REMARK 3. If R is abelian and countably decomposable the equi-
valence relation ~, coincides with the one defined by Hopf [3] in
ergodic theory. For this see Theorem 5 and Remark 6.

REMARK 4. If E and F are equivalent projections in R, i.e. there
is a partial isometry Ve R such that E=VV*, F= V*V, then E~_,F.
This is clear from the definition of ~,, putting T, =V, T, = 0 for
t #+ e.

DerFINITION 1. With notation as in Theorem 1 we say two pro-
jections E and F' in R are G-equivalent if E ~;F. We write E<,F
if E~;F,<F. A projection F' is said to be ~ -finite if £ < F and
E~,F implies E=F. R is said to be ~ finite if the identity
operator I is ~-finite. R is said to be ~ ;-semi-finite if every non-
zero projection in R majorizes a nonzero ~ ,-finite projection.

THEOREM 2. With notation as in Theorem 1 there exists a faith-
ful normal semi-finite G-invariant trace on R+ if and only if R s
~ ~semi-finite.

THEOREM 3. With notation as in Theorem 1 there exists a faith-
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Sul mormal finite G-invariant trace on R if and only if R is ~4
finite and countably decomposable.

3. Proofs. We first introduce some notation and follow [1, Ch.
I, §89] closely. Following the notation in Theorem 1 R acts on a
Hilbert space 9, G is a group, considered as a discrete group, and
t — U, is a unitary representation of G on § such that UFRU, =R
for all te G. For teG let §, be a Hilbert space of the same dimen-
sion as § and J, an isometry of § onto ©,. Let § = ... D H.. We
write an operator R e B(H)—the bounded operators on $—as a matrix
(R,,.)s,tcq» Where R, , = J*RJ, € B(H). For each TeNR let &(T) denote
the element in B(P) with matrix (R,.), where R,, = 0 if s+ t, and
R,,= T for all se G. Then @ is a *-isomorphism of Jt onto a von
Neumann subalgera R of B(D). For ye G let U, be the operator in
B(H) with matrix (R,.), where R,, =0 if st™ =y, R,,, = U, for all
teG. Then (see [1, Ch. I, §9]) y — U, is a unitary representation of
G on % such that

U:o(TU, = 0(U*TU,), yeG TeR.

If B denotes the von Neumann algebra generated by R and the
U, ye @, then each operator in B is represented by a matrix (R,,)
where R,, = T,,~U,—, Ty R,

We denote by R¢ the von Neumann subalgebra of R consisting
of the G-invariant operators in R. & shall denote the center of R,
and D shall denote € N R’ Whenever we write P ~ @ for two pro-
jections in B we shall mean they are equivalent as operators in B,
i.e. there is a partial isometry Ve®B such that VV* = P, V*V = @,
and we shall not consider P and @ as equivalent in a von Neumann
subalgebra of B. The next lemma includes Theorem 1 and shows
more, namely that ~ ,-equivalence is the same as equivalence in B.

LEMMA 1. Let E and F be projections in R. Then E ~,F if
and only if O(F) ~ O(F). Hence ~, 1s an equivalence relation on
the projections R.

Proof. Suppose E ~;F. Then for each t € G there is T, € R such
that

E=>TTr, F=>UT*T.U,.

te@G ted
Then we have

O(E) = 2 (T T7) = 2 o(T)o(T)*
= S (AT)U)(T)0)*,
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and

@(F) =2 @(Ut* T*T.U) = Z a*Q(Tt* Tt) ﬁt
=2 (O(T)U)*(9(THU)) .
Thus by a result of Kadison and Pedersen [4, Thm. 4.1] @(E) ~ O(F).
Conversely assume @(E) ~ @(F'). Then there is a partial isometry
Ve®B such that VV* = @(K), V*V = 0(F). Say V = (Ty-U,~).
Then an easy calculation shows

E:ZTtTt*’ F=3UT*T,U,,
teG teG
hence E ~,F. The proof is complete.

