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INFINITE PRIMES OF FIELDS AND COMPLETIONS

D. K. HARRISON AND HOYT D. WARNER

The notion of infinite prime in a ring with identity,
defined in the first author's memoir "Finite and infinite primes
for rings and fields" (A.M.S Memoir #68), is studied in fields.
Extending results of R. Baer and D. W. Dubois, each infinite
prime P of a field F is shown to determine a complex place
φP of F such that φP{P) is the set of nonnegative reals in
ΦP(F), and is an infinite prime of φp(F). The collection of
all infinite primes P of F determining the same φ and φ(P)9

is shown to be describable, in an almost purely multiplicative
way, in terms of certain groups determined by φ and φ(P).
Using these theorems a notion of completion of a field at a
finite or infinite prime is given, generalizing the classical
notion for the prime divisors of a number field. These com-
pletions are characterized as certain linearly compact fields
and are shown to be in general unique only when P is real
(i.e., φP(F) is contained in the reals). For a fixed prime P of
F, the set of elements of F which are squares in every com-
pletion of F at P is calculated.

A characterization of number rings is given and examples
of pathology in infinite primes are indicated.

An arithmetic of rings has been introduced in [11]. A notion of
a prime is given which essentially reduces, in both number fields and
their rings of integers, to the usual primes—both the finite and in-
finite. In this paper we examine closely the notion of an infinite
prime. (The words "infinite" and "finite" are used formally as in
number theory and have nothing to do with "number of elements".)
We restrict attention mainly to commutative rings (for noncommutative
rings see [16], [21])1; Proposition 0 below essentially reduces us to the
study of fields.

We make the following definitions and conventions. All rings
have an identity 1 and are assumed commutative unless otherwise
stated. If M is an additive subgroup of a ring R, we let

AM = {α e R \ aM S M, Ma g M) .

For subsets A, B of a ring R we define A + B = {a + b \ a e A, b e B},
likewise for A B, A — B; — A = {— a \ a e A}. Let A\B — {a e A | a g
B}, A" = A Π -A, A+ = A\A~, A"1 = {α"11 a e A, a e units of R}. For
a field F, Fx denotes the multiplicative group of nonzero elements of
F. N, Z, Q, R, C, P denote the positive integers, integers, rationals,

1 See also W. H. Reynolds, A note on embedding a partially ordered ring in a
division algebra, P. A. M. S. 37 (1973), 37-41.
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reals, complexes, nonnegative reals, respectively.
By a preprime S of a (not necessarily commutative) ring R we

mean a subset S Φ 0 of R such that S + S S S, S S g S , - U S .
A prime P oϊ R is a maximal preprime; P is called finite if 1 g P
(equivalent to — P S P)> otherwise infinite. A preprime S containing
0 is called conic if S~ = {0}; the standard example is an order S of
ϋ?, by which we mean S is the nonnegative cone of a linear ordering
of the ring R. For example, P is an order (and infinite prime) of
R, and also an infinite prime of C. For any unproven assertion about
primes, see [11]

We generalize the ring of bounded elements and ideal of infini-
tesimals for an order and define, for any subset S of R closed under
addition and multiplication,

Bs — {αe R \ mΊ + αeS, mΛ — αeS, for some m eN}

Js = {α G R I m l + Z α £ S, for some m e N}

and, if Js is an additive subgroup of R, we define A(S) — AM for M =
Js. BP is a subring of R and J P is an ideal of BP whenever P is a
prime of R(JP — P, BP — ZΛ + P if P is finite; P infinite implies
2 P - P by [11,1.6] so JP = {α e R 11 + Zα £ P} and the assertion
follows by calculation, see [7]). We remark that it is straightforward
to show that an order S of a ring R is a prime of R if and only if
Js contains no nonzero two sided ideals of R.

We call a prime P of a ring R αrchimedeαn if P £ J5P; thus all
finite primes are archimedean (note: by [11, 1.6] our definition of
archimedean coincides with that of [11]). A non-archimedean order
in a field (i.e., the cone of a non-archimedean ordering) is an example
of a non-archimedean prime. It follows from [11, Prop. 1.3 and Theorem
1.7] that any archimedean prime (finite or infinite) of a field determines
a place into a "nice" field: a locally finite field (i.e., an absolutely
algebraic field of nonzero characteristic) if P is finite, the complex num-
bers if P is infinite. Baer [1] and Dubois [10] have results extending this
to, respectively, non-archimedean orders and to non-archimedean infinite
primes close to orders, called "modes" (P is a mode if PjP~ is an order of
AP-/P~). Theorem 1.1 below extends this result to arbitrary non-archi-
medean infinite primes of fields, i.e., to arbitrary infinite primes of
fields, and shows that there is always an archimedean infinite prime as-
sociated with any nonarchimedean infinite prime P, namely (cf. [10])

Arch P = {α e BP | nΛ + N-α £ P for some n e N} .

This, plus the result of §2 that T = ArchP determines all the P's
such that Arch P = T, indicates that in studying primes one can re-
strict attention to archimedean primes, at least in studying fields.
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For our purposes we may turn attention to fields because of the
following result.

