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A TOPOLOGICAL LEMMA AND APPLICATIONS
TO REAL FUNCTIONS

CLIFFORD E. W E I L

In working with functions of Baire class one having the
Darboux property, one of the most useful tools has been a
theorem due to Baire that says a function of Baire class one
has a point of continuity on every closed set relative to the
closed set. The lemma mentioned in the title can be used
in many instances more efficiently than Baire's theorem as is
shown in § 4. It is concerned with sets rather than functions
and hence more basic than Baire's Theorem, and easier to
prove requiring only one application of Baire's category
theorem.

l Definitions and conventions* Euclidean w-space will be

denoted by En and K will designate a fixed, closed subset of En.
For each x in K and r positive, B(x,r) = {yeK: \x — y\ < r}; that
is, the open ball of radius r about x. For any subset H of K, cl H
will be its closure and int H will denote its interior relative to if.
Finally m{E) will be the Lebesgue measure of E.

DEFINITION 1. A Gδ subset H of K will be called a ball closed
Gδ set if whenever B(x, r) dH, {yeK:\x — y\=r}c:H.

Clearly every closed set is a ball closed Gδ set. However, not
every ball closed Gδ set is closed. For example, in [0, 1] the set

H = 0 [n~\ *rx + 2-*]
%=2

is a ball closed Gδ set that is not closed because it does not contain
0. Not every Gδ set is a ball closed Gδ set. In particular it is
fairly easy to prove (using one of the techniques used in the proof
of the lemma) that the only nonempty open subset of K that is a
ball closed Gδ set is K itself. This fact will be needed.

DEFINITION 2. A function f: En-+ Ek has the Den joy property
if for each open subset G of Ek either f~\G) = 0 or mif-^G)) > 0.

2* The lemma*

LEMMA. If Ht and H2 are two nonempty disjoint, ball closed Gδ

subsets of K, then there is an xeK— {H±{jH^, and an open neigh-
borhood 0 of x (open relative to K) such that 0 Π fli = 0 or Of)H2= 0 .
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Proof. Suppose, on the contrary, that every open neighborhood
of every point xe K — (Ht (J H2) intersects both fli and H2. The
first step of the proof is establishing the following fact. Every open
set intersecting fli—int fli also intersects H2—mtH29 and conversely,
every open set intersecting H2 — int H2 also intersects Ht — int JEZi
It will suffice to prove the first part; the proof of the second being
similar.

Let xe.Hi — intHlf U an open set with xe U and r > 0 so that
B(x,r)czU. Since x£intHly there is a yeK—Hx with |α?—y\ < r/2.
Either yeH2 or yeK—H2 in which case y e K — (ί/^ (j ίζ); so since
J5(#, r/2) is an open set containing 2/, by assumption B(x, r/2) con-
tains a point of H2. In either case there is a point ze B(x, r/2)ΠH2.
If 2 £ int iϋΓ2 it is the desired point. If not to find the desired point
let

s =

Since α?efli and Htf] H2 = 0 , s ^ r/2 (actually s < r/2, but that
fact is not needed). A simple compactness argument then shows
that there is a point w with \z — w\ = s such that we K — intHz.
But since H2 is a ball closed Gδ set, w 6 iϊ2. Moreover,

\x — w\ ^ \x — z\ + \z — w\ <r/2 + s ^ r .

Hence

w G U Π (ίί2 - int H2) .

Let

ί7 = cl [(JBi - int Hx) U (H2 - int fζ)J .

The fact just verified says that both Hλ and H2 are dense in F.
Now Hx and Jϊ2 are Gδ sets; so write

fli = ή u%
71 = 1

and

H2= f\Vn

where Un and Vn are open sets (relative to K) for each n — 1, 2, .
Then for each n = 1, 2, , ί7n Π F and F . ί l ί 7 are open subsets of
F and each contains a dense subset of F. The intersection of two
such sets is a dense set; so Un Π V» Π F is an open, dense subset of
F. So by the Baire category theorem,
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is a dense subset of F. But

n (un r\VnnF) = (n un) n ( ή vi.) n F
Λ=1 \w=l / \n=l /

= H, n H2 n F = 0 .

