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A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

S. A. WILLIAMS

This paper proves that there is a (weak) solution u (not nec-
essarily unique) to the generalized Dirichlet problem (with null
boundary data) for the equation An + pu = h. Here A is a
strongly and uniformly elliptic operator of order 2m on a
bounded open set Ω Q Rn. Also A is "normal": roughly,
AA* = A*A. The functions p and h are bounded and con-
tinuous, but are allowed to depend on x(xeΩ), u, and the
generalized derivatives of u up to order m. The values of p
are restricted to lie in a closed disk of the complex plane
which contains the negative of no weak eigenvalue of A.

In [4], E. Landesman and A. Lazer proved that the boundary
value problem

Lu + pU, U, i», ., Άu = h(x, « * , ψ) on D
v . όX1 OXj V 0Xί OXj

u = 0 on 3D

has a (not necessarily unique) weak solution u. Here D is any bounded
open subset of Rn with boundary 3D. Here L is any linear, uniformly
and strongly elliptic, self-ad joint, second order partial differential
operator with only, second order terms and with real-valued, bounded
measurable coefficients for its corresponding Dirichlet bilinear form*
Here p and h are any real-valued, bounded,, continuous functions. It
is assumed that there exist constants 7^ and 7N+ι such that aN <
ΊN ^ p(z) ̂  7^+i < aN±x if or every z in D x Λ*+1..^(here aN and aN+1

are the negatives of successive weak eigenvalues of L).
The present paper may perhaps best be viewed as a generaliza-

tion of [4]. AlthotίgK other generalizations are made,-the main result
is that the assumption that L is self-adjoint can be replaced by the
assumption that L is "normal": roughly, LL* =' L*L. Two examples
at the end of the present paper show in what sense the result is
best-possible and show that uniqueness can not be expected.

As in [4], the final existence result is proved using Schauder's
theorem. In the solving of a preliminary linear- problem, a contrac-
tion mapping and tίie faet that the spectral radius of a normal operator
is equal to its norm replace the argument; in [4] based on the maximun
characterization of the eigenvalues and a comparison result for self-
adjoint operators.

2* NOTATION. Let Ω be a bounded open.,subsets of Rn.
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C~(Ω) denote the set of all infinitely differentiate complex-valued
functions with compact support in Ω. Let L2(Ω) denote the Hubert
space of all complex-valued square-integrable functions on £?, with
inner product (,) and norm || | |. Let H{m){Ω) denote the Hubert
space of all complex-valued functions on Ω whose distribution deriva-
tives (using C~(Ω) test functions) of order 0 through m are in L2(Ω).
The inner product and norm of this space will be denoted by (, )m

and || \\m respectively. A multi-index is an w-tuple of nonnegative
integers. If a = (aly a2, , an) is a multi-index, define

\a\ = (*! + a2 + ••• + an

and

Dau = - .

Here the indicated derivative is a distribution derivative. It will be used
only when u is in H{lal)(Ω). Let H0

(m)(β) denote the Hubert subspace of
H{m){Ω) obtained by taking the closure of the set C~{Ω) in H(m)(Ω).

Let A be the formal differential operator given by

Au= Σ (~iy

where the complex-valued functions aaβ are uniformly continuous in
Ω for \a\ = \β\ = m and bounded and measurable otherwise. We as-
sume that A is uniformly strongly elliptic and normalized, i.e., that
there exists a constant Eo > 0 such that for all vectors ξ = (ξu •••,£„)
with real entries, and for all x in Ωy

Re \Σjι«β(x)ξ?+h&+β2 ξ>+β*} ^ Eo\ξ\Zm

where Re takes the real part of any complex number and where | ξ \
denotes the length of ξ in Rn.

For any φ and ψ in H^m){Ω), define

B[φ, ψ] = Σm(D"<P, daβD^ψ) .

We say that u is a solution of the generalized Dirichlet problem for
Au = f if and only if / is in L2(Ω), u is in H^m)(Ω)y and

B[φ, u] = (φ, f) for every φ in H^m){Ω) .

We say that λ is a weak eigenvalue for A corresponding to weak
eigenfunction u if u Φ 0 is a solution of the generalized Dirichlet
problem for Au = λw.
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With the assumptions on A made above, Garding's inequality-
holds (see S. Agmon [1], p. 102):

(1) Re B[φ, φ] + \(φ, φ) ̂  Collφ||2m .