PROPOSITION 0. Let P be a prime of a commutative ring R. Let
Q = {x e RI x R £ P}. Then Q is a prime ideal of R. Let F be the
quotient field of R/Q. Then there exists a unique prime S of F with
P 1F £ S. S is infinite if and only if P is infinite.

Explicitly, if U(P) denotes the set of ueR with P = {xeR\x ue
P), then S is the set of all (a + Q)-(u + Q)"1 with aeP,ue U(P).
U(P) is P+ if P is infinite and is {ae R\an — 1 e P for some neN} =
A(P)\P if P is finite.

Proof. That Q is a prime ideal follows from [11, 2 2]. Next
observe that the last sentence (structure of U(P)) follows from [11,
1.6] and [11, 2.7]. Let S be the set of all (a + Q)-(u + Q)"1 in F
with aeP,ue U(P). Using [11, 2.2] one checks that every element
t in F can be written as (x + Q) (u + Q)"1 with xeR,ue U(P)9 and
that this t is in S if and only if xeP. With this, one checks S is
a preprime; thus it is contained in a prime T of F. This set {x e R\ x +
Q 6 T} is a preprime of R containing P, so it equals P. Using the
structures of U{T) and U(P) and considering the cases P finite and
Pinfinite separately, one checks {x e R\x + Q e U(T)} = U(P). Writing
te T as above, one has (u + Q) t = x + Q for some ue U(P), xeR.
Then u + Qe U(T) so (u + Q) t e Γ; thus x + QeTand xeP. Hence
t e S, and T = S. The remaining assertions are easily checked.

1* Structure of an infinite prime in a field* The main result
of this section is the following theorem (see above for definitions).

THEOREM 1.1. Let P be an infinite prime of the field F. Then
A(P) is a valuation ring of F with JP its maximal ideal, and PP =
[(P Π A(P)) U Jp]/Jp is a conic archimedean infinite prime of the residue
field kP = A(P)/JP.

There is a complex place φP of F with domain A(P), kernel JP,
such that φP{P) = φP(F) Π P, so φP induces an isomorphism of kP into
C sending PP onto φP(F) Π P. The restriction φP \ Bp is unique {however,
φP need not be unique).

Arch P = φp^P) = (P Π A{P)) (J JP and is an archimedean infinite
prime of F(with JArCnp = Jp, kAτoiiP = kP, PAτchP = PP).

REMARK. If P is a mode then BP = A{P), so Dubois' result [10,
Theorem II] is a corollary. The proof that JP is the kernel of a place
depends on techniques inspired by Dubois, see Lemma 1.2 below. That
the place is complex depends crucially on an application of [11, Prop.
1.7] to a ring which is not necessarily a field. We shall call an
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infinite prime of a field real if the place φP is into the reals, otherwise
we call P complex. This accords with algebraic number theory termi-
nology, see [11, §3]. One can show that P is real if and only if
A(P) = BP, or, if and only if BP is a valuation ring of F.

We assemble the technical results needed for this and the next
section in the following lemma. For simplicity we write "subgroup"
for "multiplicative subgroup". By a "valuation pair" of a commutative
ring R we mean, following Manis [15], a pair {A, M) where A is a
subring of R, M a prime ideal of A and x e R\A implies there is y e
M with xy e A\M. When R is a field these are the valuation rings
of R together with their maximal ideals. See [15] or [11, p. 18] for
facts about valuation pairs which we shall use. We write value groups
additively.

TECHNICAL LEMMA 1.2. Let F be a field, S a subset of F with 0
and 1 in S. The following conditions are equivalent.

(1) S is an infinite prime of F;
(2) (As-y S~) is a valuation pair of F and S+ is a maximal

additively closed subgroup of AS-\S~.
(3) (As-, S~) is a valuation pair of F and if (A, M) is a valua-

tion pair of F with M Ξ2 S~9 the following are equivalent:
(a) M S Js, or equivalently, 1 + M £j S,
(b) S+ Π (A\M) is additively closed,
(c) S+ Π (A\M) is a maximal additively closed subgroup of A\M;
(4) (As~, S~) is a valuation pair of F and there exists a valuation

pair (A, M) of F with M 2 S~ such that, letting G = S+ Π (A\M),
(a) G is a maximal additively closed subgroup of A\M,
(b) S+ is maximal among all subgroups H of AS~\S~ satisfying

Hf](A\M) = G.
Moreover, if (1) holds, then (a), (b) of (4) hold for every valuation pair
(A, M) of F with S"S M QJS.

Proof. See the Appendix.

The following result, which inspired part of the above lemma, is
an immediate consequence of it.

COROLLARY 1.3. (Dubois [10, 4.4]) Let P be a conic preprime of
the field F with 1 e P. Then P is a prime if and only if P+ is a
maximal additively closed subgroup of Fx. Hence any conic preprime
of F containing 1 is contained in a conic prime of F (if char (F) =
0, any conic preprime of F is contained in a conic prime).

