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NON-APOSYNDESIS AND NON-HEREDITARY
DECOMPOSABILITY

H. E. SCHLAIS

Let M be a compact metric continuum. If xc M let K(x)
be the set to which an element y of M belongs if and only
if M is not apesyndetic at x with respect to y. If, for all x in
M, x € Int (K(x)), then M is the union of a countable collection
of indecomposable subcontinua each of which is the closure
of an open set. There exists a compact metric continuum M
and a dense subset J of M such that for each zcJ, K(x)=S,
but M contains no indecomposable subcontinua with nonveid
interior. It is the case, however, that if J/ has a point x
such that Int (K(x)) = ¢ then M contains an indecomposable
subcontinua which intersects Int (K(x)).

Professor F. Burton Jones, in [1], demonstrated that for compact
metric continua relationships between nonaposyndesis and indecom-
posability exist. The examination of such relationships is continued
in this paper. The primary concern is to show that certain non-
aposyndetic properties, similar to but weaker than those of Theorems
9 and 10 of Jones’ paper, insure the existence of indecomposable sub-
continua.

1. DEFINITIONS. Let space be metric. For a set A, the interior
of A and the boundary of A will be denoted by Int(4) and Bd (4)
respectively. If A and B are sets, then by A — B is meant {x ¢ A:
x¢ B}. The closure of A will be denoted by A. Given subsets 4
and B of a continuum M, M is said to be aposyndetic at A with respect
to B if there is a subcontinuum H of M such that Ac Int (H)c HC
M — B. For a subset A of a continuum M let T,(A) = {xe M: M is
not aposyndetic at {x} with respect to A} and K, (4) = {xe M: M is
not aposyndetic at A with respect to {x}}. 7T,(x) and K, (x) will be
used for T, ({x}) and K, ({z}) and the subscript may be omitted where
no confusion is likely to result (e.g. Ty(x) = T(x)).

2. Essentially indecomposable sets. Theorem 9 of [1] states
that a wnecessary and sufficient condition that the continuum M be
indecoemposable is that if x and y are points of M then M is non-
aposyndetic at x with respect to y. We obtain, from this condition,
the following definition. A subset A of a continuum M is essentially
indecomposable in M (often, in context, essentially indecomposable)
if whenever x and y are points of A then M is not aposyndetic at x
with respect to y. Thus the limit bar in the sin 1/x continuum is
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essentially indecomposable in that continuum and any subset of an
indecomposable continuum S is essentially indecomposable in S.

The following is immediate from the definition.

THEOREM 1. An essentially indecomposable open subset of a con-
tinuum M is an essentially indecomposable subset of each subcontinuum
of M which contains it.

LEMMA 1. If A is an essentially indecomposable open subset of
a compact continuum M and H is a subcontinuum of M with A— H= Q)
then A s contained in a component C of M — H.

Proof. Assume the lemma false. Then M — H is the union of
disjoint closed sets B, and B,. Assume, without loss of generality,
that B, contains an open subset U of A. Thenif xe Uand ye B,,N A4,
HU B, is a continuum with xeInt (HUB)Cc HUB,c M — y. This
is a contradiction.

If F is a collection of sets then by F'* is meant the union of the
elements of F.

THEOREM 2. If A s an essentially indecomposable open subset
of a compact continuum M and F is a finite collection of subcontinua
of M such that for each feF, A — f+ @, then A is contained in one
component of M — F*.

Proof. The theorem follows from Lemma 1 and Theorem 1 using
finite induction.

THEOREM 3. If A is an essentially indecomposable open subset
of a continuum M, then there is an open subset U of M, containing
A, such that U is maximal with respect to being essentially indecom~
posable and open. Further of UNV #= @ with V open and essentially
indecomposable, then V C U.

Proof. Let B= {Wc M: W is open, essentially indecomposable,
and W> A}. Let U= B*. Clearly, a subcontinuum K of M, con-
taining a point of U in its interior, contains A. Thus if W e B, there
is a point x, such that z, € Int(K); so K> W. Hence Uc K and
U is essentially indecomposable. If an essentially indecomposable open
set R contains U then R> A and Re B; so Rc U.