LeMMA 2. Let S = (T~ U,~) belong to the center of B. Then
for each se€ G we have
(i) TT,= T,UTU}F for all TeR,
i) T, =U}T,U, for all yeg@.
In particular T,eD. Furthermore, if ReD then O(R) belongs to
the center of B.

Proof. Let TeR. Then
(TT;~ Uy = &(T)S = SU(T) = (T~ U= TU, U,
and (i) follows. Let ye G. Then an easy computation shows
(To-Up=) = 8T, = U,8 = (U, Ty~ U} Uy -

Replacing y by y™* and letting ¢ = ¢, (ii) follows. By (i) 7.7 = TT,,
so T,e€. By (i) if s=y" we find T, = U}T.,U,, so T,e R’ hence
T, 9.

Finally let Re®, and let S’ = (S,;~U,;—~) € B. Then we have

O(R)S" = (BS,~:Uy~1) = (S, RU,—)
= (Sst"l Ust"‘R> = SIQ(R) ’

hence @O(R) belongs to the center of B. The proof is complete.

LEMMA 3. Let E be a projection in R. Let D, be the smallest
operator in D majorizing E. Then Dy is a projection, and O(Djy) is
the central carrier of O(E) in B.

Proof. Since D is an abelian von Neumann algebra its positive
operators form a complete lattice under infs and sups. Thus D, =
g1.b.{AeD: E< A<LI}, and D, is well defined. Since £ < D, and
both operators commute we have £ = E* < D%. But D, < I, so D5 =<
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D;. Hence by minimality of D;, D, = D%, so it is a projection. By
Lemma 2 @(D;) is a central projection in B, hence if C, denotes the
central carrier of @(F) in B, then O(D;) = Cpz. Now let Cop =
(T,;~:U,,~). By Lemma 2 T,e%, and since C,; = @(E), T, = E. By
definition of Dy, T, = D;. But @(D;) =Co)s 80 Dy =T,, hence T, =
D;. The operator @(D;) — Cy is positive and has zeros on the main
diagonal. Therefore it is 0, and @(Dz) = C,; as asserted.

LEMMA 4. Let E be a projection in R. Let C, be its central
carrier in R, and let D, be as in Lemma 3. Then Dy = Dg,.

Proof. Since E < Cy D < D;_. But Dye€ and Dy = E, hence
Dy = Cp. Therefore by definition of D.,, D; = D,,, and they are
equal.

LEMMA 5. Let E be a countably decomposable projection in R.
Then O(E) is countably decomposable in B.

Proof. Let x be a vector in E$. Then x considered as a vector
in S, P 9; belongs to H,. Let F be the support of w, in ERE.
Then F' is countably decomposable, and w, is a faithful normal state
of FRF. Let {F,}..; be an orthogonal family of projections in B
such that >, .,F, = O(F). Let F, = (T5-U,~). Then F, < @(F), so
TZ<F, hence TFe FRF. Furthermore, since x€ 9,, 0,(F,) = 0,(T?).
Thus we have

1 = wm(F) = wz(Q(F)) = Za)x(Fa) = Z wa:(Tea) M

Therefore w, (T = 0 except for a countable number of «eJ. But
then 7¢ = 0 and hence F, = 0 except for a countable number of a ¢
J. Thus @(F') is countably decomposable in B. Now E is a countable
sum of orthogonal cyclic projections, hence @(FE) is a countable sum
of orthogonal countably decomposable projections. Hence @(FE) is
countably decomposable. The proof is complete.

DEFINITION 2. We say a projection E in R is ~ ,-abelian if ERE=
ED.
Clearly a ~-abelian projection is abelian.

LEMMA 6. There is a projection PeD such that there exists a
~ g-abelian projection £ < P with D, = P, and I — P has no nonzero
~ s~abelian subprojection.

