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NON-APOSYNDESIS AND NON-HEREDITARY
DECOMPOSABILITY

H. E. SCHLAIS

Let M be a compact metric continuum. If x e M let K(x)
be the set to which an element y of M belongs if and only
if M is not aposyndetic at x with respect to y. If, for all x in
M, x e Int (K(x))9 then M is the union of a countable collection
of indecomposable subcontinua each of which is the closure
of an open set. There exists a compact metric continuum M
and a dense subset J of M such that for each xeJ,K(x)=S,
but M contains no indecomposable subcontinua with nonvoid
interior. It is the case, however, that if M has a point x
such that Int (K(x)) = 0 then M contains an indecomposable
subcontinua which intersects Int (K(x)).

Professor F. Burton Jones, in [1], demonstrated that for compact
metric continua relationships between nonaposyndesis and indecom-
posability exist. The examination of such relationships is continued
in this paper. The primary concern is to show that certain non-
aposyndetic properties, similar to but weaker than those of Theorems
9 and 10 of Jones' paper, insure the existence of indecomposable sub-
continua.

1. DEFINITIONS. Let space be metric. For a set A, the interior
of A and the boundary of A will be denoted by Int (A) and Bd (A)
respectively. If A and B are sets, then by A — B is meant {x e A:
xgB}. The closure of A will be denoted by A. Given subsets A
and B of a continuum M, M is said to be aposyndetic at A with respect
to B if there is a subcontinuum H of M such that A c Int (H) a Ha
M — B. For a subset A of a continuum M let TM(A) = {x e M: M is
not aposyndetic at {x} with respect to A) and KM(A) = {xe M: M is
not aposyndetic at A with respect to {x}}. TM{x) and KM(x) will be
used for TM{{x}) and KM{{x}) and the subscript may be omitted where
no confusion is likely to result (e.g. TM(x) = T(x)).

2. Essentially indecomposable sets* Theorem 9 of [1] states
that a necessary and sufficient condition that the continuum M be
indecomposable is that if x and y are points of M then M is non-
aposyndetic at x with respect to y. We obtain, from this condition,
the following definition. A subset A of a continuum M is essentially
indecomposable in M (often, in context, essentially indecomposable)
if whenever x and y are points of A then M is not aposyndetic at x
with respect to y. Thus the limit bar in the sin 1/x continuum is
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essentially indecomposable in that continuum and any subset of an
indecomposable continuum S is essentially indecomposable in S.

The following is immediate from the definition.

THEOREM 1. An essentially indecomposable open subset of a con-
tinuum M is an essentially indecomposable subset of each subcontinuum
of M which contains it.

LEMMA l If A is an essentially indecomposable open subset of
a compact continuum Mand H is a subcontinuum of M with A — H= 0
then A is contained in a component C of M — H.

Proof. Assume the lemma false. Then M — H is the union of
disjoint closed sets Bt and B2. Assume, without loss of generality,
that Bγ contains an open subset U of A. Then if x e U and y e 1?2, Π A,
HUB, is a continuum with x e Int (H U B,) c H U Bλ c M - y. This
is a contradiction.

If F is a collection of sets then by JP* is meant the union of the
elements of F.

THEOREM 2. // A is an essentially indecomposable open subset
of a compact continuum M and F is a finite collection of subcontinua
of M such that for each fe F, A — / Φ 0 , then A is contained in one
component of M — F*.

Proof. The theorem follows from Lemma 1 and Theorem 1 using
finite induction.

THEOREM 3. If A is an essentially indecomposable open subset
of a continuum M, then there is an open subset U of M, containing
A, such that U is maximal with respect to being essentially indecom-
posable and open. Further if U' Γ) V Φ 0 with V open and essentially
indecomposable, then Va U.

Proof. Let B = {Wa M: W is open, essentially indecomposable,
and WZDA). Let U—B*. Clearly, a subcontinuum K of M, con-
taining a point of U in its interior, contains A. Thus if W eB, there
is a point xw such that xwe Int (if); so Kz) W. Hence UdK and
U is essentially indecomposable. If an essentially indecomposable open
set R contains U then R z> A and ReB; so Ra U.

If V is an essentially indecomposable open set such that UΠ VΦ0,
then it follows that Uϋ V is essentially indecomposable and open.
Thus UU VeB and so Va U.
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A subset A of a continuum M which is maximal with respect to
being open and essentially indecomposable in M will be called a
maximal essentially indecomposable open subset of M.