So F = 0 ; that is H, - int H, = 0 and iJ2 - int iJ2 = 0 . That is,
.J3i. and H2 are both open, ball closed Gδ sets which are nonempty.
By the remark following the definition of ball closed Gδ sets, Hv —
K = H2 contrary to the assumption that they are disjoint.

One immediate consequence of the lemma that will be used in
the next section and in § 6 is that a closed subset of K cannot be
decomposed into two, nonempty disjoint, ball closed Gδ sets.

3* Applications to Baire one, Darboux functions* A function
/ : E1 —»Eι of Baire class one having the Darboux property has a
connected graph (see [1] Theorem 4.1). An easy proof of this fact
can be given by first observing that if G is an open subset of E29

then {x: (x, f(x)) e G} is an Fσ set. If the graph of / is disconnected
by two open sets Ox and O2, then the two sets Eκ = {x: (x, f(x)) e OJ,
i = 1, 2, are disjoint Fa subsets of £Ί whose union is Eλ. Hence they
are also Gδ sets. That / has the Darboux property implies that 23ί
and E2 are ball closed Gδ sets. By the lemma either Eγ = 0 or
Έ2—0. A similar argument can be used to give a short proof of
Zahorski's classification of Baire one, Darboux functions (see [1] or
[10]).

In [6] (also [1] Theorem 6.1) it is shown that a function / : E1—>E1

is of Baire class one and has the Darboux property if and only if
for each real number α, the sets

Ea = {x: f(x) ^ a}

and

Ea = {x: f(x) ^ a}

are ball closed Gδ subsets of E,. The "if" part follows at once
from the remark after the lemma, for if on a closed interval I, /
attains values larger than a and smaller than α, but does not attain
the value α, then Ea and Ea would be a decomposition of I into two
nonempty disjoint ball closed Gδ sets.

The following corollary was certainly attainable using Baire's
Theorem, but seems to have escaped detection. It will be the crux
of many of the remaining applications.

COROLLARY. If f: Ex —> Eγ is a function of Baire class one
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having the Darboux property, then for each open interval (a, b) with
f~\a, b) Φ 0 , there is an interval I such that / - 1(α, b) Π / Φ 0 and
on I, f is strictly larger than a or strictly smaller than b.

Proof. By the above result of Neugebauer's the two sets Eb

and Ea are ball closed Gδ sets, and it may be assumed that they are
nonempty for otherwise the conclusion is immediate. The lemma
then says that there is an interval / and an x e / such that x ί Eb U Ea

(that is xe f~\a, b)) and I f] Eb = 0 or IΠ Ea = 0 which is the
desired result.

4* Applications to derivatives* The proceeding corollary gives
an easy proof of the following theorem of Denjoy's (see [2]).

THEOREM. If f: E1—*E1 is everywhere differentiate, then / '
has the Den joy property.

Proof. The function / ' is of Baire class one and has the Darboux
property; so if / ' - 1 (α, b) Φ 0 then by the corollary there is an interval
/ such that f'~ι(a,b)ΓilΦ 0 and on /, / ' is strictly larger than a
or strictly smaller than b.

Thus the theorem will follow by proving the special case that if
f'(x) > 0 for all x e I and f{x) ^ 1 for a.e. x e I, then f(x) ^ 1 for
every XQI. This can be established in two ways. Using the Lebesgue
theory it follows that / ' is integrable and for every

x<y,x,ye I, f(y) - f(x) ^ [ f'(t)dt ^ y - x

that is (f(y)-f(x))/(y-x)^l. Letting y->x yields f'(x) ^ 1 for
every xe I. Using more primitive methods a standard nested interval
argument will prove that if the lower Dini derivate of a function is
Ξ> 1 for each xel, then each difference quotient of the function is
^ 1. Next let E = {xel: f'(x) < 1} and for each n = 1, 2, , let
Gn be an open set, Gn Z) E, with m(Gn) < 1/n. Define

fn{x) = m ( ( - oo, x) n Gn) + f(x) .

