PACIFIC JOURNAL OF MATHEMATICS
Vol. 46, No. 2, 1973

LENGTH OF PERIOD OF SIMPLE CONTINUED
FRACTION EXPANSION OF vd

DeAN R. HICKERSON

In this article, the length, p(d), of the period of the simple
continued fraction (s.c.f.) for v/'d is discussed, where d is a
positive integer, not a perfect square. In particular, it is
shown that

p(d) < (i/2+log2/loglog d+0(log log log d/(log log d)?) .

In addition, some properties of the complete quotients of the
s.c.f. expansion of v/ d are developed.

It is well known that the s.c.f. expansion for 1/ d is periodic if
d is a positive integer, not a perfect square. Throughout this paper,
p(d) will denote the length of this period. It is shown in [2] (page
294), that p(d) < 2d. Computer calculation of p(d) originally suggested
that p(d) < 2[V'd]. This was shown to be false for d = 1726, for
which p(d) = 88 and 2[V d] = 82. Further calculation revealed 3
more counterexamples for d < 3000. They were p(2011) = 94 while
2[1V'2011] = 88, p(2566) = 102 while 2[1/2566] = 100, and p(2671) = 104
while 2[172671] = 102.

This suggests as a conjecture that

p(d) = O(d"®) and p(d) # o(d"?) .
It follows from the corollary to Theorem 2 that
p(d) = 0(@*)
or more precisely, that

. 2
p(d) < dl/2+10g2/10g log d+0(logloglogd/(loglogd)?) .

We will need the following results which are given in or fbllow
from §§ 7.1-7.4 and 7.7 of [1].

(1) Any periodic s.c.f. is a quadratic irrational number, and
conversely.

(2) The s.c.f. expansion of the real quadratic irrational number
(@ + V'b)/e is purely periodic if and only if (¢ + 1V b)/e>1 and
—1<(@—1"0)/ec<0.

(8) Any quadratic irrational number & may be put in the form
& = (m, +1"d)/q,, where d, m,, and g, are integers, ¢, = 0, d =1, d is
not a perfect square, and ¢,| (d — m3). We may then define infinite

429



430 DEAN R. HICKERSON

sequences ms, ¢;, ., and & by the equations & = (m; + V' d)/q;, a; =
(&1, mi = a,g; — my, and g, = (d — mi)g.. Then, for ¢ = 0, m,, g,
and a; are integers, ¢; # 0, and ¢, | (d — mj}). Also, for ¢ =1, a; and
&; are positive.

(4) In the notation of (3) above, we have for =0, & =
sy Oy Qsgy = +».  In particular, & = <a,, a,, a,, «+>.

(5) There is a positive integer N such that, if ¢ > N, then
q; > 0.

(6) There exist nonnegative integers 5 and %k such that j <k,
m, = m;, and ¢, = q,. We may choose 7 to be the smallest integer
such that for some k& > 7, m; = m, and ¢; = q,. We may then choose
k to be the smallest integer such that j < k, m; = m,, and ¢q; = q,.
Then, if ¢ is a nonnegative integer, then m,., = M.y, Qs = Qries
Qi = Gy, and &, = &,.,. Therefore, if 7 < 7, then

& = <a‘i, Qirry 200y Qjgy gy 200, ak—1> ’

while if 7 = 7, then & = @y, Qyrpyy oo vy Qugy Gty Ajy Qjry ** + 5 Gy Y, Where
7’ is the integer such that j <7 <k — 1 and ¢=%¢ (mod (k¥ — 7)). In
particular, & = {@y, @y, +=+, @iy, @,, *++, Qe

(7) If & =1V'd then we may take m, =0 and ¢, =1 in (3).
In (6), we have j =1 and k =+ + 1 for some positive integer 7.
Then & = <ay, @, -+, a,y and, for 1 =1, & = {ay, +», @y, Ay, *+ 2, Gy
where ¢' is such that 1 <4 < » and 7 = ¢’ (mod 7).

(8) In(7),if t = 0 then m,, = Myiriyy Qir = Qroriey Gpr = Gpiis
and &, = &,...,. It follows from this that if + =1 and s = 0, then
Mirs = My Qiirs = Gsy Uiy = G, a0d &5y = &

Throughout this paper it will be assumed that d is a positive
integer, not a perfect square. The period » of the s.c.f. expansion of
v"d will be denoted by p(d).

2. Preliminary results. In this section, m,, ¢;, a;, and &, will
refer to the sequences defined in (3)-(8) above, with & = V'd, m, =
0, and ¢, = 1.

LEmMMA 1. If ¢ =0, then gq; > 0.