COROLLARY 3.1. There exist at most countably many maximal
essentially indecomposable open subsets of a separable continuum M.

THEOREM 4. // an essentially indecomposable open subset A of a
compact continuum M is such that M — A has at most countably many
components, then A is connected.

Proof. Assume the theorem false. Then there exists an essen-
tially indecomposable open set A with A — H U K where H and K
are nonempty disjoint closed subsets of M and M — A has at most
countably many components. Let {d: i = 1, 2, •••} be a counting of
the components of M — A. For i = 1, 2, , let Hi be the collection
of all components in A which contain a point of d and let K{ = Cι U H*.
Since A c U {iΓJ there is a j such that K5 contains an open subset
of A and thus K3 contains A. Let Aγ = {h e Hβ\ ha H). Then
Af U Cj is a subcontinuum which contains an open subset of A but
does not contain A. This is a contradiction.

EXAMPLE 1. The closure of a maximal essentially indecomposable
open set need not be connected. Let M' be a compact plane indecom-
posable continuum which contains the points (0, 0) and (1, 0). Let
M = {(x, y, z): (x, y) e M; and z = 0 or x > 1/2 and z = x - 1/2}. Let
U be the open subset of M which is {(x, y, z) e M: x < 1/2}. If x and
y are points of U, it follows that M is not aposyndetic at x with
respect to y and U is essentially indecomposable. If V is an open
subset of M which properly contains U then one of A = {(x, y, z) e
M:x> 1/2, z = 0} or B = {(x, y, z) e M: x > 1/2, z = x - 1/2} contains
an open subset of V. Assume without loss of generality it is A.
Then the subcontinuum of M which is M — A contains U but does
not contain V and V is essentially decomposable. Thus U is a maximal
essentially indecomposable open set. Clearly U is not connected.

LEMMA 2. In a continuum M, if y e Int K(x) then K(y) c K(x)
and, hence, Int K(y) c Int K(x).

For a continuum M, Int I(M) denote {x e M: xe Int (KM(x)}.

THEOREM 5. For a continuum M, I(M) is an Fσ set.

Proof. For each ε > 0 let Iε = {x e I(M): d(x), M - Int (K(x)) ̂  e}
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To see that Iε is a closed set let p be a limit point of I ε and suppose
{xt: ΐ = 1, 2, •} is a sequence of points of I£ which converges to p.
There exists an integer N such that if i Ξ> N and i >̂ N, then
d(^, $,•) ̂  ε/2. For such i and j Int (iΓ(^)) = Int (K(XJ)) by Lemma
2. If H is a subcontinuum of M containing p in its interior, then
for some i^> N the point xt is in Int (H) and therefore Int (K(Xi)) c ff.
But Int (K(Xi)) = Int (#(»*)), so Int (JBΓ(α̂ )) c ίΓ(j>). Since d(xN, p) ̂  ε/2,
p G Int (!£(##)) and p e I(M). If a; G M" is such that cί(x, p) < ε then
there is an e > 0 such that d(x, p) + e < ε. If i > iV is such that
d{xι, p) < e, then d(xi9 x) ̂  d(xip) + d(#, p) < ε and x e Int (ϋΓ^)). As
above, Int {K{x%)) c Int (K(p)) and so d(p,S- Int 7Γ(p)) ̂  ε. Thus p e Iε.

Since I(Af) - U?«i £/•, ̂ W i s a n ^ s e t

THEOREM 6. /(ilf) intersects an open subset U of a complete con-
tinuum M in a second category subset if and only if U contains an
essentially indecomposable open set.

Proof. If the open subset U of M contains a second category-
subset which is a subset of I(M), then for some M= 1,2, •••, the
set I1Jn (as defined in the proof of Theorem 5) contains an open subset
F If W is an open subset of V of diameter less than l/2n, then,
for each x 6 W, K(x) D W. Thus W is essentially indecomposable.

Conversely, if the complete continuum M contains an essentially
indecomposable open set U, it then follows that for each x e U, x e I{M).

COROLLARY 6.1. //, in the compact continuum M, I(M) intersects
the open subset U of M in a second category set, then U intersects
an indecomposable subcontinuum of M which has a nonvoid interior.

Proof. From Theorem 6, U contains an essentially indecomposable
open subset of M. A subcontinuum of M irreducible about U is
indecomposable.