It is easy to show that the lower Dini derivate of fn is ^ 1 for each
x in / and hence that for each x, yel, x Φ y,

(My) - /.(*))/(» - x) ^ i

But clearly {fn} converges pointwise to /. Thus

(f(v) - f ( χ ) ) K v - χ ) ^ i .
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And as before it follows that f'{x) ^ 1 for each xel.
The Denjoy property is possessed by Lp-derίvatives, approximate

derivatives and feth Peano derivatives. For definitions and proofs
[3] and [7]. The properties that all of these generalized derivatives
have which yield an immediate proof of the result is that they are
Baire one functions, have the Darboux property, and if bounded
above or below on an interval they are ordinary derivatives on that
interval (see [3], [4], and [7]). So by the corollary if one of the
generalized derivatives inverses an open interval to a nonempty set
E, then there is an x e E and an interval / containing x such that
the generalized derivative is bounded above or below on I and hence
is an ordinary derivative on /. So by Denjoy's theorem

m(Enl) > 0 .

Actually a property slightly stronger than the Denjoy property
was proved here. Even though the set where the derivative is not
an ordinary derivative may have positive measure, it does not contain
the inverse image of any open interval. It was shown that if the
inverse image of an open interval is not empty, then it meets an
interval on which the generalized derivative is an ordinary derivative.
(This fact was first proved for approximate derivatives by Muk-
hopadhyay. He gave a standard proof using Baire's theorem). In
particular, the generalized derivative, when restricted to the set
where it is an ordinary derivative, has the Denjoy property. For
standard proofs of this fact see [3] and [9].

5* An application to functions of several variables* In [5]
Misik introduced a Darboux property for functions of several vari-
ables.

DEFINITION 3. A function / : En -> Eι has the Darboux property
if whenever it attains a value larger than a and a value smaller
than a on a closed ball {yeEn:\x — y\^r}, then it attains a on the
open ball {y e En: \ x - y | < r}.

The lemma will now be used to prove Misik's theorem concern-
ing this Darboux property.

THEOREM. A function f: En —> Eι of Baire class one has the
Darboux property if and only if for each real number α, the two

Ea = {x: f(x) ^ a}

and



762 CLIFFORD E. WEIL

Ea = {x: f{x) ^ a]

are ball closed Gδ subsets of En.

Proof. The "only if" part is straightforward and does not need
the lemma.

For the " if" part, let B be a closed ball on which / attains a
value larger than a and one smaller than α. Then / must attain a
value larger than a on the interior of B, for if not the interior of
B would be part of Ea and then by hypothesis so would B contrary
to assumptions on B. Likewise / attains values larger than a on B.
Let if be a closed ball contained in the interior of B, on which /
attains values larger than a and smaller. Then Kf]Ea and KΠ Ea

are nonempty ball closed Gδ subsets of K and their union is K. But
a closed subset of En cannot be decomposed into nonempty, disjoint,
ball closed Gδ subsets. Thus (Kn Eα) Π (Kf) Eα) Φ 0 . If x is in
this intersection, then x is interior to B because K is and f(x) = α
because x e Eα Π Eα.

6* The Darboux property and partial derivatives* This work
is concluded by an example, a theorem and some remarks concerning
how Misik's Darboux property relates to partial derivatives. It is
shown that a partial derivative even of a continuous function need
not have the property, but if the function is differentiate then the
partial derivatives, (in fact, all directional derivatives) do satisfy the
condition.

DEFINITION 4. If veEn, \v| = 1, f: En—+ Ely xeEn, then the
directional derivative of / at x in the direction v is denoted by dvf(x)
and defined by

dj(x) = lim (f(x + hv) - f(x))/h .

(In E2 this notation is a bit clumsy; so there dxf and dyf are used
to denote the usual partial derivatives.)

DEFINITION 5. Let f:En-+E19 let v\ -. ,yw denote the usual
basis of unit vectors in En, and let x e En. Then the gradient of /
at x is denoted by grad f(x) and is the vector in En whose λ th
coordinate is dvkf(x).

DEFINITION 6. Let F: En -> E, and let x e En. Then / is said
to be differentiate at x if f(y) = f(x) + (y-x) grad/(α;) + o(\y-x\)
as y—>x.
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EXAMPLE. Let h be a differentίable function of one variable
that is 0 on (-co, —2], constant on [2, oo) and has derivative 1 on
[-1,1]. Define / : E2-^Eι by

f(v βΛ _ J if » > o
f{x'y>-\ o iίy^O.