Proof. Partially order the ~  abelian projections in R by E <K F
if E<Fand Dy_; <I— D;. Then in particular D.F = E. Let {E,}
be a totally ordered set of ~ ;-abelian projections, and let E = sup E,,
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so E,— E strongly. Then
Dy E = D; lim E; = lim D, E; = E,
B>a >a

hence if AeR then
EAED,, = E,AE, = A.E,,

where A, DD, . Now it is well known that if Q. is an increasing
net of projections, and Q. — @ strongly, then C, — C, strongly. Thus

@(DEa) = C@(E”) - C@(E) = @(DE)

by Lemma 3, hence D, — D, strongly. The same argument also
shows

Dy, =1im Dy, < I~ Dy, .
a

Thus E = E(I — D;)) + E., and since A, = A,D; we have EAED; =
AEec ED. Since D, — D, it follows that FAE = lim, EAED, < ED.
Therefore E is ~;-abelian. Now let E be a maximal ~ ;-abelian pro-
jection in R. Let P = D,. Suppose F' is a ~ -abelian subprojection
of I — P. Then E + F is ~sabelian. Indeed, if Ac®R then there
are A, D;® and A,ec DD such that

(E+ FYA(E+ F) = EAE +~ FAF = EA, + FA,
=(E+F) (A, + Ap)e(BE+ F)D.

Thus F + F is ~g-abelian. Since E € E + F, the maximality of F
implies F7 = 0. The proof is complete.

Thus in order to prove Theorems 2 and 83 we may consider two
cases separately, namely the case when R has a ~;-abelian projection
E with D, = I, and the case when R has no nonzero ~ ;.abelian pro-
jection. We first treat the case with a ~ ;-abelian projection.

LEMMA 7. Let E be a ~ gabelian projection in R. Then C, is
not G-equivalent to a proper central subprojection. Furthermore if
Q is a central projection such that Q = Cp then Q = D,Cj.

Proof. Let @ be as in the statement of the lemma. Since E is
~ ¢-abelian there is an operator De® such that QF = DE, hence,
since EC = C,€, Q@ = QC; = DC;, and D = Q. By definition of D,,
D=D, But D,=@Q, so Q@ =QC, <D, C, <DC, =@Q, so that Q =
D,C;. Now suppose P is a projection in € such that P < C, and
P ~,C, Then in particular by Lemma 1 @(P) ~ @(C;), so they have
the same central carrier in B, hence D, = D;, = D; by Lemma 4.
By the preceding, P = D,C, = C;. The proof is complete.
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LEMMA 8. Let E be a ~ zabelian projection in R. Let Q be a
central projection orthogonal to Cp. Then if Cy and C, + Q are G-
equivalent relative to €, i.e. the operators T, defining the equivalence
belong to €, ther @ = 0.

Proof. Let P = Cyand assume P ~,P + @Q relative to € Then
since € is abelian, for each < G there is A,c€* such that P =
Sec Ay, P+ Q =3, UFAU,. Since E€ = ED and PC = E€, we
have PC = PD. Since A, < P there is D, ¢ ®* such that A, = PD,.
Thus we have

>PD,=P=PP+ Q) => PUA,U,
= ZPUQ*PDtUt = ZPDtUt*PUt .

Now PD,UFPU, < PD, for all t, hence we have PD,U;PU, = PD,
for all t. Le’ E, denote the range projection of D,. Then E,cD.
Since UFPUPD, = PD,, U¥*PU,PE, = PE,. Thus U*PU, = PE,, and
thus U*PE,U,=U}PU,E, = PE,. Consequently PE,>= U,PE,U*. By
Lemma 7 P = C, is~ ,-finite relative to €, hence so is PE,. Therefore
PFE, = U,PE.UX, and U}PE,U, = PE,. Therefore we have

Ut*AtUt = Ut*PDtUt = Ut*PEt UtDt = PEtDt - P.Dt = At P)
and P= P+ @, so that @ = 0. The proof is complete.

LEMMA 9. Suppose E is a ~ sabelian projection in R with Dy =
I. Then R is of type I, and there ewists a faithful normal semi-
finite G-invariant trace on R*.

