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NEW PROOFS OF BING'S APPROXIMATION
THEOREMS FOR SURFACES

J. W. CANNON

We give alternative proofs of Bing's Side Approximation
and Homeomorphic Approximation Theorems for surfaces in
3-manifolds.

()• Introduction* We give in § 1 an alternative proof of Bing's
Side Approximation Theorem (S.A.T.) [4] [7] [8]:

S.A.T. Suppose that S is a 2-sphere topologically embedded in Ed.
Then, for each ε > 0, there are disjoint ε-disks A, , Dn in S and
an ε-homeomorphism h from S into E3 such that

(1) h(S) is polyhedral, and
(2) S - U A c Ext h(S).

One may require alternatively that
(2') S - U< A c Int Λ(S).
In § 2 we deduce from the above the slightly stronger version of

the S.A.T. (also due to Bing) which one generally encounters in
applications.

In the strict sense, Bing's proof of the S.A.T. is completely ele-
mentary. Our proof on the other hand uses freely local homology
and homotopy properties, Dehn's lemma and related theorems, and
homology linking theory. We have attempted to substitute simplicity
of outline for simplicity of technique. This has the advantage that
the outline serves almost without change in a proof of the Moise
[15]-Bing [6] theorem on the triangulability of 3-manifolds and the
Armentrout [3] theorem on approximating cellular maps between
3-manifolds by homeomorphisms. We do not go into detail on these
latter theorems. Some details of the proof which are unique to the
S.A.T. (and which, in fact, make it harder than the triangulation
and cellular map theorems) have been proved in their more natural
setting, "ULC properties of embedded curves and surfaces in Ez" [10,
§ 2 and the first half of §3]. This allows us to make the outline
even more transparent and unencumbered by detail. The necessary
information from [10] is summarized in four lemmas at the end of
this introduction. This quick summary allows the present paper to
be read independently of [10]. We give a short proof in § 3 of another
of Bing's important theorems on surfaces, namely, the Homeomorphic
Approximation Theorem (H.A.T.) [5]. The shortness arises from the
fact that we use the S.A.T. to do the work that Bing did from scratch.

H.A.T. Suppose that S is a topologically embedded 2-sphere in
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E3 and that, for each ε > 0, there is an ε-homeomorphism from S into
Int S. Then S U Int S is a 3-cell.

Papers [9] and [10] are the basic references for this paper: Refer-
ence [9] includes descriptions of the Euclidean spaces (E\ E2, E3, •),
%-cells (B\ B\ B\ and their homeomorphic images), ^-spheres
(S° = Bd B\ S1 = Bd B\ and their homeomorphic images), com-
plexes, manifolds, disks (2-cells), arcs (1-cells), simple closed curves
and loops, finite graphs (1-complexes), polyhedra, and general position
and cut-and-paste techniques. It also gives statements of Dehn's
Lemma [16] (cf. [9, 4.5.1 and Addendum to 4.5.1], the Loop Theorem
[17], and the Sphere Theorem [16]). Such concepts are widely known
and need only be checked by the beginner. Reference [10] contains
technical material less widely known and summarized here:

NOTATION. We use p for the Euclidean metric, Diam for diameter,
Cl for closure, Bd for boundary (point set or combinatorial), Int and
Ext for interior and exterior, N(X, ε) for the (open) ε-neighborhood of
X in E\ An ε-set has diameter less than ε; an ε-map or homeomor-
phism moves no point as far as ε. If T is a triangulation (possibly
curvilinear) of some topologically embedded polyhedron, then Γ* denotes
the ί-skeleton of T, and | Tι | denotes the underlying point set which
carries Tι (i.e., the union of the simplexes in Tι).

Property ULCn. Let A be a subset of E3 and n a nonnegative
integer. Then A is ULCn if the following condition is satisfied: For
each ε > 0, there is a δ > 0 such that if 0 ̂  i ^ n and /: S* -> A is
a map from the ΐ-sphere Si into a δ-subset of A, then there is a
map /*: Bi+1 —• A into an ε-subset of A which extends / (recall that
Sι = Bd Bi+ι).

0.1. [19, p. 66]. If S is a 2-sphere in Ed and U is a component
of Ez - S, then U is ULC°.