Proof of Theorem 1.1. Since JP is an ideal of BP, Po = P n BP a
preprime of BP implies Po + JP is also a preprime, so contained in
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a prime T of BP. BP S Po - Po £ T - T, so T~ is a prime ideal of
BP = T - Γ by [11, Prop. 2.5] (applied to Γ and BP). T+S BP\T~
is then closed under addition and multiplication. By [15, Prop. 1]
there is a valuation pair (A, M) of F such that A^BP and MΠ BP =
T~. We claim that P+ Γ) (A\M) is additively closed, so that by (3)
of Lemma 1.2, M £ JP and hence ilf = T" = JP, A — A(P), proving
the first assertion of 1.1. To prove the claim it suffices to show
P + Π (A\M) is contained in 27+ (Γ+)"1, an additively closed subset of
A\M. If a e P+ n (A\Λf), α = (1 - α)/α for α = (1 + α)"1 and by an
argument in the proof of [11, Prop. 3.5], and valuation theory, a and
1 — α are each in Po and not in M, so they are in T+, proving the
claim. Moreover, then by (3) (b) of Lemma 1.2, it follows that
p+ n (A(P)\jP) = τ+(τ+yι 3 r+.

We now apply [11, Prop. 1.7] to the prime T of the ring BP (T
is easily checked to be archimedean) to get a unique homomorphism
f: BP = T - T - > # with ^ ( P ) = T, ker ψ* = Γ~. With this we can
show that in fact P + n (A(P)\JP) £ Γ+ For, if α e P + Π (A(P)\J"P) and
α: = (1 + α)"1 as above, then a e T+, so ψ(ά) > 0 and there exists n e N
with nψ(a) — α/r(l — a) > 0, i.e., ^ α — (1 — a) e T+ g P. Hence (as
ar 1

 G P) ^ 1 — a = n l — (1 — α)/α e P and a e P Π BP — Po, so α e
POVP £ ϊ74". Therefore, P + n (A(P)\JP) = T+ and T is an infinite
(archimedean) prime of F by Lemma 1.2. (Apply (3) (c) to P and the
pair (A, M) = (Aτ~, T~); then T satisfies (2), hence (1) of the Lemma.)
It follows that T = T/T~~ = T/JP is a conic, archimedean infinite prime
of kP — A(P)/JP; since (using the T+ calculation) T = PP, this completes
proof of the first sentence of 1.1. Next, kP is algebraic over the
subring T — T (as — 1 6 T[c] for any c$T), which is isomorphic to
a subring of R. Hence, kP is isomorphic to a subfield of C by an
isomorphism φ such that φ~ι{P) = T = PP. Now let ^P be 0 composed
with the place of JF onto kP. Then ^P(P Π A(P)) = ^(PP) = ^(F) Π P,
as required. These properties and [11, Prop. 1.7] imply uniqueness
of ΦP\BP> note BP — ΦP1(R). To conclude the proof, we show T —
Arch P. Arch P 2 T is easily checked (as T" = J P and Γ = Pfl
(A(P)\JP) g β P are each contained in Arch P from its definition).
Conversely, a e Arch P implies aeBP = Bτ and 1 + JVα S P; hence
l + i Ϋ α g P Π ΰ p £ T and αeArch Γ. But Arch Γ = T by [11,
Lemma A5] (see [9] for a simplified proof), so Arch P ϋ T. Theorem
1.1 is proven.

COROLLARY 1.4. (cf. [10, 1.15]) Let P be an infinite prime of a
field F. The following conditions are equivalent:

(1) P is conic and archimedean;
(2) Jp = {0};
(3) There is an isomorphism φ of F into C such that φ^iP) = P;
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(4) BP is a subfield of F.

Proof. (1) implies (2) as P archimedean implies P~ = JP. (2)
implies (3) by Theorem 1.1. (3) implies (4) as ψ(BP) = R Π Φ(F). (4)
implies P g BP as each a e P is equal to (1 — a)a~ι for aeBP so P
is archimedean; Jp = P~ is an ideal of the field BP so P~ = {0}.

This result yields the remarkable fact first noted by Dubois [10,
Theorem IV] that if an infinite prime P of a field F generates a
proper subfield of F, then P is conic and archimedean, and the
(archimedean) order of a maximal orderable subfield of F. Such a
field must be embeddable in C; indeed the subfields of C can be char-
acterized as those fields which contain a conic, archimedean infinite
prime [10, Theorem V]. Conic archimedean infinite primes also char-
acterize "number rings":

COROLLARY 1.5. The following conditions on a domain R are
equivalent:

(1) R is a "number ring'7, i.e., the quotient field of R is a
{possibly infinite) algebraic number field.

(2) R possesses infinite primes, and all its infinite primes are
conic.

(3) R possesses infinite primes, and all its infinite primes are
archimedean.

Proof. If (1) holds, [10, 4.7] implies all infinite primes of the
quotient field F of R are conic, archimedean (as F is algebraic over
Q, all the primes extend the unique finite prime Q-° = Q Π P of Q
which is conic, archimedean). A fortiori, this holds for all infinite
primes of R. (2) implies (1) by an example like Example 3 of §4: if
(1) fails, the non-conic preprime (in fact, infinite prime) S = {f(t) e
Z[t] 1/(0) ^ 0} of Z[t] (t transcendental over Z) extends to a non-conic
infinite prime of R, contradicting (2). (3) implies (1) by Example 3
of §4.