COROLLARY 6.2. // I{M) intersects each open subset of the com-
pact continuum M in a second category set then the collection of
indecomposable subcontinua of M which have nonvoid interior has a
dense union in M.

EXAMPLE 2. A compact plane continuum M in which I(M) is
dense which contains no indecomposable subcontinua with nonvoid
interiors.

Let D be the closed square disk in E2 whose opposite vertices
are (—1, —1) and (1,1). Let D\ and D\ be subsets of D homeomorphic
to D — {(1, 0)} which spiral out to Bd (JD), as indicated in Figure 1,
so that Bd (D) is the limiting set of each of the spirals.
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FIGURE 1

Define the spaces Mn inductively as follows. Let Mx = D[ U 2??.
Let f\ and f\ be homeomorphisms of D — {(1, 0)} onto D\ and DJ
respectively. Let M2 = f\(Mx - {(1, 0)}) U /?(!£ - {(1, 0)}). For n > 2,
assume ikfΛ-1 has been defined and let iJUi,-D«-i, •••, JD»*Γ1J be a
counting of the images in Mn_x of Dί and D\ respectively. Let
fn-i, fl-i, •••, /1-Γ1} be homeomorphisms of D — {(1, 0)} onto

, /?»-Γ

( 1 )

that for each a ? e f l - {(1, 0)}

~ {1, 0}})

, 2,

n - 1

and then define M toLet Mn = U /;_!(& - {(1, 0)}), i =
be Π ΛfΛ, w = .1, 2, .

If % is a positive integer, i ^ 2n and p and g are points in Bd (Di),
then it is clear that M is not aposyndetic at p with respect to q.
Since, iί K ^ n and i ^ 2K is such that J% c Di, each point of Bd (Di)
is a boundary point of Dj

κ, we have for each x e Bd (Di), K(x) Z)
{Bd (Di): Dί aDi}*. It follows from (1) that, for such x, K(x) is dense
in Dι

n Π M and, since !£(#) is closed, it thus contains T)ΐ Π M. If for
some n and i, α? e Bd (JD;) then a? e Int (ίΓ(a?)). Since, as above,
{x: x G Bd (Z>i), w = 1, 2, , i ^ 2n} is dense, /(M) is dense.

If if is a subcontinuum of M with interior, then there are integers
N, i, and j , with i Φ j , such that Int (K) n Dι

N Φ 0 and Int (K) Π
Dj

NΦQ). The subcontinua Ϊ
pose K.

and of K decom-

LEMMA 3. Let A be a maximal essentially indecomposable open



648 H. E. SCHLAIS

subset of a compact continuum M and x e I(M). Then if x & A, M is
aposyndetic at x with respect to A.

Proof. If x $ A and U is an open subset of M — A such that
Ucz lnt(K(x)), then A U U is not essentially indecomposable. It fol-
lows from Lemma 1 that there is a subcontinuum H of M such that
HZD A and (A (J U) — Ή.Φ 0 — i.e., Mis aposyndetic at A with respect
to U — H. Since U is any open subset of Int (K(x)) — A,

B= {ye Int (K(x)): T(y) Π A = 0}

is dense in Int(ϋΓ(α?)) - A. Let K= {T(y):yeB}*. Since T(y) is con-
nected [1, Theorem 3] and xe T(y) for each ye B, K is a continuum.
Since x#Ά,xe Int(K) and, since K Π A = 0 , we have the lemma.

LEMMA 4. //, /or a compact continuum M, I{M) — M and A is
a maximal essentially indecomposable open set, then A is connected.

Proof. Assume, on the contrary, that A is a maximal essentially
indecomposable open set and yet A = Aι U A2 where A1 and A2 are
separated subsets of M. Let U be an open subset of M — A2 con-
taining A, with Bd (U) Π A = 0 . By Lemma 3, M is aposyndetic at
each xe Bd (U) with respect to A. Hence there is a finite collection
{Hl9 H2, , Hn) of subcontinua whose interiors cover Bd (U) such that
for each i = l,2, •••,%, flinA= 0 . By Theorem 2, there is a sub-
continuum C of M with CczM— [j Hi such that A c C . But then
Cd M — Bd (Z7) and so Bd (U) does not separate Λf between A1 and
A2. This is a contradiction.

THEOREM 7. If M is a compact continuum with I(M) = M, then
M is the union of a countable collection of indecomposable continua
each of which is the closure of a member of a closure preserving collection
of maximal essentially indecomposable open subsets of M.