0.2. Existence of nice arcs in 2-spheres. Suppose S is a 2-sphere
in E3, Z7i and U2 are the components of E3 — S, G is a finite graph in
S, and ε > 0. Then there is an ε-homeomorphism h: S-+ S such that
Cl (C7i) - h(G) and Cl (U2) - h(G) are ULC\

Proof. [10; 2C. 7(2). 2, 2C. 7(3). 2, 2C 7(1), 2C. 3].

0 3 Suppose S is a 2-sphere in E\ U^ and U2 are the components
of E3 — S, and J is a simple closed curve in S such that CliU^ — J
and Cl (U2) — J are ULC2. Then J pierces an almost-polyhedral disk
at each point of J. (A 2-manifold is said to be almost-polyhedral if
it is locally polyhedral except at finitely many points.)
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Proof. [10; 3.2, 3.3].

0.4. Adjustments of maps in ULC sets. Suppose C c E3 and
C is ULCn (n a nonnegative integer). Suppose P is an (n + l)-com-
plex, B is a closed subset of P, and F: P —> Cl C is a map. Then,
for each ε > 0, there is a map /*: P—»C1 C such that

/ * ( P - δ ) c C , and

x),f(n)) < £> f o r e a c h ^ e P .

Proo/. [10, 2C.2J.

The following information on linking is classical and is included
for the use of the reader in verifying certain intuitive claims made
in the proof of the S.A.T. and H.A.T. We give one example of such
a verification in an appendix following § 3.

Linking of Simple Closed Curves in E3 (cf. [1, Chapter 15] and
[18, § 77] for details). We use the notation L(J, K) for the (homolo-
gical) linking number (integer coefficients) of disjoint oriented simple
closed curves or loops in E3. The integer L(J9 K) may be calculated
as follows. Choose polygonal oriented simple closed curves J7 and Kf

such that J is homologous to Jf in E3 — K and K is homologous to
Kr in E3 — J\ Let D be a polyhedral singular oriented surface in
E3 bounded by the oriented curve Jf and in general position with
respect to Kr. Assume E3 oriented. Then each oriented simplex in
D can be assigned a positive and a negative side in E3 (intuitively,
by the right-hand rule). Then L(J, K) is the algebraic number of
times K' cuts through D: an intersection at which the oriented Kr

passes from the negative to positive side of D is counted as + 1 ,
from the positive to the negative as —1. Then the following pro-
perties hold.

0.5. L(J, K) = L(K, J) and this integer is independent of the
choice of J', K', and D (in particular depends only on the homology
class [K] of K in E3 - J).

0.6. If J is an oriented simple closed curve in E3, then there is
an isomorphism H,{E3 - J; Z) 2^Z which sends [K] to L(J, K).

0.7. If D is a disk in E3 (not necessarily polyhedral) and p e Int D,
then there is a simple closed curve J in (E3 — D) U {p} for which
L(J, Bd D) Φ 0. Furthermore, if / is any such loop and Jt is any
loop in E3 — Bd D, then Jλ is homologous in E3 — Bd D to some
multiple of J. In particular | L(J, Bd D) \ = 1 by (0.6).
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Finally, we mention that we shall use freely the standard cut-
and-paste procedures of 3-space topology without being too explicit
about the details. For the uninitiated (and even for the initiated
who finds the details of the proof of Lemma (4.2), §4, somewhat out-
side the range of his experience) we recommend the note by Griffith
and Harrold in the Proceedings of the National Academy of Science
[12] where the procedure is carried out in some detail. (Note the
comments about [12] at the end of our paper.)

1* Proof of the S.A.T. Throughout this section, S will denote
a topologically embedded 2-sphere in Euclidean 3-dimensional space Ez

and ε a positive number.
Choose a triangulation T of S which has mesh so small that the

simplicial neighborhood in T of each simplex has diameter less than
ε/8. By (0.2), we may assume that the carrier G = [ T1 | of the
1-skeleton T1 of T is a finite graph such that Cl (Int S) - G and
Cl (Ext S) - G are ULC\