Proof. Since E is abelian C;R is of type I. Since every *-auto-
morphism of R preserves the type I portion of R, and D, = I, R is
of type I.

E is a sum of orthogonal cyclic projections E,. If we can show
the lemma for each E, then it holds for £. Therefore we may assume
E is cyclic, say E = [R'z]. Then w, is faithful on ERFE, hence faithful
on K€, If A =0 belongs to C,€ and w,(4) =0, then 0 = w,(EA),
so FA =0. Hence A= AC; =0. Thus w, is faithful on C,C, so
C; is a countably decomposable projection in €.

We shall now apply the previous theory to ¥ = € x G instead
of B=R x G. We use the same notation as before. By Lemma 7
C; is ~finite. If C; = D, = I then by Lemma 7 € =9, and it is
trivial that there exists a faithful normal semi-finite G-invariant trace
on €+, Assume C, # I. Then there is se G such that U C,U, # C,.
Since by Lemma 7 C; is ~-finite, and UrC U, ~,C;, UXC,U, is not
a subprojection of C;. Thus Q = UfC,U(I — Cz) # 0. Since Cj is
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countably decomposable, so is @, and hence C; + Q. By Lemma 5
9(Cy + Q) is countably decomposable in . Since I = D, < D, + @,
the central carriers of @(C,;) and @(C; + Q) are by Lemma 3 equal
to I. If ®(C;) is properly infinite then by [1, Ch. III, §8, Cor. 5]
O(Cp) ~ 0(C; + Q), so by Lemma 1 C; ~,C; + @, contradicting Lemma
8. Thus @(Cy) is not properly infinite, and there is a nonzero central
projection P in 9 such that P®(C;) is nonzero and finite. Since the
central carrier of @(Cy) is I, P is semi-finite. Let ® be a normal
semi-finite trace on 2+ with support P such that @{@{C;)) < «. For
A e @+ define 7(4) = (@(4)). Then 7 is a normal G-invariant trace
because t(UFAU,) = p(Ur0(A)T,) = p(®(4)) = t(A). Since 7(Cp) <
and D, = I, = is semi-finite, hence z is a normal semi-finite G-invariant
trace on €*. Let D be the support of 7. Then 0+ De®. Now
apply the preceding to (I — D)€ and E(I — D), and use Zorn’s lemma
to obtain a family D, of orthogonal projections in ® with sum I,
and a normal semi-finite G-invariant trace z, of €+ with support D,.
Let 7 = 37, Then 7 is a faithful normal semi-finite G-invariant
trace on €*,

Now since R is of type I there is a faithful normal center valued
trace ¢ on R* such that Uy (U,AU)U, = 4(A) for each se€ G, Aec
R*, see [11, p. 3]. Then 7o is a faithful normal semi-finite G-
invariant trace on R*, see [1, Ch. III, §4, Prop. 2]. The proof is
complete.

LEeMMA 10. Suppose R 1is ~ zsemi-finite and there are mo non-
zero ~ gabelian projections in R. Then there is a faithful nmormal
semi-finite G-invariant trace on R*.

Proof. Let E be a nonzero countably decomposable ~  -finite
projection in R. Since E is not ~ g -abelian there is a projection He
ERE such that H++ ED,. Let F=H+ (I — Dy)E. Then F' < E,
F =+ E,and Dy = Dy + (I — Dy)D; = D;. @(F) is not properly infinite
in B. Indeed, if it were, then since @(F) is countably decomposable
by Lemma 5, [1, Ch. III, §8, Cor. 5] would imply @(F') ~ @(E), hence
by Lemma 1, F ~, E, contradicting the ~ ,-finiteness of E. Therefore
there is a nonzero central projection P in B such that PO(F) is
finite and nonzero. Thus PO(Dz)B = PO(D;)B is semi-finite and non-
zero. Let @ be a normal semi-finite trace on B with support PO&{D;)
such that @(@(F)) < . For AecR* define 7(4) = (@(4)). As in
the proof of Lemma 9 7 is a normal G-invariant trace on R*. Since
7(F') < o there is a nonzero central projection @ in R such that
is faithful and semi-finite on @R [1, Ch. I, §6, Cor. 2]. Since 7 is
G-invariant @€ ®. Now a Zorn’s Lemma argument completes the
proof just as in Lemma 9.
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Proof of Theorem 2. By Lemma 6 there is a projection Pe®D
such that there exists a ~;-abelian projection EFe PR with D, = P,
and I — P has no nonzero ~ g -abelian subprojection. By Lemma 9
there is a faithful normal semi-finite G-invariant trace 7, on PR*.
If R is ~,-semi-finite then by Lemma 10 there is a faithful normal
semi-finite G-invariant trace 7, on (I — P)R*. Thus t =7, + 7, is a
faithful normal semi-finite G-invariant trace on R*.