Proof. It follows from Theorem 6 and Corollary 3.1 that there
is a countable collection of maximal essentially indecomposable open
subsets of M whose union is dense in M. Let {Un: n — 1, 2, 3, •}
be a counting of this collection. Since for each i, ϋi is connected
(Lemma 4) it follows that C/i is an indecomposable continuum.

Let U — {Un.: i = 1, 2, •} be a subcollection of {Un: n — 1, 2, •}
and x be an element of M such that x & TJZi for any i. Then, by
Lemma 3, for each ί, Mis aposyndetic at x with respect to Un.. Thus
Int (K(x)) D Un. = 0 for each i and since x e Int (K(x)), x £ U Un..
Therefore {Un: n — 1, 2, •} is closure preserving and M — \JUi.
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EXAMPLE 3. There exists a compact metric continuum M such
that I{M) = M and M is not the union of the closures of any finite
collection of maximal essentially indecomposable open sets.

For each i = 1, 2, let Mi be a planar indecomposable subcon-
tinuum of E2 of diameter less than 1/i such if i Φ j Mi Π M, = (0, 0, 0).
Let If = U M^

Clearly M = I(M). The maximal essentially indecomposable open
subsets of M are Int {Mό) relative to M. No finite collection of the
closures of Int (Md) has union M.

3* Non-aposyndesis and the existence of indecomposable sub-
continua* An indecomposable subcontinuum M is K{x) for each xeM
[1, Theorem 9], i.e., M is I(M). In Example 2, I(M) is dense. Note
also that if one takes a nested sequence E of the Di's used in the
construction of Example 2, then the subspace M, of M (where Mγ is
U {D\ Π M: Ό\ e E}) is an indecomposable continuum. This is seen
by observing that if x and y are points of M1 then Mι is not apos-
yndetic at x with respect to y and applying Theorem 9 of [1] again.
Since in each of the above examples there exists an indecomposable
subcontinuum and I(M) is infinite the following two considerations
seem natural:

(a) If I(M) Φ 0 then must it necessarily be infinite; and
(b) If I(M) Φ 0 then must M contain an indecomposable sub-

continuum?
Consideration (a) is answered negatively by Example 4 while

Theorem 9 shows that the answer to consideration (b) is yes.

EXAMPLE 4. There exists a compact plane continuum M which
has exactly one point p such that pe Int (K(p)) (i.e., I(M) = {p}).
For this point K(p) = M.

FIGURE 2
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Let C be the unit square in the plane, peC, and, as indicated
in Figure 2, D\, D\, be a sequence of closed topological disks in
the plane having C as its limit set, such that Di Π D3 — {p} ifiΦ j .
Let Mx = {D\: i = 1, 2, •} (J C Assume ΛfΛ to be defined and let
{Dii i = 1, 2 •} be a counting of the maximal topological disks in Mn.
Let /? be a homeomorphism of M1 into D? such that flip) = p, /?(C) =
Bd (D?) and, for xeM1

(2) d(fΐ(x), E2 - fϊ(x)) < ±.
n

LetΛf.+1= U {/?(Λfi): i = 1, 2, 3, ..-}andM = \j{Mn:n=l,2, •••}.
If C* is the simple closed curve which is the boundary of Όl, then
it is clear that for any i and n, M is not aposyndetic at p with
respect to any point of C*. Thus

It follows from condition (2) that K(p) = M. Clearly, if an element
x of M is different from p and yeK(x), there exists a sequence
{y{: i — 1, 2, 3, •} converging to y such that, for each i, y{ £ K(x).
Thus K{x) is nowhere dense for x Φ p and p is the only point of M
with IntCSΓCp)) ̂  0 .

THEOREM 8. A necessary and sufficient condition that the compact
continuum M not be hereditarily decomposable is that, for some sub-
continuum K of M and point p of K, there exists a sequence Ulf U2, *,
of pairwise disjoint open subsets of M which converges to p such that,
for each i, UiΓ\ Kφ 0 , pi Z7{ and, if i < j , the p-component ofK— Ui
does not intersect U3-

Proof. The sufficiency is established first. Assume K, p, and
Z7χ, U2ί are as in the statement of the theorem. Let H be a sub-
continuum of K irreducible with respect to intersecting each U3 .
Assume H is decomposable. Then H — A U B where A and B are
proper subcontinua of H. Assume without loss of generality AC] U3Φ0
for infinitely many j . Then pe A. It follows, that for each i there
is a j > i such that U3 Π A Φ 0 . Hence for each i, A Π Ui Φ 0 .
But A is a proper subcontinuum of H. This contradicts the choice
of H.