If V is an essentially indecomposable open set such that UN V=@,
then it follows that UU V is essentially indecomposable and open.
Thus UU VeB and so Vc U.
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A subset A of a continuum M which is maximal with respect to
being open and essentially indecomposable in M will be called a
maximal essentially indecomposable open subset of M.

COROLLARY 3.1. There ewist at most countably many mavimal
essentially indecomposable open subsets of o separable continuum M.

THEOREM 4. If an essentially indecomposable open subset A of a
compact continuwum M s such that M — A has at moest countably many
components, then A is connected.

Proof. Assume the theorem false. Then there exists an essen-
tially indecomposable open set A with A = HU K where H and K
are nonempty disjoint closed subsets of M and M — A has at most
countably many components. Let {C;:7=1,2, ---} be a counting of
the components of M — A. For1=1,2, ---, let H; be the collection
of all components in A which contain a point of C; and let K, = C; U H;".
Since A ¢ U {K;} there is a j such that K; contains an open subset
of A and thus K, contains A. Let A, ={heH;:hc H}. Then
AF U C; is a subcontinuum which contains an open subset of A but
does not contain A. This is a contradiction.

ExampLE 1. The closure of a maximal essentially indecomposable
open set need not be connected. Let M’ be a compact plane indecom-
posable continuum which contains the points (0, 0) and (1, 0). Let
M= {z,y2): (@ y)eM and 2=0or 2 >1/2 and z =2 — 1/2}. Let
U be the open subset of M which is {(z, y, 2) e M: x < 1/2}. If z and
y are points of U, it follows that M is not aposyndetic at z with
respect to y and U is essentially indecomposable. If V is an open
subset of M which properly contains U then one of A = {(z, v, 2) €
M:2x>1/2,2=0} or B={(x,y,2)eM:x>1/2, z=2a— 1/2} contains
an open subset of V. Assume without loss of generality it is A.
Then the subcontinuum of M which is M — A contains U but does
not contain V and V is essentially decomposable. Thus U is a maximal
essentially indecomposable open set. Clearly U is not connected.

LeMMA 2. In a continuum M, if ye Int K(x) then K(y) C K(x)
and, hence, Int K(y) < Int K(x).

For a continuum M, Int I(M) denote {x e M: xz e Int (K, ()}
THEOREM 5. For a continuum M, (M) is an F, set.

Proof. For eache >0 let I, = {x e [(M): d(x), M — Int (K(z)) = ¢}.
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To see that I, is a closed set let » be a limit point of I, and suppose
{e:i=1,2, ---} is a sequence of points of I, which converges to p.
There exists an integer N such that if 4= N and 5 > N, then
d(x;, ;) < ¢/2. For such ¢ and j Int (K(x;)) = Int (K(x;)) by Lemma
2. If H is a subcontinuum of M containing p in its interior, then
for some 7 = N the point x; is in Int (H) and therefore Int (K(x,)) = H.
But Int (K(x,)) = Int (K(xy)), so Int (K(zy))  K(p). Since d(zy, p) < ¢/2,
pe Int (K(zy)) and peI(M). If xe M is such that d(x, p) < ¢ then
there is an ¢ > 0 such that d(z, p) + e<e. If ¢> N is such that
d(x;, p) < e, then d(x;, x) < d(x;p) + d(x, p) < € and z € Int (K(x,)). As
above, Int (K(z;)) < Int (K(p)) and so d(p, S — Int K(p)) =e. Thus pel.
Since I(M) = Us-: L., I(M) is an F, set

THEOREM 6. I(M) intersects an open subset U of a complete con-
tinuum M in a second category subset if and only if U contains an
essentially indecomposable open set.

Proof. If the open subset U of M contains a second category
subset which is a subset of I(M), then for some M =1, 2, --., the
set I,;, (as defined in the proof of Theorem 5) contains an open subset
V. If W is an open subset of V of diameter less than 1/2n, then,
for each e W, K(x) > W. Thus W is essentially indecomposable.

Conversely, if the complete continuum M contains an essentially
indecomposable open set U, it then follows that for each x € U, x € I(M).

