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LENGTH OF PERIOD OF SIMPLE CONTINUED
FRACTION EXPANSION OF Vd

D E A N R HICKERSON

In this article, the length, p(d)9 of the period of the simple
continued fraction (s.c.f.) for V d is discussed, where d is a
positive integer, not a perfect square. In particular, it is
shown that

V(d) < (#l/2 + log2/10glogd+0(logloglogd/(loglOgd)2)

In addition, some properties of the complete quotients of the
s.c.f. expansion of V d are developed.

It is well known that the s c f. expansion for V d is periodic if
d is a positive integer, not a perfect square. Throughout this paper,
p(d) will denote the length of this period. It is shown in [2] (page
294), that p(d) < 2d. Computer calculation of p(d) originally suggested
that p(d) ^ 2[V~d]. This was shown to be false for d = 1726, for
which p(d) — 88 and 2[V d ] = 82, Further calculation revealed 3
more counterexamples for d <̂  3000. They were p(2011) = 94 while
2[i/2()ϊϊ] = 88, p(2566) = 102 while 2[v/2566] = 100, and p(2671) = 104
while 2[-l/267Ϊ] = 102.

This suggests as a conjecture that

p(d) = O(d112) and p{d) Φ o{dU2) .

It follows from the corollary to Theorem 2 that

p{d) = O(dll2+ε)

or more precisely, that

<C £ J 5 1 / 2 + l o S 2 / l o S l o g d + 0 ( l o g log l o g r f / d o g logd)2)

We will need the following results which are given in or follow
from §§ 7.1-7.4 and 7.7 of [1].

(1) Any periodic s.c.f. is a quadratic irrational number, and
conversely.

(2) The s.c.f. expansion of the real quadratic irrational number
(a + V b )/c is purely periodic if and only if (α + V b )/c > 1 and
- 1 < ( α - l / T ) / c < 0.

(3) Any quadratic irrational number ζ0 may be put in the form
ί0 = (w0 + V d)/q0, where d, m0, and q0 are integers, q0 Φ 0, d ̂  1, d is
not a perfect square, and q01 (d — ml). We may then define infinite
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sequences mi9 qi9 a,, and ξζ by the equations ξ{ = (m* + V~d)lq{, α* =
[ξi], mi+1 = a&i - mi9 and qi+1 = (d - m +1)gί Then, for i :> 0, m*, g4,
and α* are integers, qi Φ 0, and #* | (d — ra*). Also, for i ̂  1, α, and
ίi are positive.

(4) In the notation of (3) above, we have for i >̂ 0, ς, =
<GL;, α i+1, α ί+2, •>. In particular, ζ0 = <α0, al9 α2, •>•

(5) There is a positive integer N such that, if ί > N, then

Qi> 0.

(6) There exist nonnegative integers j and k such that j < A,
m^ = mkf and ĝ  — qk. We may choose j> to be the smallest integer
such that for some k > j , mά — mk and qά — qk. We may then choose
k to be the smallest integer such that j < k, m3- = mfc, and gy = gΛ.
Then, if ί is a nonnegative integer, then m J + ί = m/c+ί, g i + ί =
aj+t = α/c+ί, and ί i+ί = £Λ + t. Therefore, if i < i, then

while if ΐ ̂  i , then ^ = <α, ,, α^+1, , ak_2, ak^ίf aj} aj+1, , aif_^, where
i' is the integer such that j S ir ̂  k — 1 and i = i' (mod (fc — j)). In
particular, f0 = <α0,_θi, , α ^ , α,, •••, α ^ ) .

(7) If f0 = V d then we may take m0 = 0 and <?0 = 1 in (3).
In (6), we have j — 1 and A: = r + 1 for some positive integer r.
Then f0 = Oo, &i, , αr> and, for i ^ 1, ξ{ = <α^, •••, αr, αL, ••., α^^) ,
where ΐ ' is such that 1 ̂  i ' ̂  r and i = i' (modr).

( 8 ) In (7), if t ;> 0 then m1 + ί = m r + 1 + ί , q1+t = g r+1+ί, α1 + ί = α r + 1 + ί ,
and ί1+ί = fr+1+f. It follows from this that if ί ^ 1 and s ̂  0, then
m ί + r s = m i7 g i + r s = ĝ , ai+rs = ai9 and fi+rs = ξ^

Throughout this paper it will be assumed that d is a positive
integer, not a perfect square. The period r of the s.c.f. expansion of
λ/ d will be denoted by p(d).

2. Preliminary results* In this section, mi9 qi9 a^ and ξ4 will
refer to the sequences defined in (3)-(8) above, with ξ0 = V d, m0 ==
0, and q0 = 1.

LEMMA 1. If i^ 0, ίΛew ^ > 0.