We remark that J. E. Schneider in [19] has characterized absolutely
integral domains of characteristic zero as domains all of whose finite
primes are ideals.

2* Associated primes* To clarify the presentation of this section
and the next we introduce the following concept (cf. [18]). By a
primed (or localized) field we mean a pair (F, P) where F is a field,
P a prime of F. We say (F, P) is conic, archimedean, real, etc., if
P is conic, archimedean real, etc. A localized place ψ: (F, P) —• (K, Q)
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is a place F—+K (in the usual sense) such that φ(P) S Q (where
"Φ{P)" means φ(Pf] Dφ), Dφ = domain of φ). Theorem 1.1 and [11]
imply

THEOREM 2.1. (cf. [18]) Each primed field (F, P) determines a
localized place φP onto the conic archimedean primed field (fcP, PP), the
"primed residue field" of (F, P).

Indeed Schneider in [18] shows that the conic archimedean primed
fields form a reflective subcategory of the category of primed fields
and localized places.

We call two infinite primes S, P of F associated if JP = Js and
(in the common residue field) PP = Ps, or, equivalently, Arch P —
Arch S. That is, P and S are associated if they determine the same
primed residue field and localized place. Since by Theorem 1.1, Arch P
is associated with P, each set of associated infinite primes contains a
unique archimedean infinite prime; we see below that conversely the
set can be recovered from certain groups determined by that archi-
medean prime.

Let S be a preprime of a commutative ring R, let a e R. Define
S: a = {c e R \ ca e S}, write a =s b if S:a = S:b. Let Γ*(S) denote
the equivalence classes of R for =Sf let ψs:R-+Γ*(S) denote the
natural map, and Γ(S) = Γ*(S)\fs(0). By [11, Prop. [2.2] and [15,
Prop. 1.1], Γ(S) is a group (operation induced by multiplication in R)
if S is a prime or if (ASf S) is a valuation pair; in the latter case
Γ(S) is linearly ordered and ψs "is" the valuation vs associated with
the pair (see [15]).

Now let T be the unique archimedean prime in a set of associated
infinite primes, let φτ: (F, T) —> (kτ, T) be the localized place onto the
primed residue field of T (i.e., T = Pτ). T determines the following
short exact sequence of groups

1 > Γ(T) -?-+ Γ(T) -2-> Γ(JT) — 0 .

Here we write Γ(JT) (the value group of the /^-valuation) additively;
the maps are natural, i.e., θ: ψτ(a + Jτ) —> ψy(α), η: ψτ{o) —* vτ(a) (where
vτ = valuation associated with Jτ). Note also that y]°irτ — ψjτ = Vτ
One can check that Γ(T) is naturally isomorphic to the group of
arguments of the elements of the field kτ £ C, while Γ(T) = Fx/T+.
[One can show that in fact the subgroup U = T+ of Fx determines
T, and hence (by 2.2 below) the whole set of associated primes;
for, JΌ = Jτ (recall the definition of J i n §0), so U determines Γ(T) =
(A(T)\JT)/U, Γ(T), and Γ{JT) s F*/(A(T)\Tτ)-]

Below we write I{Λ) for the isolated (convex) subgroup of Γ{JT)
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generated by a subgroup Λ, and let M1{Λ) = {aeF\vτ(a) > I (A)}, the
maximal ideal of the valuation pair determined by that isolated
subgroup.

THEOREM 2.2. Let T be an archimedean infinite prime of the
field F. Let G = Gτ = (A(T)\JT)/T+, the natural image of Γ(T) in
Γ(T) = F*/T+, so also the kernel of η. For a subgroup H of Γ{T)y

let c(H) = rr\I(η(H))).
There is a one-to-one correspondence between the infinite primes

P of F associated with T and the subgroups H of Γ(T) with the
property that H is maximal as a subgroup of c(H) which intersects
G trivially. The correspondence is given by P—>H(P) = ψτ{P+)

U MimH)).

REMARK. This theorem says that one gets each associated prime
exactly once by the following purely multiplicative procedure. Choose
an isolated subgroup I of Γ(JT), then choose a subgroup H of τ)~ι{I)
maximally disjoint from G, and then take ψτ\H) (J MΣ which is a prime.

Proof. If P is associated with T one checks easily that H = H(P)
intersects G trivially. c(H) is easily seen to be ψτ(AP-\P~) (observe
that ψτ(AP-\P~) is torsion over H G) and the maximality condition
on H now follows from condition (4) (b) of Technical Lemma 1.2
(applied to S — Q). Conversely if H £ Γ(T) is of the type described,
P(H) is a prime of F associated with T by (4) of the Technical
Lemma (let P replace S, MimH)) replace Mt T+ replace G). It is
straightforward to check that the correspondences given are inverses
of one another.

This theorem translates the study of the infinite primes of F to
a study of the complex (and real) places of F, their value groups,
and the groups Γ(T) of the conic archimedean infinite primes T on
their residue fields. These latter "argument groups" are either
the two element group (when the place is real) or are dense in the
circle group. The groups H{P) corresponding to infinite primes P
associated with a fixed archimedean prime T are natural generalizations
of the classical "archimedean equivalence class group" of Baer [1],
defined for an order of a field (for α, beP+ define a to be archimedean
equivalent to b if there exist n,meN with na — beP, mb — aeP).
Indeed, H(P) ~ vP(P+) (vP = J>valuation) and the value group Γ{JT) —
Γ{JP) may be thought of as an extension of the archimedean equi-
valence group to all of Fx.