COROLLARY 6.1. If, in the compact continuum M, I(M) intersects
the open subset U of M in a second category set, then U intersects
an tndecomposable subcontinuum of M which has a nonvoid interior.

Proof. From Theorem 6, U contains an essentially indecomposable
open subset of M. A subecontinuum of M irreducible about U is
indecomposable.

COROLLARY 6.2. If I(M) intersects each open subset of the com-
pact continuum M in a second category set thenm the collection of
indecomposable subcontinua of M which have nonvoid interior has a
dense union in M.

ExAMPLE 2. A compact plane continuum M in which I(M) is
dense which contains no indecomposable subcontinua with nonvoid
interiors.

Let D be the closed square disk in E*® whose opposite vertices
are (—1, —1) and (1,1). Let D} and D? be subsets of D homeomorphic
to D — {(1, 0)} which spiral out to Bd (D), as indicated in Figure 1,
so that Bd (D) is the limiting set of each of the spirals.
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FIGURE 1

Define the spaces M, inductively as follows. Let M, = D:U D
Let f} and f% be homeomorphisms of D — {(1, 0)} onto D} and D:
respectively. Let M, = fi(M,— {1, 0)}) U /3 (M, — {(1, 0)}). For n>2,
assume M,_, has been defined and let D. ,, D> ,, -+, D}"7" be a
counting of the images in M, , of D! and D? respectively. Let

Ly fa, eee, 277V be homeomorphisms of D — {(1, 0)} onto

D._, D, -, D", such that for each xe D — {(1, 0)}

n—1y

1
n—1"

(1) d(fia@), D — fi{D — {1, 0}}) <

Let M, = U fi_(S,—{1,0)}),7=1,2, ---, 2", and then define M to
be NM,,n=1,2 ---.

If n is a positive integer, 7 < 2" and p and ¢ are points in Bd (Dy),
then it is clear that M is not aposyndetic at p with respect to q.
Since, if K = n and j < 2% is such that D% < D}, each point of Bd (D7)
is a boundary point of D3, we have for each e Bd (D), K(x) D
{Bd (D}): Dj < Di}*. It follows from (1) that, for such z, K(x) is dense
in D} N M and, since K(x) is closed, it thus contains Di N M. If for
some 7 and ¢, x<cBd(Di) then xelnt(K(x)). Since, as above,
{x:xeBd (D), n=1,2,-..,9< 2" is dense, I(M) is dense.

If K is a subcontinuum of M with interior, then there are integers
N, i, and j, with 7= 7, such that Int (K) N D} # @ and Int (K) N
Di,+ @». The subcontinua KN Dy and KN (M—D%) of K decom-
pose K.

LEMMA 3. Let A be a maximal essentially indecomposable open
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subset of a compact continuum M and xcI(M). Then if x¢ A, M is
aposyndetic at x with respect to A.

Proof. If x¢ A and U is an open subset of M — A such that
Uc Int (K(x)), then A U U is not essentially indecomposable. It fol-
lows from Lemma 1 that there is a subcontinuum H of M such that
HoAand (AU U)— H+# @ — i.e., M is aposyndetic at A with respect
to U — H. Since U is any open subset of Int (K(x)) — A4,

B = {yelnt (K(x): T(y) NA = &}

is dense in Int(K(x)) — A. Let K = {T(y):y € B}*. Since T(y) is con-
nected [1, Theorem 3] and x e T(y) for each y e B, K is a continuum.
Since ¢ A, v ¢ Int (K) and, since KN A = @, we have the lemma.

LemMA 4. If, for a compact continuum M, (M) = M and A is
a maximal essentially indecomposable open set, then A 1is conmected.

Proof. Assume, on the contrary, that A is a maximal essentially
indecomposable open set and yet A = A, U 4, where A, and A, are
separated subsets of M. Let U be an open subset of M — A, con-
taining A, with Bd(U)N A = @. By Lemma 3, M is aposyndetic at
each z¢e Bd (U) with respect to A. Hence there is a finite collection
{H, H,, ---, H,} of subcontinua whose interiors cover Bd (U) such that
for each 1 =1,2, -+, n, H,N A = @. By Theorem 2, there is a sub-
continuum C of M with Cc M — U H; such that Ac C. But then
Cc M — Bd(U) and so Bd (U) does not separate M between A, and
A,. This is a contradiction.