Conversely assume there exists a faithful normal semi-finite G-
invariant trace 7 on R*. Suppose E is a projection in R such that
T(E) < co. Since E ~,F implies t(F) = t(F) it is clear that FE is
~gfinite. Thus R is ~,-semi-finite. The proof is complete.

LemMMA 11. Suppose € is countably decomposable and R s ~ 4
finite. Then there is a faithful normal finite G-invariant trace on
R.

Proof. Since R is ~finite R is in particular finite. By [1, Ch.
III, 84, Thm. 3] there is a unique center valued trace +» on R which
is the identity on €. By uniqueness + is G-invariant, so if 7 is a
faithful normal finite G-invariant trace on €, then 7o is one on R.
Therefore we may assume R = €. Now there exists a projection
PeD such that PEC = PD, and G is freely acting on (1 — P)C, i.e.
for each projection E = 0 in (I — P)& there is a nonzero subprojec-
tion F of E and s€ G such that UfFU, < I — F, see e.g. [5]. Since
I is countably decomposable, so is P, and there is a faithful normal
state on PE, hence a faithful normal finite G-invariant trace on PG,
We may thus assume G is freely acting. Let F' be a nonzero projec-
tion in € and s an element in G such that UsFU,<I— F. Let
E=1—-F. Then Dy =1, and F <, E. As in the proof of Lemma
10 @(E) is not properly infinite, so we can choose a central projection
P+ 0 in B such that PO(E) is finite. Since F <, E, O(F) < O(F),
by Lemma 1, hence PO(F) < P®(E), so PO(F) is finite. Thus P =
PO(E) + PO(F) is finite in B, and PB is finite. Since I is countably
decomposable in €(=R) @) is countably decomposable in B by
Lemma 5, hence so is P. Therefore by [1, Ch. I, §6, Prop. 9] there
is a faithful normal finite trace ® on PB. Then 7 defined by 7(4) =
@{@(A)) is a normal finite G-invariant trace on € with support D = 0
in ®. A Zorn’s Lemma argument now gives a family 7, of normal
finite G-invariant traces on € with orthogonal supports D, in 9.
Since I is countably decomposable the family {z,} is countable, and
by multiplying each 7, by a convenient positive scalar we may assume
S 7Dy = 1. Thus if 7 = >, 7,, then 7 is a faithful normal finite
G-invariant trace on €. The proof is complete.
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Proof of Theorem 3. Suppose there is a faithful normal finite
G-invariant trace 7 on R. Then I is ~finite, for if E is a projec-
tion in R which is G-equivalent to I then v(E)=7(I), hence 7(I— E)=0,
hence I — E =0, since 7 is faithful. Thus R is ~,finite. Again
since 7 is faithful, its support I is countably decomposable, i.e. R is
countably decomposable. The converse follows from Lemma 11.

COROLLARY. If R is ~ g semi-finite then B is semi-finite. If R
is ~g-finite and there is anm orthogornal family of countably decom-
posable projections in D with sum I, then B is finite.