Since h is bounded, / is continuous at each point (x, 0). The con-
tinuity elsewhere is immediate. It is easily shown that

if 1/ ̂  0 .

In particular dΛf(x, y) = 1 if" α?8 ̂  # and # > 0, but 9,(0, 0) =;0, It
follows then that E = {(#, y): 9,/(#> y) ̂ > 1} contains the open ball
I?((0, r), r) for any 0 < r < 1/2, but (0, 0), which is on the boundary
of such a ball, is not in E. Thus E is not a ball closed G9 set.

THEOREM. 7/ / is diffβrentiable, v e En \ v \ = 1, a e E19 then the
sets E; ~ {x:d,f(x) <: a} and Ev>a =; {x: dvf(x) ^ α} are ball closed Gδ

sets.

Proof. It suffices to prove that 2£,,0 is a ball closed Gδ set. Let
J?(l/, r) cEU t 0 and let aj be such that \y—x\ = r. For 0 < s < 1 the
two points

x + s(y — x) - %ι

and

x -\- s{y — x) + srv/2 = α;2

b o t h l ie in JS(?/, r ) s ince

I &i — 2/| = (1 — β) |i/ — x\ <\y — x\ =; r

a n d

| α j 2 - i / | ^ ( l - 8 ) | i / - α j | + rs/2 = (1 - β/2) r <r .

The line segment joining xt and a?2 lies entirely in B(y, r) So by the
Mean Value Theorem for each 0 < s < 1, there is a 0 < £ < s with

- /(α?0 - (sφ)dj(x + β(y - x) + ίw/2) .

But x + 8(y — x) + trv/2 e B(y, r); so

(/fe) - f(xd)/(sr/2) ^ 0 .

Now since / is differentiate at a?,
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f(xz) - f(xχ) = f(x)..+ (s(y -x) + srv/2) grad f(x)

+ o(\s(y - x) + srv/2\)

- f(x) - s(y - x) grad f(x) - o(\ s(y - x)\)

= (srv/2 grad f(x) + o(\ s(y - x) + srv/21)

- o(| s(y - x) I)

= (sr/2)dvf(x) + o(s) as s ^ O

(since y, x, r, and v are fixed the two " o " terms are just o(s)). But
(/fe) - f(xd)/(8r/2) ̂  0. Thus d,/(#) + o(l) ^ 0 a s s - > 0 , and hence
dj(x) ^ 0.

That JS f̂0 is a G3 set follows since / is continuous and hence duf
is of Baire class one Hence Ev>0 is a ball closed Gδ set

The converse is far from true. There are functions / having
directional derivatives in every direction and such that for each v
and for each real number α, EVta and Eί are ball closed Gδ sets, but
/ is not diiferentiable. The situation is even worse. It is not hard
to see that if / is differentiate, then EUfa and E? have a much
stronger closure property than just being ball closed Gδ sets. Sup-
pose that some x in En is the vertex of a "cone" in En whose in-
terior lies in Eu,a (resp. Eΐ). Then xe Ev>a (resp. Eί). This property
on the sets EUta and Eΐ is still not enough to guarantee that / is
differentiate. For example, it is possible to construct a function
f(x, y) which is zero except for points (x, y) satisfying y > 0 and
y2 < x < 4y2, has continuous partial derivatives except at (0, 0) where
all directional derivatives exist, however, and are zero, but / is not
differentiate at (0, 0) (If h(t) is infinitely differentiate, with support
[0, 1], then f(x, y) = xh((x - y2)/3y2) for y> 0 and f(x, y) = 0 for
y ^ 0 is such a function.) If (a?, y) is the vertex of a " cone" whose
interior lies in ϋ^^resp. E;) and if (a?, y) Φ (0, 0), then duf is continu-
ous at (a?, y); so x e Ev,a(τesip. xeEf). If (0, 0) is the vertex of such
a "cone," then that cone does not lie in the support of / ; so there
is an (x, y) in that cone with dvf(x, y) = 0. Thus 0 ^ a (resp. 0 ^ α).
Since duf(O, 0) = 0, it follows that (0, 0) 6 Ev>a (resp. (0, 0) 6 E;). Con-
sequently the sets EUta and E" contain the vertex of any cone whose
interior they contain, but by choice / is not everywhere differenti-
able.
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