COROLLARY 2.3. Let P be an infinite prime of the field F.
(A) The following are equivalent:
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(a) P is an order of F,
(b) P is real and the archimedean equivalence class group of P

equals Γ{JP),
(c) P is real and, for T = Arch P, Γ{T) = ψτ(P)-Gτ;
(B) In general, P real implies I(vP(P+))/vP(P+) is 2-primary

torsion;
(C) (cf. [10, Theorem II]) Every real place φ of F is determined

by an order of F.

Proof. (A) and (B) are straightforward to check. For (C), let
H be a subgroup of Γ{T) containing Γ(T)2 and maximal among sub-
groups intersecting Gτ trivially, where T — φ~ι(P), a real archimedean
infinite prime of F. Then one checks P{H) is the required order, using
(A). See §4 for examples of real infinite primes for which the group
in (B) above is nontrivial (so the primes are neither orders nor modes).

We now consider associated primes in field extensions and apply
this to prove an existence theorem needed in §3. Recall that an
infinite prime of a ring can always be extended to an overring (cf.
[11]) and that by Dubois' result (Prop. 1.3) a conic infinite prime of
a field can be extended to a conic infinite prime of an over field.

Let F^K be fields, P, S primes of F, K respectively. If S
extends P (i.e., S 2 P) then S+,S~,JS, ArchS, etc., intersect F in
P+, P~, JP, Arch P, etc., respectively, and all the groups (cf. 2.2)
determined by P are naturally imbedded in those determined by S.

PROPOSITION 2.4. Let F <ϋ K be fields, P, S infinite primes of
F, K respectively. Then S 3 P if and only if Js Π F — JP, Ps 3 PP9

H(S) 3 H(P) (in Γ(Arch S)) and I(η(H(S))) Π Γ(JP) = I{η{H{P))). When
K is algebraic over F, the last condition may be replaced by "I(η(H(S)))
is the torsion closure of I{Ύ](H{P))) in Γ(J8)".

Proof. The "only i f part is straightforward. For the "if" part,
S~ 3 P~ follows from Jsf]F — JP and the condition on isolated sub-
groups, while S+ 3 P + follows from Ps 2 PP and H(S) 3 H(P). The
last assertion holds as Γ(JS) is then torsion over Γ(JP).

PROPOSITION 2.5. Let P be an infinite prime of the field F. Let
iΓ 2 F be a field, w a valuation on K extending vP on F, T a conic
archimedean infinite prime of kw. If T Ό_ PP then there exists an
infinite prime S of K with S 2 P such that w — vs (i.e. Js determines
w) and Ps = T.

Moreover, if T is real and Γw — Γvp(= Γ(JP)), then S is unique.



210 D. K. HARRISON AND HOYT D. WARNER

Proof. Let T = φ^ι(T), an archimedean infinite prime of K. The
hypotheses imply T Π F = Arch P and that H{P) is a subgroup of
Γ{T) disjoint from Gτ. Let H^H(P) be maximal among subgroups of
y)τι{I(vτ(ApAJP~))) intersecting G trivially, then S = P(H) is as required.
The uniqueness assertion follows from the fact that in that case,
Γ(T) = /""(Arch P) in the embedding, so H(P) itself is already maximal.

3* Ultracompletions* Let {F, P) be a primed field. We call a
primed field {K9 S) an extension of (F, P) if K a F and S 3 P. For
a primed field (JP7, P) we shall define an extension (i*7, P) (in general
non-unique) which we will call an ultracompletion of (F, P); this
construction will generalize the completion of an algebraic number
field at a prime spot. First, we say that a primed field extension
(K, S) of (F, P) is immediate if the following conditions are satisfied:
Γ(JS) = Γ(JP), and ks = kP when P is a finite prime, or ks is real if
kP is real when P is infinite. (Note S a P implies S is a finite prime
if and only if P is.) When P is finite above, K with ^ is an imme-
diate extension of F with vP, in the sense of valuation theory. We
say a primed field (F, P) is ultracomplete if it has no proper immediate
extensions. Finally, we say (Ky S) is an ultracompletion of (F, P),
if {K, S) is an ultracomplete, immediate extension of (F, P) or, equi-
valently, a maximal immediate extension of (F, P).

THEOREM 3.1. Every primed field (F, P) has an ultracompletion
(F, P). A primed field (F, P) is ultracomplete if and only if F is
linearly compact for the valuation v$, and, kp ~ C if P is complex
or R if P is real. Ultracompletions of finite or complex infinite
primes are not necessarily unique up to isomorphism. Ultracomple-
tions of real infinite primes are unique up to isomorphism.