Here λ0 and c0 are real constants with cQ > 0. The inequality holds
for each φ in C~{Ω) and hence (taking limits in H{m)(Ω)) for each φ
in J3o(m)(0) F°r e&ch u in HJm)(Ω), define

\\u\\B = [Re 5(w, u) + \o(u, u)]112.

An easy calculation shows that || \\B is bounded above by a multiple
of the || | |m norm. Since Garding's inequality shows that it is also
bounded below, these two norms on H£m)(Ω) are equivalent.

We are assured by [1; p. 102] that the generalized Dirichlet
problem for Au = / — \ou has for each / in L2(Ω) a unique solution
To/ in Him)(Ω). The mapping Γo: L2(Ω) — H^m)(Ω) is linear and con-
tinuous.

Let ^F\ HJm)(Ω) —> L2(Ω) denote the inclusion map and let I: L2(Ω) —»
L2(Ω) denote the identity map.

3* Preliminary lemmas* Lemma 1, of interest in itself, greatly
simplifies the proof of Theorem 2. Lemma 2 gives an elementary
proof of the fact that the operator norm of a normal operator is equal
to its spectral radius. Lemma 3 gives conditions under which a dif-
ferential operator is "normal" in the sense required by this paper.
Lemma 4 introduces an operator T and Lemma 5 finds an upper bound
for | |w^T| | . These last two lemmas will be used immediately in
Theorem 1.

LEMMA 1. TQ is compact as a map from L2(Ω) to H^m)(Ω).

Proof. Let {fk} be a sequence in L2(Ω) with | | / f c | |< ; r . Since
Ω is bounded, N. Dunford and J. Schwartz [3; p. 1693] assure us that
^ is compact. There is therefore a subsequence {gj of {/*} such
that {^Togt} converges in L2(Ω). Use / = gx — gk and φ = Togt — Togk

and the definition of To to obtain

II Togt - Γo^ll2* = R e B [ φ , Tof] + XQ(φ, φ)

XQ(φ,φ)\

= \(Φ,f)\^\\f\\\\φ\\

Since {TQgt} is a Cauchy sequence in L2(Ω), {Γo^} is a Cauchy sequency
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in Hkm){Ω) with the || \\B norm. Therefore it is Cauchy under the
II IL norm. 1

LEMMA 2. If N is a normal operator in a Hilbert space with
inner product (,) and norm || ||, then \\N\\, the operator norm of
N, is equal to its spectral radius.

Proof. For any x in the Hilbert space, (N% N2x) = (N*Nx, N*Nx)
and thus ||iV2|| = |[iV*JVΊ|. But f° r a n y operator in a Hilbert space,
||ΛΓ*JVΊ| = ||ΛΠΓ (see [3], p. 874). Thus ||iV2|| = ||iV||2. By induction
||JVP|| = \\N\\P whenever p is a power of 2. The spectral radius of
N is given by the expression

l i m | | J W (see [3], p. 864) .
p->oo

Considering the subsequence involving only those p which are powers
of 2, the result follows.2

LEMMA 3. Let A be a differential operator with coefficients having
enough continuous derivatives so that A*, AA*, and A*A make sense
classically on C~(Ω). Suppose that AA* = A*A. Then ^To is a
normal operator.

Proof. The discussion in [1; pp. 97-103] shows that the generalized
Dirichlet problem for A*u = / — Xou has for every / i n L2(Ω) a unique
solution Tof in Hkm)(Ω), where Xo is the same constant as was used
to define To. For φ and ψ in G?{Ω) the Dirichlet form for A is given
by B[φ, ψ] = BA[φ, ψ] = (φ, Aψ). Similarly BA\φ, ψ] = (φ, A*f). It
follows easily that w^T0* is the adjoint of w^Γ0.

The Dirichlet form for (A + λo)*(A + λ0) is given by

4fte<P, Ψ) = (<P, (A + λo)*(A + λo)t) = ([A rf- \]φ, [A + λo]f) .

An easy calculation shows that the Dirichlet form for (A -f-λo)(4 + λ0)*
is the same since AA* — A*A. If u is a solution of the generalize
DirίcHlet problem for (A + λo)*(A + λ0)^ - 0, then

([A + λoK \A f X0]u) = 0 ,

so (A + X0)u = 0 and hence finally u = 0. By the Fredholm alterna-
tive the generalized Dirichlet problem for. {A + λo)*(̂ 4 + λo)w = / has
a unique solution u in Hi*m)(Ω). It is easy to see that
u = ^T0^T*f. Thus

1 The proof of this lemma is motivated by a similar calculation in [4; pp. 321, 322].
2 The author wishes to thank; Dr. S* Ebeήstein for his elementary proof of Lemma 21
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LEMMA 4. If τ0 is a complex number such that —τ0 is not a
weak eigenvalue of A, then we may set T — T0[(jQ — λoX^To + I]"1

and have for every f in L2(Ω) and every φ in H^m)(Ω) that

B[Ψ, Tf] + T0(φ, Tf) = (φ, f) .