THEOREM 7. If M is a compact continuum with I(M) = M, then
M is the union of a countable collection of indecomposable continua
each of which is the closure of a member of a closure preserving collection
of maximal essentially indecomposable open subsets of M.

Proof. It follows from Theorem 6 and Corollary 3.1 that there
is a countable collection of maximal essentially indecomposable open
subsets of M whose union is dense in M. Let {U:.n =128, .-}
be a counting of this collection. Since for each 4, U; is connected
(Lemma 4) it follows that U, is an indecomposable continuum.

Let U= {U,;:%1=1,2, ---} be a subcollection of {U,: n =1, 2, -}
and « be an element of M such that xem for any 4. Then, by
Lemma 3, for each ¢, M is aposyndetic at « with respect to U,,. Thus
Int (K(x)) N U,, = @ for each 4 and since zelnt(K(»)),x¢ U U,,
Therefore {U,: n = 1,2, --+} is closure preserving and M = U U..
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EXAMPLE 3. There exists a compact metric continuum M such
that I(M) = M and M is not the union of the closures of any finite
collection of maximal essentially indecomposable open sets.

For each i = 1,2, ---let M; be a planar indecomposable subcon-
tinuum of E° of diameter less than 1/ such if ¢ = j M; N M; = (0, 0, 0).
Let M = U M.

Clearly M = I(M). The maximal essentially indecomposable open
subsets of M are Int (M) relative to M. No finite collection of the
closures of Int (};) has union M.

3. Non-aposyndesis and the existence of indecomposable sub-
continua. An indecomposable subcontinuum M is K(x) for each x € M
[1, Theorem 9], i.e., M is I(M). In Example 2, I(M) is dense. Note
also that if one takes a nested sequence E of the Di’s used in the
construction of Example 2, then the subspace M, of M (where M, is
U{Din M: Dic E}) is an indecomposable continuum. This is seen
by observing that if » and y are points of M, then M, is not apos-
yndetic at @ with respect to ¥ and applying Theorem 9 of [1] again.
Since in each of the above examples there exists an indecomposable
subcontinuum and I(M) is infinite the following two considerations
seem natural:

(a) If I(M)+ @ then must it necessarily be infinite; and

(b) If I(M) =+ @ then must M contain an indecomposable sub-
continuum?

Consideration (a) is answered negatively by Example 4 while
Theorem 9 shows that the answer to consideration (b) is yes.

EXAMPLE 4. There exists a compact plane continuum M which
has exactly one point p such that pelInt(K(p)) (i.e., I(M) = {p}).
For this point K(p) = M.

FIGURE 2
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Let C be the unit square in the plane, pe C, and, as indicated
in Figure 2, D}, D;, --- be a sequence of closed topological disks in
the plane having C as its limit set, such that D, N D; = {p} if 7 # J.
Let M,={D:7=1,2,---}UC. Assume M, to be defined and let
{Dy:49=1,2...} be a counting of the maximal topological disks in M,.
Let f? be a homeomorphism of M, into D7 such that f7(p) = p, f(C) =
Bd (D7) and, for xe M,

(2) d(fi@), By — fi(@) < -j,;— .

LetM,,,= U{fy(M):i=1,2,8, ---}and M= U{M,:n=1,2,---}.
If C? is the simple closed curve which is the boundary of D?, then
it is clear that for any ¢ and =, M is not aposyndetic at p with
respect to any point of Cr. Thus

K@D U(Crin=1,2i=12 --.}.

It follows from condition (2) that K(p) = M. Clearly, if an element
x of M is different from p and ye K(x), there exists a sequence
{yi:1=1,2,8, --+} converging to y such that, for each 7, y,¢ K(x).
Thus K(x) is nowhere dense for 2 = p and p is the only point of M
with Int (K(p)) = @.

THEOREM 8. A necessary and sufficient condition that the compact
continuum M not be hereditarily decomposable is that, for some sub-
continuum K of M and point p of K, there exists a sequence U, U, «--,
of pairwise disjoint open subsets of M which converges to p such that,
foreach i, UyN K= @, p¢ U, and, if 1 < J, the p-component of K — U,
does mot intersect U,.