Proof, If R is .~ -semi-finite, then by Theorem 2 there is a
faithful normal semi-finite G-invariant trace on R. Thus there is a
faithful normal semi-finite trace on B by [1, Ch. I, §9, Prop. 1],
hence B is semi-finite. If P is a projection in ® then by Lemma 2
@(P) is a central projection in B. Thus in order to show the last
part of the corollary we may assume I is countably decomposable.
Then by Theorem 3 there is a faithful normal finite G-invariant trace
on R, hence by [1, Ch. I, §9, Prop. 1] there is a normal finite trace
on B, so B is finite. The proof is complete.

ReEMARK 5. G. K. Pedersen has pointed out that the corollary
can be sharpened. Indeed one can show that if E is a projection in
R then E is ~finite if and only if @(F) is finite in B. In particular
R is ~finite if and only if B is finite.

4. G-finite von Neumann algebras. Let notation be as in
Theorem 1. Following [7] we say R is G-finite if there is a family
& of normal G-invariant states which separate R*, i.e. if AecRT,
and w(A) = 0 for all w e &, then A = 0. For semi-finite von Neumann
algebras it would be natural to compare this concept with those
of ~-finite and ~ ,-semi-finite. Since a ~,finite von Neumann
algebra is necessarily finite we cannot expect a G-finite semi-finite
von Neumann algebra to be ~,finite. We say G acts ergodically on
€ if D(=C N R% is the scalars.

THEOREM 4. Let R be a semi-finite von Neuwmann algebra acting
on a Hilbert space . Let G be a group and t — U, a unitary repre-
sentation of G on 9 such that UFRU, = R for all te G. Assume
eitther that G acts ergodically on the center of R or the center is ele-
mentwise fized under G. Then R is G-finite if and only if there is
a faithful normal semi-finite G-imvariant trace © on RT and an
orthogonal family {E,} of G-invariant projections in R with sum I
and T(E,) < « for each a.
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Proof. Assume R is G-finite. Suppose first that G acts ergodi-
cally on the center € of R, and suppose w is a faithful normal
G-invariant state on R, Then by [11] there is a faithful normal semi-
finite G-invariant trace on R*, hence by Theorem 2 R is ~  -semi-finite.
In general, by Zorn’s Lemma there is a family {w,} of normal G-
invariant states with orthogonal supports FE, such that > E, = I.
Then each E, is G-invariant, and by the first part of the proof E RE,
is ~,semi-finite. In particular, E, is the sup of an increasing net
of ~finite projections. Let F' be a projection in R. We show F
has a nonzero ~  -finite subprojection. By the above considerations
there are E, and a ~ ,finite subprojection F, of E, such that C; F' +
0. Let F, =C, F. Then there is a nonzero subprojection F, of F
such that F, < F,. Say F,~ G, < F,. Since F, is ~finite, so is
G.. Indeed, if G, ~; H < G, then by Lemma 1 &(G,) ~ ®(H), hence
oF,) =0G,) + oF,— G ~ OH) + OF,— G,), so again by Lemma
1, F,~, H+ F, — G, so that H = G, by finiteness of F,. Thus G,
is ~finite. Since G, is in particular finite there is by [1, Ch. III,
§2, Prop. 6] a unitary operator Ue®R such that UF,U* = G,. But
then F, is ~finite, for if F, ~, F, < F, then UF,U™ ~ F, ~; G,,
so by transitivity UF, U™ ~; G,. Since UF,U™* £ G,., they are equal
by finiteness of G,., so F, = F|,, and F, is ~ finite. Therefore the
projection F' has a nonzero ~ ,-finite subprojection F\,, and R is ~ ;-semi-
finite.

Next assume € = D. Then every normal semi-finite trace on R*
is G-invariant [10, Cor. 2.2], so there exists a faithful normal semi-
finite G-invariant trace on R+, hence by Theorem 2, R is ~ ,-semi-finite.