(Thus Tf is the unique weak solution of Au 4- Ίύu == /•)

Proof. Since —τ0 is not a weak eigenvalue of A, (λ0 — To)"1 is not
an eigenvalue of ^To. Since ^To is compact, every nonzero complex
number in its spectrum must be an eigenvalue. Therefore (λ0 — To)"1

is not in the spectrum of J?T^ so [^To — (λ0 — To)"1/]"1 (and hence
[(τ0 — λo)^To + I]"1) exists and is continuous.

B[φ, Tf] + %(φ, Tf)

= -\(φ, T0[(T0 - λ 0 ) ^ Γ 0 + IΓf) + (φf [(To - λ o ) ^ T o + I]"1/)

+ /Γ1/)
irf) = (<P, f).

LEMMA 5. Assume that ^f0 is a normal operator and that
I z — To I ̂  c is a disk in the complex plane which contains the nega-
tive of no weak eigenvalue of A. Then \\^T\\c < 1, where T is the
map of the above lemma.

Proof* Since ^ To is a normal operator, so is [(τ0 — λ 0 ) ^ T 0 + I ] " 1 .
Since KJ^TQ and this operator commute,

^T « ^ Γ 0 [ ( τ 0 - λ^wTΓo -t I]-1

is normal. Therefore \\^T\\ is the same as the spectral radius of
^T. Since ^T is compact, the spectral radius is the supremum
of the norms of the eigenvalues of ̂ T. But λ is a weak eigenvalue
of A if and only if (λ + To)"1 is an eigenvalue of w^T Thus the
weak eigenvalues of A have no accumulation point in the (finite)
complex plane. Since | —λ — τ o | ^ c ' + ε for some ε > 0 and every
weak eigenvalue λ of A, |(λ + To)"*1! 2= (c + s)^1 δ 0 that every eigen-
value of J^T has norm g (c + ε)"*1. Thus \\^T\\c < 1 as claimed;

4* The pteliminary linear problem*

THEOREM 1. Let D be a closed disk {ZBC;\Z^- τol•% c} in the
complex plane which contains the negative of no weak eigenvalue
of A. Let h be in La(Ω) and let p be a measurable function on Ω
whose values lie in the disk D. Suppose that the operator <J^T0

associated with A is normdU Then the generalized DiriahlH problem
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for Au + pu = h has a unique solution u in H^m)(Ω). Moreover, there
exists a constant M independent of p such that

Re B[u, u] + X0(u, u) ^ M(h, h) .

Proof. We want Au + pu = h, or equivalently Au + you = h —
(p — Ύo)u. Thus we want u = T(h — (p — Ύ0)u), where T is the map
of Lemmas 4 and 5. We prove that the map from L2(Ω) into itself
given by u—>^T[h — (p — yo)u] is a contraction map.

For any uλ and u2 in L2(Ω),

- (p - 70K] - ^T[h -- (p -

Since | |^^Γ| |c < 1 by Lemma 5, the map is a contraction as claimed.
Thus there exists a unique v in L2(Ω) such that V— ^~T[h — (p — Ύ0)v],

Let Q = Hw^ΓIKl - \\^T\\e)"1. Then Q = | | ^ Γ | | + \\^T\\cQ.
Since | |u | | ^Q| |Λ| | implies that

-{p- 7o)u] II ^ I I ^ Γ I I ||λ|| Hh

it follows that for fixed h the ball {ueL2(Ω); \\u\\ ^ Q||λ||}" is mapped
into itself by our contraction map. Therefore the fixed point v satisfies
I Ml ^ Q||λ|1 Since the || \\m norm and the || \\B norm are equivalent,
and since

= II T[h - (p --7(MIL ^ II T\\ \\h - (p -

(here | |Γ | | is the operator norm of T: L2(Ω) ->~H{m)(Ω)) it follows easily
that there exists an M such that