Proof. The first assertion is classical (cf. [13]) for finite primes.
If (F, P) is infinite, KrulPs embedding lemma of [13] yields a set
embedding of F into the well ordered power series field W(C, Γ(JP))
over the value group Γ(JP) with coefficients in C, giving the cardi-
nality restriction permitting Zorn's lemma to apply. For the second
sentence, maximality with respect to immediate primed field extensions
implies (using Prop. 2.5 in the infinite case) maximality of F with
respect to the valuation Vp, and hence that F is linearly compact at
vP (see [2]). k$ = C or R (according as P is complex or real) follows
from Prop. 2.5 and [17, Lemma 19, p. 218]. Nonuniqueness in the
finite case is shown by Example 5; Example 2 yields examples showing
nonuniqueness in the complex infinite case. Uniqueness when P is
real follows from Kaplansky's Theorem ([12, Theorem 7]), the unique
ordering in R, and the uniqueness in Prop. 2.5 (Note that Kaplansky's
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hypothesis on the existence of arbitrary nth roots in the residue field
is not needed, since there is no change in the value group in passing
to an ultracompletion.)

Because of the nonuniqueness of ultracompletions, it is reasonable
to consider the set of all ultracompletions (F, P) of a primed field
(F, P) (that a representative set of these can be chosen from the class
of all such follows from the Krull embedding noted in the proof of
3.1). We shall examine the set of ultracompletions in relation to
squares in the field. Specifically, we shall describe the "squares kernel",
i.e., the set of elements of F which become squares in every ultra-
completion. We shall use without explanation the techniques of the
paper [4], the basic definitions of which we now outline.

Let v be a valuation on a field F, with value group Γv. Define
a linearly ordered set Λυ by

Λυ = {0*}U{αeΓ, |α^0}

where 0* is a formal symbol, Λv Π Γv inherits its order from Γv,
and 0* ^ a for all aeΛv. The map vx: Fx-+ΛV{J {oo} defined by
vx(a) = 0* if v(a) Φ 0, vx(a) — v(l — a) if v(a) = 0, is a group valuation
on Fx (i.e. v(a) = oo if and only if a = 1, vx(a) = vx(a~1), and vx(ab) ^
min {vx(a), vx(b)}). For a e Λv, let Fx = {a e Fx \ vx(ά) ̂  a}. Define a

group Δsq{F) (i.e., a family of groups indexed on Λv) by

Δ *{F)a = ΓJ2ΓV if a = 0*

= kxlkx2 if a = 0

= hi (additive group of kv) if 0 < a < v(4), a <£ 2ΓV

= ktl{a2 - a\aekv} if a = v(4) > 0

= the trivial group otherwise.

It is shown in [4] that when F is linearly compact at v, Fx/Fx2 is
isomorphic to the well ordered product HaeΛv Λsg(F)a (i.e., the subgroup
of ΠΔsq{F)a of elements with support a well ordered subset of Λv).
This theorem yields a calculation of the "squares kernel". Define:

Ksq{F, P) = (ArchP)+ F x 2 if P is real infinite

= Fx-Fx2 if P is complex infinite

= U {Fx -Fx21 a e Av, β ^ a implies Δsq{F)a trivial}

if P is finite.

(Note: Ksq(F, P) — 1 + 4 JP when P is finite, and kP has a quadratic
extension.)

THEOREM 3.2. Let (F, P) be a primed field. Then
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f){Fx2 Π Fx I (F, P) an ultracompletion of (F, P)} = K8q{F, P)

Proof. Recalling that k$ ~ R (resp. C) when P is real (resp.
complex) infinite, one can check easily that Theorem l l of [4]
implies Ksg(F, P) is contained in Fx2 for any ultracompletion (F, P),
in all cases. Conversely, suppose a$K8q(F, P). If P is complex
infinite this means v(a) £ 2Γ(JP) and a£Fx2 for any ultracom-
pletion. If P is real infinite this means either v(a) $ 2Γ(JP) or for
some ce Fx, φP(ac2) < 0 in kP, hence in any kP> so αgany Fx2. If
P is finite there must exist β e Λv with β > {vx(ac2) \ c e Fx}, and with
A8q{F)β Φ 1; let vx(b) = vsq(bFx2) = β. Then {vx(αδ c2) | ceFx} has no
maximum, but is bounded above by β, which must be ^ v(4). Hence
by [4, Remark 5 2], the extension Ff = .Fl/αS over i*7 has e — f ~
g — 1. Let P' be the unique prime on F ' extending P, then (ί7', P')
is an immediate extension of (F, P), and, in F', vsq(aFfx2) — β, (as
α (&/l/άδ)2 = b) so that α is not a square in any ultracompletion {F\
P') of (F\ P'). However, any such (F'f Pr) is also an ultracompletion
of (F, P), and thus a$Fx2 for some ultracompletion of (F, P).

We end this section by indicating an aspect of the ultracompletions
(F, P) of a primed field (F, P) which is unique (except when P is
complex infinite with [kP: PP — PP] > 2 as in Examples 1 and 2). Each
F with vP is a valued field, so the field ΔF of [6] is defined (and is
the field of real or complex Laurent series over Γ(JP) if P is real or
complex). In the notation of [6] let ΔP be all b e ΔF such that b has
a representation Σ b$ + hF with bάeP where j = J(^P)(δ). One can
show ΔP is a prime of ΔF. F and z/F have very similar properties
(see [6]). (ΔF, ΔP) can be constructed from (F, P) alone (except in
the case noted above) and so is unique.

