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ON THE FRACTIONAL PARTS OF A SET OF
POINTS II

R. J COOK

Heilbronn proved that for any ε > 0 there exists a num-
ber C(e) such that for any real numbers θ and N > 1 there
is an integer n such that

1 < n < N and 11 n2θ 11 < C(e) N-1'2*'

where 11 a \ | denotes the difference between a and the
nearest integer, taken positively. The method depends on
WeyΓs estimates for trigonometric sums. The result was
generalized by Davenport who obtained analogous results for
polynomials which have no constant term.

The object here is to obtain a result for simultaneous
approximations to quadratic polynomials fu fR having no
constant term:

For any ε > 0 there is a number C = C(ε, R) such that
for any N > 1 there is an integer n such that

1 < n < N and \\Mn)\\ < CN~^9iR)+ε

for i = 1, , R ,

where flf(l) = 3 and g(R) = Ag(R - 1) + 4R + 2 for R > 2.

l Introduction* In 1948 Heilbronn [4] proved the result stated
above on the distribution of the sequence n2θ (mod 1). This was
generalized to polynomials which have no constant term by Davenport
[2].

THEOREM. Let ε > 0 and let R be a positive integer. Then there
is a number C = C(e, R) such that for any quadratic polynomials
fu # >/β having no constant term, and for any iSΓ> 1, there is an
integer n such that

(1) 1 < n < N and ||/4(n) || < CN~ι'a{R)+£

for i = 1, • • - , # ,

where

(2) 0(1) = 3 and g{R) = Ag(R - 1) + 4i2 + 2 for R^2,

the result being uniform in fl9 •••,/#•

It can be readily verified by induction that an explicit formula
for g(R) is

(3) 18g(R) = 29 . iR - 24R - 20 , for R ^ 2 .
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2* Preliminaries to the proof* The case R = 1 was proved by
Davenport [2]. The theorem will be proved by induction on R, so we
suppose the theorem is true for R — 1. ε denotes a small positive
number and r(ε) denotes a multiple of ε depending only on R, note
that r(ε) differs in its various occurrences. We may suppose that
N> N0(e, R). F<ζ G means that \F\ <CG where C depends at most
on ε and R. e(z) = exp(2πiz).

LEMMA 1 (Vinogradov). Let Δ satisfy 0 < Δ < 1/2 and let a he
a positive integer. Then there exists a function ψ(z), periodic with
period 1, which satisfies

(4) ψ(z) = 0 for \\z\\> Δ

and

Σ cιme(mz)

where the am are real numbers, a0 = Δ, am = α_w, m = 1, 2,

(5) I αw I < A min(z/, m""-1 J~α) , m Φ 0 ,

where A depends only on a.

Proof. This is a particular case of Lemma 12 of Chapter 1 of
Vinogradov [5J.

LEMMA 2 (Weyl) Let A and P be real numbers, P > 1. Let
a = aq"1 + β where (α, q) = 1, g > 1 αraϋ | /S | ^

( 6 ) ΐ)(P+q\ogq) .

Proof. See, for example, Lemma 1 of Davenport [1].

Let

(7) fan) = ̂ 2 + ̂ , i = 1, •••,#.

We choose a positive number d so that there is no integer n with

(8) l^n^N and ||/4(n) || < N~δ , i = 1, •••, -B.

We may suppose that δ < l/g(R). We take Δ = iV~5 and α = [2ε-L] + 1
in Lemma 1. Then

Σ Π Ψ(fi(n)) = 0

SO

ΛΓ1-^ + Σ* amι αmie T(m) - 0
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where Σ* denotes a summation over —oo<m1<oo> . . . , — oo < m Λ < oo,
m = (ml9 •••, mB) Φ 0,

( 9 ) T(m) = Σ e(m. θn2 + m. φn) ,

R R

(10) m 0 = Σ w^i and m. φ = Σ m*&

Summing over terms in the region | m1 \ > iVδ+ε we have

Σ I amι . αmΛ Γ(m) | < NΣ* Naδ ™T*~l

< iNΓ1-̂

by Lemma 1, and similarly for other regions | m< | > Nδ+ε. Thus

1 « N~1+Rδ ^ Ί S amR T(m) \

< N-1 Σ' I Γ(m) I

where Σf denotes a summation over max | m< | < iVδ+% m Φ 0. Taking
the square of this inequality and applying Cauchy's inequality we
have

(12) 1 < N~2+Rδ+Rε S

where

(13) S = Σ'\ T(m) |2 .

We now proceed to estimate S. Let Q = NΛ, T = iV5 where A
and £ will be chosen later. By Dirichlet's theorem on Diophantine
approximation, see Theorem 185 of Hardy and Wright [3], for each
m there exist integers α, 6, q and t such that

(14) m. θ = αg-1 + α with (α, g) = 1 , 1 < q < Q , ? | α | < Q"1

(15) m. ίδ = δ r 1 + /9 with (6, ί) = 1 , 1 < t < T , ΐ | /3 | < T"1 .

3* The induction step* For any m in the sum for S we have

(16) max | m, | < Nδ+ε .

Since m ̂  0 and \T(—m)\ = | Γ(m) | we may suppose that mβ > 0.

We take

(17) σ = 2g(R - l)δ + Ag(R - l)e ,

(18) A = A + (2ff(22 - 1) + 1) δ + (%(22 - 1) + 3)ε ,
Δ

and
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(19) B = \ + 2ε .

Applying the case R — 1 of the theorem to the polynomials

(20) ft{n) = m^fθ.n2 + qtφtnf i = 1, ., R - 1 ,

we see that there is an integer x such that

(21) ltζxtζN* and \\fi*(x) || < N~σl9{R-1)+ε ,

Suppose that q < JVri/2"<7~δ~4e. Taking 7/ = mRqtx we have 1 ̂  y ^ N
and f or i = 1, , JB — 1

II Λ(2/) II - II mWfθtf + mrfί&a II

by (16), (17), and (21). Also

Wfuiv) 11 = 11 m%qΨΘBx
2 + m Λ

< || mBq
2t2x2m. θ \\

+ || Σ w^ί^a? + mRqtφBx \\

<\mRqfx2\\\qm.θ\\^Σ,\mi\\\ft{x)\\

+ I^HIίm.φll

< N~δ ,

by (14) — (21), where the summations are over i = 1, , R — 1.
This contradicts the assumption that there were no integer solu-

tions of (8). Therefore q > tfw-o-i-*^

4* Completion of the proof of the theorem* Prom (6) we have

(24) I T(m) |2 < g~W2+ε + qNε + N1+£ .

For jVi/2-*-*-4« < g < i\Γ we have

(25) I T(m) |2 < q

Summing over O(NRlδ+ε)) such m we have a contribution Si to S
where

(26) S, <

For N < q < M = NA we have

(27) I T(m) |2 < ̂ iVe

Summing over 0{NR{S+t)) such m we have a contribution S2 to S where
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(28) S2 < 2Ϋ1+lι2+l20lB~1)+R+1)δ+rls) .

Therefore, from (12), we have

Hence

\ 1) + 2Λ + 1)5 + r(e)

so

(30) δ > l/flr(iZ) - r(ε)

and the theorem is proved.
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