To establish the necessity, let K be an indecomposable subcon-
tinuum of M and pe K. Let Z7i be an open set intersecting K such
that p e C7Ί. Since K is indecomposable, p is not an interior point,
relative to K, of Plf the p-component of ϋΓ — £Λ. Thus there is an
open set U2 of diameter less than 1/2, which intersects K, such that
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U2Π Px = 0 , d(p, U2) < 1/2 and Ό2[\ΌιΦ 0 .
If the set Un has been defined, let Pn be the p-component of

K — Un. Since Pn = U {P*: ΐ = 1, 2, , tι} contains no interior rela-
tive to iΓ, p is not an interior point, relative to K, of P n . Let I7Λ+1

be an open set of diameter less that ί/(n + 1) which intersects K,

such that 1 7 ^ 0 Pn= 0 , ώ(p, Ef«+i) < V O + 1) and 7 7 ^ Π U {&: i =
1, 2, • ••,%} = 0 . Clearly iΓ, p and Z71? U2, are as required.

THEOREM 9. If M is a compact continuum and for some x e M,
Int (K(x)) Φ 0 , then M is not hereditarily decomposable.

Proof. Let Uo be a nonempty open subset of Int (K(x)) with
Uo c Int (K(x)) such that a; $ Uo. Let 5 be the set of points in ϋo which
are points of Cx, the a -component of M — UQ, and C/j. be an open
subset of Uo with Uι c J70. Let εx be a positive real number less than
1/2 such that Nβl(B) Γ) U, = 0 and iVβl(B) c Int (ίΓ(aj)).

Since Λf is not aposyndetic at x with respect to any point of U19

it can be seen as follows, that d , the se-component of M — UΊ, does
not contain NH(B). Assume the statement false. Since C1 does not
contain Uί9 xe M — Cx. Clearly, x is not in any component of M — Cι

which intersects U^ Thus for each p e U19 there exists mutually
separated sets Ap and Bp such that Ap U Bp = M — Cu xe Ap and
p e Bp. For p e Ul9 Cx U Ap is a continuum. But a; G Int ( d U Ap) and
d U Ap c M — {̂ >}. This is a contradiction. Let U2 be a nonempty
open subset of Nei(B) such that U2aM ~ d and Ϊ72 c iVei(J5) - 5 .
Let C2 be the ^-component of If — Z72. Note, as follows, that Int (C2)
does not contain B. Assume that B c Int (C2). Since U2 c iΓ(^),
# e Λί — C2. Further, C, the ^-component of M — C2, does not intersect
Z72 since C c d and ?72 Π d = 0 Thus there is a separation of
ikf — C2 between x and a point of U2 As above, this is a contradic-
tion.

If the set Un has been defined, let Cn be the as-component of
M — Un and εn be a positive real number less than l/2% such that
Nen(

B) n (U?=i ^ ) = 0 and JVβn(B) c Int (K(x)). It follows, as above,
that Cn does not contain N,n(B). Let ί/n+1 be an open subset of
NBn(B) such that 1 7 ^ Π Cn = φ and T T ^ c iVε%(5) - 5 .

Assume without loss of generality that Ul9 U2, converges to
a point b of B. Suppose UiΓ\CxΦ 0 for some i. Since t^ Π Cx = 0 ,
there is a smallest i > 1 such that ^ n C ^ 0 . But then ^ Π d_L ^ 0 .
This contradicts our choice of Ui. It now follows that M, 6, and
Ul9 U2, satisfy the condition of Theorem 8.

THEOREM 10. If an element x of a compact continuum M has
Int (K(x)) Φ 0 and K is the collection of indecomposable subcontinua
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of M, then K* is dense in Int (K(x))

Proof. The choice for Uo in the proof of Theorem 9 can be made
in such a way that Uι is any open subset of Int (K(x)) such that
x ϊ Ux and U1 c Int (K(x)). From the proof of Theorem 8, there exists
an indecomposable subcontinuum at M which intersects ί71# Since
every open subset of Int (K(x)) contains such an open set, K* is dense
in Int (K(x)).
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