4* Examples* This section contains examples illustrating some
pathology of complex conic archimedean primes, of ultracompletions,
and of the nonfield case, and an application of Theorem 2.2 to con-
traction of infinite primes in Q(x).

EXAMPLE 1. Let P be the nonnegative rationale, the unique (conic,
archimedean) infinite prime of Q. Let fp(x) be a polynomial of degree
a prime number p ^ 3, irreducible over Q, and possessing exactly two
nonreal roots (see [3, p. 130-131] for a construction of such poly-
nomials). Let K be a splitting field of fp(x) over Q, let G = Gal (K/Q).
G, as a permutation group on the roots of fpy contains a p-cycle σ (as
p I [K: Q] — (G: 1)) and a transposition, namely complex conjugation
ω. Hence G = Σ*> the symmetric group on p letters. Let F = K<σ>,
the fixed field of the cyclic subgroup <σ> of order p generated by σ.
Then [F: P - P] = [F: Q] = (p - 1)!, and moreover P is an infinite
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prime of the larger field F. [Suppose on the contrary that T =2 P is
an infinite prime of F; T is conic and archimedean as F is algebraic
over Q (cf. [10, 4.7]), so Γ — T is isomorphic to a subfield of R, say
by τeG. Hence o) leaves τ(T — T) elementwise fixed, and therefore
T — T £ F = K° is fixed (elementwise) by both the p-cycle σ and the
transposition τ~xωτ. Hence the subgroup of G fixing T — T is all of
G, T - T = Q, and Γ = P, a contradiction.]

REMARK. This example and the following one show that for a
conic archimedean infinite prime P of a field F, [F:P — P] = [F: BP] may
be quite large, even infinite. Whenever [F: P — P] = 2m > 2, the m
conjugate pairs of embeddings of (F, P) into (C, P) yield m noniso-
morphic ultracompletions of (F9 P).

EXAMPLE 2. Let P be an archimedean order of a field JP, and
suppose that P £ Fx2. Let aeP\Fx2, let α:0 = — α, in general for
n ^ 1 let a\ = α Λ - 1 (in some algebraic closure of F). Let F% = jP(αΛ).
Then [Fn: F] = 271 for all n, and P is an infinite prime of F^ = U~=i Fn

(so a fortiori of every i^). [observe ± an$ Fl for n^£l,i$Fn for
any w(ί2 = — 1), and then that the Fn are the only intermediate fields
between F*. and F.]

EXAMPLE 3. This shows Corollary 1.4 false for F not a field and
completes proving Corollary 1.5. Let R = Z[x], x an indeterminate.
Order R by: f(x) > 0 if and only if the leading coefficient of / is
positive. Let P be the set of nonnegative elements of R under this
ordering. P is a prime of R, for P 2 Z+ = nonnegative integers, a
prime of Z, so P Π Z = Z+, and if / € iiYP, / « Z, then - / - 1 e P,
so — 1 = / + (— / — 1), and / is in no preprime containing P. P
is non archimedean as n — x $ P for any neN, but JP = {0}.

EXAMPLE 4. We indicate how Theorem 2.2 can be used to con-
sruct primes by constructing some infinite primes of Q(x); for more
examples, see [20]. Let f(x) be an irreducible polynomial over Q,
let Po be an infinite prime of Q[x]/(f(x)) = Q(oc)9 a a root of / . Let
Uf = {g(x)/h(x) I g(a)/h(a) e Po} (where "εP0" means "defined and in Po").
Let / = {g(x)/h(x) \ g(a)/h(ά) is defined and = 0}, the maximal ideal of
the /-adic valuation. If there exist neN and c{x) e A,/J such that
c{x) IT) ί U ί ^ W I P is a prime number, p | }̂ (recall Γ(P0) ~ (Aj\J)/Uf)
then the set

is an infinite prime P = P(/, c) of Q(x), with J P = J, kP ~ Q(a), PP =
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Po. In fact, when deg / > 1, every non-archimedean prime containing
the "generating cone" Uf has the above form. In the special case that
Po is real, i.e., an order of Q(ά), taking n = 2m for m ^ 1 and c(x) = —
1 yields a real conic non-archimedean prime which is not an order,
hence not a mode; thus Theorem 1.1 extends Dubois' results even for
real infinite primes.

REMARK. The above construction, plus analogous ones for deg / =
1 and for / = 1/x yields all the conic infinite primes of Q(x) which
generate Q(x) as a field; the non-conic infinite primes are the Arch
P's for the the above P's. The other infinite primes are characterized
by [10, Thm. IV]: conic, archimedean primes generating proper sub-
fields. The method of Example 2 yields examples of these, e.g. if P
is an archimedean order of Q{x2%) such that x2n & P, then P is an infinite
prime of Q(x) Ron Brown in [5] has described all finite primes
of Q(x).