Step 1. Building an almost-polyhedral 2-sphere S(v) about a
vertex v of T. We choose from the interior of the carrier of each
1-simplex σ of T a point p(σ). By (0.3), there is a very small almost-
polyhedral disk D{σ) pierced by I T 1 ! at p(σ). Let v be a vertex of
T and σl9 * ,σn = σQ the 1-simplexes of T which emanate from v.
We assume σl9 , σn = σ0 indexed so that σi and σ5 are faces of a
common 2-simplex τi5 of T if % — j — 1. Let s< be the arc in Oi
bounded by v and p{σ^. Let q{σ^ be a point of (IntσJ — s{ (q(σn) =
q(σQ)). Let si be the arc in σi bounded by v and q{σ^. Let Ai5(i — j = 1)
denote a spanning arc of τi3- with endpoints qfa) and q{σά). We re-
quire that Aij be very near homeomorphically to the arc s[ U s'3. Then
J — Ui-i=i A{j is a simple closed curve in S which bounds a small disk

FIGURE l
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D in S with LM* c l n t D We may require that D Π D(σ{) = ΰ n IntDfo)
and that this intersection lie very close to p{o{). (See Figure 1.)

Since Cl (Int S) - | Γ11 and Cl (Ext S) - | T1 | are ULC1, it follows
from (0.4) that there are maps /: D -> S U Int S and g: D -> S U Ext S
which fix Bd D, move points of Int D only very slightly, and take
Int D into the complement of | T1|. We may think of f(D) U g(D) as
a singular 2-sphere in E3. After slight adjustment we may assume
that /(D) U g(D) is in general position with respect to (J; Όfa).
We require that / and g be chosen so near to the identity that
(f(D) U g(D)) Π \Jι Bd D ^ ) = 0 . We leave it to the reader to estab-
lish the following claim (e.g., by a linking argument):

Claim. If, for each i and j with i — j = 1, the arc Aiά is very
close homeomorphically to the arc s\ U sj and if the maps / and # are
very near the identity map, then there is in f(D) U g{D) (as adjusted
for general position) a singular disk-with-holes Do which has the fol-
lowing properties:

(1) D0Π\Ji Dfa) - Bd Do, and
(2) Do has in each D{σ^) precisely one boundary curve which is

not homotopically trivial in D{σ^) — {v{σ^)}, and that boundary curve
is homotopic in D(σ{) — {p{o^}} to a simple closed curve.

If we start with the disk-with-holes DQ supplied by the claim,
then the boundary curves of DQ which are trivial in some D{σ^) —
{v{σ^} may be filled in by singular disks in D{σ^) — {p{σ^)}, and these
singular disks may then be pushed slightly to one side of D(σ̂ ) so
that (1) and (2) are still satisfied but so that the nontrivial boundary
curves promised by (2) are the only boundary curves of the adjusted
Do- These nontrivial boundary curves may in turn be replaced by
simple closed curves ^ in D(^) - {pfo)}, by (2), so that (1) and (2)
are still satisfied. We continue to call the adjusted disk-with-holes Do.

Let Di(ί — 1, , n) be the disk in D(σ̂ ) bounded by J*. Then
Do U Dγ U U Dn is an almost-polyhedral singular 2-sphere in Ez

with no singularities near p(0Ί), # , p ( ^ ) . By Dehn's Lemma([16];
note also [9, Addendum to Theorem 4.5.1]), there is a nonsingular
2-sphere S(v) in the union of D1 U U Dn and an arbitrarily small
neighborhood of Int Do such that v e Int S(v) and such that S(v) is
polyhedral except possibly at the points p(tfi), •• ,p(0\1). It follows
that, if Do is sufficiently close to D, we must have S(v) Π | T11 —
{p(σd, '", P(σn)} with I Tι\ piercing S(v) at each of the points p{σ^

Step 2. Building a polyhedral handlebody H about \ T11. It is
clear from t h e construction described in Step 1 t h a t , if vl9 •••, vm are

t h e vertices of T, then we may choose the 2-spheres S(^) , •••, S(vm)

so as to satisfy t h e following requirements:
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( 3 ) [S(vt) U Int S(vt)] Π [S(v,) U Int S(vj)] = S(vt) Π S(vj)(i Φ j); and
this intersection is either 0 or it is a subdisk of some D{σ) and con-
tains the corresponding p{o).

( 4 ) [S(Vi) U Int S(vt)] Πτ Φ 0 if and only if v{ is a vertex of r,
for each τ e T.