5* The nonlinear problem*

THEOREM 2. Let D be a closed disk in the complex plane which
contains the negative of no weak eigenvalue of A. Let h(x, u, du/dxlf •)
and p(x, u, du/dxu •••) he continuous functions of their arguments,
allowed to involve derivatives of u up to order m. Let \ h(x, u, •) | <; r
and assume that the values of p are always in the disk D. Assume
that the operator <J^T0 associated with A is normal. Then the gener-
alized Dirichlet problem for

U, -r—,(3) Au + p(x, «, Jϋ- f ...)« = hίx,

has a (not necessarily unique} solution u in Hom)(Ω).
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Proof. Define a map G: Htm)(Ω) — H^\Ω) as follows: for every
u in Hίm)(Ω), let G(u) be the unique solution v in H^m){Ω) of

. = ̂  r[/,(*, «.*L, •) - („(*, «,.*, •) - •,.),],

where 70 is the center of the disk D and Γ is the operator of Lemmas
4 and 5. It is clear that a fixed point of G would furnish a solution
for the generalized Dirichlet problem for (3) We will show that G
is continuous and compact from a bounded, closed, convex subset S
of H^m)(Ω) into itself. Schauder's theorem (see, for example, J. Cronin
[2], p. 131) then assures us a fixed point.

Since | h(x, u, •) I ̂  τ, (K ^) ^ R = r2 meas (Ω) < °o. Using the
constant M of Theorem 1, \\G(u)\\% ^ MR for all w in Him){Ω). Thus
if we take S = {ue H<ίm)(Ω); \\u\\% ^ MR}, S is a bounded, closed, convex
set of iϊo<

m)(β) and C ( S ) s S .
Now we show that G is continuous. Let {%&} be a sequence in

Hkm){Ω) converging to u. The sequence {h(x, uk, •) — (2>(α;, uk, •) —
%)<?(%)} is clearly bounded in LZ(Ω), so since Γ is compact (Lemma
1 shows that To is compact, and T is To composed with a continuous
map) there is a subsequence of {G(uk)} which converges in H^m){Ω) to
a limit v. Then taking limits with the corresponding subsequence
of {uk},

v = ^ T[h(x, u, •) - (p(x, u, •) - 7oM ,

so that v = G(u). Since any subsequence of {G(ufc)} has a subsequence
converging in ϋΓ0

(m)(β) to G(w), {G( f̂c)} itself converges in H^m)(Ω) to
G(u), proving continuity.

Now we show that G is compact. Let {uk} be a bounded sequence
in H^m)(Ω). Then the sequence {h(x, uk, •) — (p(x, uk, •) — Ί0)G{uk)}
is bounded in L2{Ω), so the fact that T is compact assures us a sub-
sequence of {G^)} which converges in Him)(Ω).

6. Examples and a remark*

EXAMPLE 1. If the disk D includes the negative of a weak
eigenvalue λ of A, let v be a weak eigenfunction of A* corresponding
to the weak eigenvalue λ. If h(x) is any bounded continuous func-
tion on Ω such that (h, v) Φ 0, then the generalized Dirichlet problem
for Au + Xu ~ h has no solution, since the Fredholm alternative
applies [1, p. 102]. It is in this sense that Theorem 2 is best possible.

EXAMPLE 2. Suppose that there is a weak eigenvalue λ of A
which corresponds to a continuous weak eigenfunction v with | v(x) \ ̂  1
for every x in Ω. Let τ0 be the center of the disk D and let p = 70
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identically. Let h =? h(u) be a bounded C~ function of % with h(u) —
70u + XU for \u\ <ί 1. Then v and v/2 are two distinct solutions of
the generalized Dirichlet problem for Au + pu — h. This shows that
we cannot expect a unique solution to problems of the type discussed
in this paper.

REMARK. Consider the generalized Dirichlet problem for Au =
f(x, u, du/dxl9 •), where / is a continuous function of its arguments,
involving derivatives of u up to order m. Under what circumstances
can we write f *= —pu + h, where | λ | <£ r and the values of p lie in
a closed disk D with center 70 and radius el Clearly \f + Ίou \ %
c\u\ + r is a necessary condition. It is interesting to note that this
condition is also sufficient. To see this, given an / satisfying this
growth condition, define p to be the closest point in D to —flu for
any values of the arguments with |M| Ξ> 1,-.. Then extend p so as to
be defined also for \u\ < 1, so as to be continuous overall, and so as
to have each of its values in D. Then set h = / + pu. (For | u \ ̂  1
we have \h\ ̂  r, but for \u\ < 1, although h as given in the above
construction is bounded, we are not assured that \h\ <Ξ r.)
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