Proof. From (5), there is an N such that, if ¢ > N, then ¢; > 0.
Suppose 7 = 1. Then there is an integer s such that ¢ 4+ rs > N.
By (8), ¢; = ¢;..,. But since 7 + s > N, ¢;.,, > 0. Therefore, g; > 0.
That is, if 7 =1, we are done. Since ¢, = 1, this result holds for
1 = 0 also, so the proof is complete.

THEOREM 1. If i =1, then 0 < m; <V d and V'd — m; < q; <
Vd + m
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Proof. From (7), if ¢ = 1, then & =<a;, +++,a,, a4, <+, a;_;> SO
the s.c.f. for & is purely periodic. But & = (m; + vV d)/q;, so from
@), (m;+vVd))g;>1 and —1< (m; — V' d)/g; <0. Since, from
Lemma 1, ¢; > 0, we obtain m; +1'd > ¢; and —¢q; <m; — V' d <0.
This yields m; < vV'd and Vd — m; < ¢; < V'd + m,.

Thus —m; < m; and m; > 0, so the proof is complete.

For given d, let T = T(d) be the set of ordered pairs (m, q)
which satisfy m <1V d,Vd—m<qg<Vvd+m, and q|(d— m?.
That is, T={m,q)|m <V'd,Vd—m<q<Vd+m,q|(d—m).
Let g(d) = ¢(T), the cardinality of T.

From (6) and (7) of Section 1, if 1 <7<l <~ then (m,;q,) #*
(my, q). Therefore, the set U = {(m;, q;)|1 <7 =< r} has exactly r
elements. By Theorem 1, UcCT so r = c¢(U) < ¢(T) = g(d). Since
r = p(d), we obtain

LEMMA 2. p(d) < g(d).
3. An upper bound on g(d).

THEOREM 2' g(d) < dl/2+10g 2/log logd+0(log log log d/ (log log d)2) .

Proof.
9(d)
=¢(T) = c(f(m, @) |0 <m <V d,Vd—-m<qg<Vd+ m,q|(d—m?})
= [gc({qlﬂl’— m<g<Vd+m,qgld—m}) =< [gjf(d-— m?) ,

where 7(n) denotes the number of divisors of x.
It is shown in [3] that

log2log N log Nlog log log N
1 N =25 10 .
g t(N) < log log N + ( (log log N)* )

It follows that

T(N) < Nlog 2/log log N+0(log log log N/(log log N)?2) .

Therefore, for m =1,2, ---, [V d],

2
T(d . mZ) < dlogzlloglogd+0(logloglogdl(loglogd) ) ,

and__ the theorem follows by summing this expression over the
[Vd] < d* values of m.

COROLLARY. p(d) < (l2+10g 2/108 log d+0(10g log logd/(loglog &)%)

Proof. This follows immediately from Lemma 2 and Theorem 2.
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4. A lower bound on the order of g(d). Theorem 2 shows
that g(d) = O(d"***) for any ¢ > 0. It will follow from Theorem 3 that
g(d) # o(d'®). Thus, Theorem 2 is almost best possible. This, however,
is not necessarily true of its corollary.

THEOREM 3. There exist infinitely many positive integers d for
which g(d) >1V'd.

Proof. Let n be an arbitrary positive integer. Let
S={m,qlg—n=mn+1—-qg=m,m=n}.

Then, for w* +1=<d<n*+ 2n, Td) = {(m, q) | (m,g)eS and d=
m*(mod ¢q)}. Given (m, q) € S, let f(m, ¢) denote the number of integers
d for which n* + 1 <d < n® + 2n and d = m*(mod ¢). Then >">'% ¢(d) =
S esfm, q). However, it is easily seen that if (m, q)€ S, then
flim, q) = [2n/q]. Also, note that S={(m,q¢) |1 Zg¢=n,n+1—-¢=
mZntU{mqgn+1<qg=2nqg—n=m=n}. Ifl=<gqg=mn,then
[2n/q] > 2n/q — 1. If n + 1 < q < 2n, then [2n/q] = 1. Therefore,

Sew- 3 smoz 3 [2]- 5[]+ s [2]

d=niii () s tm.gi =& q Z%-%%ZSMLSn q=—nEm=n q
z 2n & 2n z 2n
=g 2]+ 5 @ 1-g[ 2] 5q(2 1)
q=1 q g=n-+1 q q=1 q

+q;l(2n+1—q) = 21’ .

It follows from this inequality that at least one of the 2n num-
bers g(d) with »* + 1 < d < »* + 2n must be greater than (2n°/2n) = n.
Since » = [V d] for any such d, there is a d such that n = [V/d]
and g(d) >1"d. Since this is true for any positive 7, the theorem
follows.
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