EXAMPLE 5. We construct nonisomorphic ultracompletions of a
primed field {F, P): Let Fn = Q(an) where aQ = 2, a\ = an_x for n ^ 1,
let F = (J~=1 -̂ » Then there is a unique prime P of F extending
the prime P(2) of Q (P(2) is the maximal ideal of the 2-adic valuation
ring of Q, see [11]). Let v = vPW Then (see [4] for notation) the
set {vx(— l>c2) \ceFx} has no maximum but is bounded above by

V(A) = vx(5) = max {vx(5-c2) \ c e Fx}, so also the set {vx(- 5 c2) | c € Fx}
has no maximum but is bounded above by v(4). Hence Fλ/— 1 and
FV — 5 are immediate extensions of F (with the unique prime ex-
tending P), but — 1 is not a square in any ultracompletion of FV' — 5
(as — l (τ/— 5/(— I))2 = 5) while — 1 is a square in FV — 1, so in
any ultracompletion of FV — 1. Since any ultracompletion of FV' — 1
or FV' — 5 is one of F, we have our example (in proving this, show
maxvί(- 1 FX) = (1 + Σ?=i2"*) vΛ(2) for all n and apply [4, Remark
5.2]).

REMARK. This example can be extended to show the existence
of ultracompletions with nonisomorphic Witt-Grothendieck rings of
equivalence classes of quadratic forms.

Note. MacLane's construction in [14, Example II, p. 381] gives
an example of a primed field (F, P) with nonisomorphic ultracomple-
tions, in which the prime P is finite, kP — Z9, and the value group
Γ(JP) is discrete rank two.
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A P P E N D I X

The lemma below contains t h e crucial tr ick inspired by Dubois'

examples in [10, §2]. Throughout this appendix we write a.c. for
additively closed, m.c. for multiplicatively closed.

LEMMA A. Let (A, M) be a valuation pair of F.
(1) If G is an a.c. subgroup of A\M, then G + M = G(l + M)

is also an a.c. subgroup.
(2) If H is a subgroup of Fx and j?=2 1 + M then H is a.c.

if and only if H f] (A\M) is a.c.

Proof. (1): Elementary valuation ring theory. (2): If H i s a .c ,
suppose hl9 h2e Hf) (A\M) but hx + h2 is not, then hx + h2 = a e M
and 0 - K + ( - h) = hί + h2(l - h2

ι a) e H + H(l + (A\M)M) S H, a
contradiction. Conversely, let H Π (A\M) be a.c. and hu h2 e H.
Supposing hτ% e A without loss, we have h~γh2 in H Π (A\M) or in
M, so 1 + hτ% eHn (A\M) and hι + h2 = h,{l + K%) e H.

Proof of Technical Lemma 1.2. (1) implies (3): (As-, S~) is a valua-
tion pair and S+ is an a.c. subgroup of Fx by [11, Props. 2.5, 1.6]. Let
(A, M) be a valuation pair with Ή Ξg S~~. MS Js is equivalent to
1 + J i g S+ by definition of Js

2 which implies S + Π (A\M) is a.c. by A(2),
so (a) implies (b). If (b) holds and H is a maximal a.c. subgroup of A\M
with H 2 S + Π (A\Λf), then ί ί 2 1 + M by A(l) and maximality.
Hence ί ί S = H-S+ U S " is a preprime 3 S , so = S, and H = S+ Π
(A\M), proving (c). (H-S is a preprime since i ϊ g A g A5~, H S+

and S" are both a.c. and m . c , while H-S+-S~~ S S~, H-S+ + S~ =
H S+(1 + S-) s HS+, and - 1 e H S implies - 1 e H S n (A\ikΓ) - # ,
a contradiction), (c) implies (a) as A(l) and maximality imply 1 + M£

s+gs.
(3) implies (4): Let (A, M) = (A5-, S")
(4) implies (2): With (A, M) the given valuation pair, let H 3

S+ be a maximal a.c. subgroup of AS-\S~. G = S + Π (A\Λf) 3 1 + Λf
(as before) so H^ 1 + M and i ϊ n (A\M) = G (as JΪΠ (A\itf) is a . c
by A(2), G is maximal), hence H = S+ by (b) of (4), proving (2). (2)
implies (1): S is a . c and m.c. since both S+ and S~ are, and S + S",
£ S~, S+ + 5 " = S+{1 + S~) £ S + (as 1 + S~ £ S+ by maximality), and - 1 6
S would imply 0 = - l + l e S + + S + £ S + , a contradiction, so S is
a preprime. Let T 2 S be a preprime and suppose α e Γ\S. If α ί
As~, — 1 = a (— α)"1 e α iS~ £ Γ, a contradiction. If α e As~, so in AS-\S~,
let H= {Σ?=o ̂ α* I s{ e S+ U {0}, some s< ̂  0, ̂  ^ 0}; ί ί is a.c. and m . c
If i J Π S" = 0 then {A^r11 ̂  e i ί} would be an a . c subgroup of As-/S~
properly containing S+, a contradiction. So, Σ?=o»*«* = α e S " and we

2 l + ΛfcS+ as 1 + meS~=> -1 = (1 + 2m) + 2(-l -ra)eS + 5 c S , contra.
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may assume n least so s0 Φ 0, n ^ l But then — 1 — Σ?=i (so —
cή^SiO,* e T (as s0 — α e S + ) , a contradiction. Thus S is a prime, (1)
holds.

The last assertion of the lemma follows as (1) implies (2) and (3)
hold.
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