Proof. From (5), there is an iVsuch that, if i > N, then q{ > 0.
Suppose i ^ 1. Then there is an integer s such that ί + rs > N.
By (8), g» = g i+rs- But since ί + rs > N, qi+rs > 0. Therefore, qt > 0.
That is, if i ^ 1, we are done. Since qΌ = 1, this result holds for
i — 0 also, so the proof is complete.

THEOREM 1. If ί >̂ 1, £Aew 0 < m.: < τ/"d" αwc? i/d"— m* < g, <
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Proof. From (7), if i Ξ> 1, then ξt = (μif, , ar, a^ , α^^) so
the s.c.f. for J* is purely periodic. But £4 ̂ m * + V~d)lqiy so from
(2), {mi + V~d)lqi>l and - 1 < (m< — V~d)\q{ < 0. Since, from
Lemma 1, qi > 0, we obtain m4 + Vd > qt and — qt < m< — τ/~ϊF < 0.
This yields m< < V~d~ and T/GΓ— mi<qi< Vd + m*.

Thus —mi< mi and m^ > 0, so the proof is complete.
For given d, let T = T(d) be the set of ordered pairs (m, q)

which satisfy m < λ/ d, τ/cΓ— m < q < λ/d + m, and g | (d — m2).
That is, T = {(m, ί) | m < l/X, τ / 5 " - m <q < VΊΪ+ m,q\(d- m2)}.
Let flr(d) = c(Γ), the cardinality of T.

From (6) and (7) of Section 1, if 1 ̂  ί < I ̂  r then (m^ ς̂ ) ̂
(^z, ^0 Therefore, the set U — {(m, , q{) \ 1 <L i <, r} has exactly r
elements. By Theorem 1, UaT so r = c(Z7) ^ c(Γ) = g(d). Since
r = p(d), we obtain

LEMMA 2.

3* An upper bound on g(d).

THEOREM 2. o(d) <c dll2+los2llosίosd+0ilosloglosdl{1°8losd)2)

Proof.

g(d) _ _

= c(T) = c({(m, 5) I 0 < m < i/"S", τ/d"- m<q<Vd+ m,q\(d-m2)})

- m <q < VcΓ+ m,q\d- m2}) ̂  C Σ 3 r(d - m2) ,
m = l m = l

where v(n) denotes the number of divisors of n.
It is shown in [3] that

loir τ(N) < l o g 2 1 o g i S Γ + 0 (logNlogloglo
45 V ^ log log iV V (log log iV)2

It follows that

τ(N) <C jV r l os2 ' l oδ l os i N Γ+°( l og l og

Therefore, for m = 1, 2, , [V~d],

and the theorem follows by summing this expression over the
[V~d\ < d112 values of m.

COROLLARY. p(d) < d1/2+log2lloslosd+0{losloslosdl(loslosd)2) .

Proof. This follows immediately from Lemma 2 and Theorem 2.
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4* A lower bound on the order of g(d). Theorem 2 shows
that g(d) = 0(dll2+ε) for any ε > 0. It will follow from Theorem 3 that
g(d) Φ o{dιμ). Thus, Theorem 2 is almost best possible. This, however,
is not necessarily true of its corollary.

THEOREM 3. There exist infinitely many positive integers d for
which g{d) > V d .

Proof. Let n be an arbitrary positive integer. Let

S = {(m, q) \q — n ^ my n + 1 — q ^ m, m ^ n} .

Then, for n2 + 1 S d ^ n2 + 2n, T(d) = {(m, q) | (m, q) e S and d =
m2(mod q)}. Given (m, g) e S, let/(m, g) denote the number of integers
d for which n2 + l^d^n2 + 2n and d Ξ m2(mod q). Then Σ^l ΐ+i ^(d) =
Σ<m,9>es/(w&, #)• However, it is easily seen that if (m,q)eS, then
/(m, g) ^ [2^/g], Also, note that S = {(m, g ) | l ^ g ^ w , ^ + 1 — g ^
m ^ n) U {(m, g) | n + 1 ^ g ^ 2τt, g — w ̂  m ^ n}. If 1 ^ g ^ ^, then
[2n/q] > 2^/g - 1. If n + 1 ^ g ^ 2n, then [2π/g] = 1. Therefore,

= Σ
(

Σ M = Σ μq + ΣΣ M = Σ μq + Σ

« = i

/2U _

+ Σ (2w + 1 - q) = 2»2 .
q = n + l

It follows from this inequality that at least one of the 2n num-
bers g(d) with n2 + I ^ d ^ n2 + 2n must be greater than (2n2/2n) — π.
Since n = [i/ d ] for any such d, there is a d such that n = [i/ d ]
and g(d) > V d. Since this is true for any positive n, the theorem
follows.
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