( 5) Diam S(v{) < ε/8.
Let H = UΓ=i S(^) U Int S(i><). We see that if is a polyhedral handle-
body as follows. Suppose S(Vi) Π S(Vj)(i > j) is nonempty, hence a
disk D'i5. Then D'i5 is polyhedral modulo its one-point intersection
with I T1\. Use Dehn's lemma to replace D'iό by a polyhedral disk
Dij which differs from Ώ\5 only very near D'is Π I Tι |. The iteration
of this process changes each S(Vi) into a polyhedral 2-sphere T(v{).
Then H = UΓ=iT(O U IntT(^), and H is clearly a handlebody since
each of the sets C(^) = T{v%) U Int Γ(^) is a polyhedral 3-cell. If
vr, vβ, and ^ (r > s >ί) are the vertices of a single 2-simplex r in T,
then

X(r) = C(vr) U C(v.) U C(Vί)

is a polyhedral solid torus. The disks Drs, Dst, and Drt are called the
distinguished meridional disks of X(r) and the other disks D^ which
lie on Bd X(τ) are called the distinguished boundary disks of X(τ).
The totality of disks Diά are called the distinguished disks of H.

Step. 3. Spanning polyhedral disks across the "holes" in H. Let
τ and X(τ) be as in the preceding paragraph. We may certainly
require that Bd τ c Int X(τ) and that Bd τ be homotopic in Int X{τ) to
a centerline of X{τ). As one consequence we find that there are sim-
ple closed curves J and K in Int τ such that Bd τ and K bound an
annulus A in τ Π Int X(r) with J separating Bd r from i ί in A. By
(0.2), we may assume that Cl (Int S) - K and Cl(IntS)-UL are
ULC1. Let D be the subdisk of τ bounded by /. By (0.4), there
are maps /: D —• S U Int S and g: D -* S U Ext S which fix Bd D, move
points of intD only slightly, and take IntZ) into the complement of
K. We think of f(D) (J β'Φ) as a singular 2-sphere and use the Sphere
Theorem [16] to replace f(D) (J g{D) by a nonsingular polyhedral
2-sphere S(τ) which lies arbitrarily close to f(D) U g{D) and has iΓ in
its interior. We may assume that S{τ) is in general position with
respect to Bd H. We leave it to the reader to establish the following
claim. (Again we suggest a linking argument. Cf. also the argument
involving continua K{ later in this section: if a curve in Bd D0(τ)
bounds a disk in BdX(τ), then it does so in (Bdif) Π X(τ) )

Claim. If / and g are sufficiently near the identity and S(τ) is
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sufficiently near f(D) U g{D), then there is a disk-with-holes D0(τ) in
S(τ) which has the following properties:

(6 ) D0(τ) f]H=Bά D0(τ) = D0(τ) n X(τ);
(7) D0(τ) has precisely one boundary component which does not

bound a disk in (Bd H) Π X(τ) and that component is homotopic in
X(τ) to Bd τ.

Let τu ',τp be the 2-simplexes of T and A(^i), , Afo) disks-
with-holes whose existence is assured by the construction just describ-
ed and the claim. We may clearly assume the following conditions
satisfied:

(8) Afa) ΓΊ Dofo ) = 0 if i Φ j ;
( 9) Diam [Dfa) U Xfa)] < e/2.
We now proceed to adjust the DO(T;)'S so that they are disks. If

the flop's are not already disks, then there is an i such that one
of the boundary components of Afo) bounds a disk E in (Bd H) ΓΊ X(τt)
(cf.(7) above) and (IntE) f] \Jj DQ{τό) = 0 . Add E to Z>ofa) and push
that part of the new DQ{τ%) which is near E slightly into Es — H.
An iteration of this procedure changes each jD0(̂ "i) into a disk. Note
that we may maintain conditions (8) and (9).