Let by Theorem 2 7 be a faithful normal semi-finite G-invariant
trace on R*. Let {w,} be as before with orthogonal supports {E.}.
Then there is a positive self-adjoint operator H,e L'(R, 7) affiliated
with R? such that 0 (T) = v(H,T) for TeR, see e.g. [1, Ch. I, §6,
no. 10]. Let E be a spectral projection of H, with 7(EF) < «. Then
E is G-invariant. A Zorn’s Lemma argument now gives an orthogonal
family of G-invariant projections in R with sum I and finite trace.

Conversely assume R has a faithful normal semi-finite G-invariant
trace ¢ and an orthogonal family {E,} of nonzero G-invariant projec-
tions with sum I such that ©(E,) < . Let ¢, =7(E,)™", and let
0 (T) = ¢,(E,T). Then {w,} is a separating family of normal G-
invariant states on R, hence R is G-finite. The proof is complete.

 The above theorem is probably true without the assumptions of
the action of G on €. A direct proof of this would be quite interesting.

5. Abelian von Neumann algebras. Assume R is an abelian
von Neumann algebra acting on a Hilbert space $. Let G be a group
and suppose t— U, is a unitary representation of G on £ such that
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UXRU, =R for all teG. We say two projections F and F in R are
equivalent in the semse of Hopf and write K ~, F if there are an
orthogonal family of projections {E,}.., in R and ¢,€ G, for acJ,
such that E =3 E, F =3 U}E.U,. Since each UXE.U,, is a
projection, and their sum is a projection, they are all mutually
orthogonal. Since we can collect the E,’s for which ¢, coincide the
definition of equivalence in the sense of Hopf is equivalent to the
existence of an orthogonal family of projections {E.},., in R such
that £ = 3, E,, F = 3., U*E,U,. This equivalence was introduced
by Hopf [3]. Just as for ~, we define ~ ,-finite, ~ ,-semi-finite,
and < . Note that if E~,F as above, if we let T, = E,, then
E=>TTF=3UsT;T.U, so E~,F. If we assume R is
countably decomposable, we shall now prove the converse via a proof
which makes use of the known results on invariant measures if R
is ~jgfinite and ~ ,-semi-finite. A direct proof would be more
desirable.

THEOREM 5. Assume R 1s countably decomposable, and let nota-
tion be as above. Then two projections E and F in R are G-equivalent
if and only if they are equivalent in the sewse of Hopf.

Outline of proof. It remains to be shown that if E ~,F then
E~yF. Assume EF~,F. By Lemma 1 ®(F) ~ @(F'), so they have
the same central carrier C. By Lemma 3 &(D;) = C = &(D;), so
D, = D,. Suppose first E and F are such that EP and FP are
~ y-infinite for all nonzero projections P€%. In a von Neumann
algebra two properly infinite countably decomposable projections with
the same central carries are equivalent [1, Ch. III, §8, Cor. 5]. Using
the comparison theory for R with the Hopf ordering <, as developed
in [6], see also [9], we can modify the proof of the quoted result
for von Neumann algebras, to show E~j,F. If E is ~ y-finite
then since Dy = Dy, we may assume R is ~ y-semi-finite, so by [6]
there is a faithful normal semi-finite G-invariant trace ¢ on R* such
that 7(F) < . From the comparison theorem on R [6, Lem. 16],
or [9, Lem. 2.7], there exist two orthogonal projections P and @ in
® with sum I such that PE <, PF and QF <, QE. Since PE ~,PF
we have t(PE) = t(PF'). But if a proper subprojection F, of PF is
such that PE ~ F, then 7(PE) = t(F) < ©(PF) = ©(PE), a contradic-
tion. Thus PE ~, PF, and similary QF ~; QF. Thus E ~, F, and
the proof is complete.

REMARK 6. Theorem 5 is undoubtably true without the assump-
tion that R is countably decomposable. If E is ~ -finite then it
is still possible to find = as above. If E is ~ y-infinite the above
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proof works as long as E is countably decomposable. Otherwise
the theorem seems to be more difficult to prove, cf. proof of [4,
Thm. 4.1].
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