Proof. The sufficiency is established first. Assume K, p, and
U, U, --- are as in the statement of the theorem. Let H be a sub-
continuum of K irreducible with respect to intersecting each U,.
Assume H is decomposable. Then H= AU B where A and B are
proper subcontinua of H. Assume without loss of generality A N U, @
for infinitely many j. Then pe A. It follows, that for each 7 there
is a j>1 such that U;N A+ @. Hence for each i, AN U, # @&.
But A is a proper subcontinuum of H. This contradicts the choice
of H.

To establish the necessity, let K be an indecomposable subcon-
tinuum of M and pe K. Let U, be an open set intersecting K such
that p¢ U,. Since K is indecomposable, p is not an interior point,
relative to K, of P,, the p-component of K — U,. Thus there is an
open set U, of diameter less than 1/2, which intersects K, such that
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U,NP =@, dp, U)<1/2and U,N T, = .

If the set U, has been defined, let P, be the p-component of
K — U,. Since P,= U{P:1=1,2, ---, n} contains no interior rela-
tive to K, p is not an interior point, relative to K, of P,. Let U,
be an open set of diameter less that 1/(» + 1) which intersects K,
such that U,., NP, = @, d(p, U,.,) <1/(n + 1) and T, N U{T: i =
1,2, .-+, 0} = ¢. Clearly K, p and U, U, --- are as required.

THEOREM 9. If M 1is a compact continuum and for some xe M,
Int (K(z)) == @, then M 1is not hereditarily decomposable.

Proof. Let U, be a nonempty open subset of Int (K(x)) with
U, < Int (K (2)) such that 2 ¢ U,. Let B be the set of points in U, which
are points of C,, the z-component of M — U,, and U, be an open
subset of U, with U, U,. Let ¢, be a positive real number less than
1/2 such that N.(B)N U, = @ and N, (B)C Int (K(x)).

Since M is not aposyndetic at & with respect to any point of U,
it can be seen as follows, that C,, the z-component of M — U, does
not contain N, (B). Assume the statement false. Since C, does not
contain U, x ¢ M — C,. Clearly, # is not in any component of M — C;
which intersects U,. Thus for each pe U, there exists mutually
separated sets A, and B, such that A,UB, =M — C,xzc A, and
peB, For pelU, C,UA, is a continuum. But zeInt(C,U 4,) and
CiUA,c M- {p}. This is a contradiction. Let U, be a nonempty
open subset of N, (B) such that U,c M — C, and U,c N, (B) — B.
Let C, be the x-component of M — U,. Note, as follows, that Int (C,)
does not contain B. Assume that BcCInt(C,). Since U,c K(»),
xe M — C,. Further, C, the z-component of M — C,, does not intersect
U, since Cc C, and U,NC, = . Thus there is a separation of
M — C, between = and a point of U, As above, this is a contradic-
tion.

If the set U, has been defined, let C, be the z-component of
M — U, and ¢, be a positive real number less than 1/2" such that
N.(B)N (U, U) = @ and N, (B) CInt (K(x)). It follows, as above,
that C, does not contain N, (B). Let U,., be an open subset of
N, (B) such that U,.,NC, = ¢ and U,.,C N. (B) — B.

Assume without loss of generality that U, U, --- converges to
a point b of B. Suppose U;N C, # @ for some i. Since U, N C, = &,
there is a smallest 7> 1 such that U, N C, # @. But then U, N C,_, = &.
This contradicts our choice of U, It now follows that M, b, and
U, U, --- satisfy the condition of Theorem 8.

THEOREM 10. If an element = of a compact continuuwm M has
Int (K(%)) + @ and K is the collection of indecomposable subcontinua
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of M, then K* is dense in Int (K(x)).

Proof. The choice for U, in the proof of Theorem 9 can be made
in such a way that U, is any open subset of Int (K(x)) such that
x¢ U, and U, < Int (K(x)). From the proof of Theorem 8, there exists
an indecomposable subcontinuum at M which intersects U,. Since
every open subset of Int (K(x)) contains such an open set, K* is dense
in Int (K(2)).
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