We now adjust the disks Z)0( î), •• ,D0(τp) so that, for each i,
Bd D0(Ti) runs "straight around" Bd Xfa) in Bd H. The problem here
is descriptive rather than inherent. We therefore urge the reader to
examine carefully Figures 2 and 3 before attempting to read the
description which follows. We fix for consideration a 2-simplex r of

FIGURE 2
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FIGURE 3

T. Recall that X(τ) is a solid torus divided by its distinguished
meridional disks, which we denote by Dl9 D2, and D3, into 3-cells
d, d , and C3, where A = d Π d, A = d Π C3, and Z), - C3 Π d
We denote the distinguished boundary disks of X(τ) by

where those with superscript i lie in Bd d
Each of the cells d encloses a unique vertex v(d) of T; each

distinguished disk D oΐ H intersects a unique 1-simplex σ(D) of Γ.
We assume the indices on the distinguished disks chosen so that each
successive pair from the sequence

(Λ C\\ yi A JP \ rrί^-ΊP \ rrί^ ΊP \ rv/2 JP \ sv/3 ΊP \ Λ /3 ΊP \
\XΛj) Uy JJJiίj . U y JJJr(i)J9 UK JuJ-Λ9 " * *, v | jC/r(2)/ O \ -"I/ * * *• U\ -*-̂ r(3)/>

σQE^ is a pair of edges from a single 2-simplex of T. It follows
from (7) that there are disjoint arcs 'A,, ••, 1ArW, 2AU ••, 2Ar{2),
*AU , 3Ar(3) in Bd X(r) joining successive pairs of distinguished disks
from the list (10) (with σ's removed) and lying, for each pair, in
BάD0(τ')9 where τf is the 2-simplex of T which has the corresponding
pair of edges in its boundary. Note that a single component K{ of
Q Π (U^fc \JjEk) contains the disks U**-^* a n ( l intersects both of the
distinguished meridional disks of X(τ) which lie in Bd d With our
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descriptive apparatus finally set up, we can define our task precisely:
reduce D0(τ) Π (A U A U A) to exactly three points. The procedure
is straightforward and is contained in the next paragraph.

We may suppose Bd D0(τ) in general position with respect to the
union Bd A U Bd A U Bd A If the intersection of Bd D0(τ) with this
union consists of more than three points, then since Bd DQ(τ) is homo-
topic in X(τ) to a center line of X(τ), there is an arc A in Bd D0(z)
which lies in a single C* and has its endpoints on a single Bdlλ,.
The existence of the continuum Kt (see the previous paragraph) forces
A to bound, together with an arc in Bd A , a disk E in Bd Ct whose
interior misses each distinguished disk in H. Then each of the sets
D0(τk) which intersects E can be adjusted by cut and paste near E
so as to have no intersection with E. In particular, this reduces the
number of intersections of A(^) with Bd Dά by at least two. Note
that these changes may be made so as to preserve the essential pro-
perties of the disks D0(τ1)9 , DQ(τp) as described in (6), (7), (8), (9), and
the paragraph following (9). The reduction of D0(τ) Π (A U A U A)
to three points therefore follows by induction (for each τ).

Step 4. Building a polyhedral ε-approximation to S. On the
boundary of each distinguished disk Dd of H there are precisely two
points which lie in \Jk D0(τk). Let A3 be a polygonal spanning arc of
Dj which has those two points as endpoints. Let Ci be any of the
polyhedral cells of which H is composed. Then [\Jj ^ U U* D0(τk)] Π C*
is a single polygonal simple closed curve J* in Bd d. Let Pi be a
polyhedral spanning disk of d with boundary J{. Then P =
(Uί P%) U (\Jk D0(τk)) is a polyhedral 2-sphere that is homeomorphically
within ε of S. We leave the easy construction of the homeomorphism
to the reader.

Step 5. Identifying polyhedral aside approximations to S. One
sees immediately that the polyhedral 2-sphere P of Step 4 locally
separates Bdiϊ into two components. Since P is a 2-sphere in E3

(as opposed to a one-sided surface in a 3-manifold), the separation is
also global. Let Hx and H2 be the components of Bd H — P in Int P
and Ext P, respectively. Then

S1 - H, U OJ D0(τk)) and S2 - H2 U ( U D0(τk))

are polyhedral 2-spheres which also homeomorphically within ε of S.
Let Dk be a subdisk of τk in Int τk which contains (S1 U S2) Π rfc.
Then the disks A, * , DP are the ε-disks whose existence is asserted
by the S.A.T. and & and S2 satisfy
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S - U Dk c Ext Sλ ,

and

S - U Dk c Int S2 .

2* Improving the S*A*Ί\ The following lemma is an alternative
to [7, Theorem 14, p. 181]. Let H(X) denote the convex hull of any-
set X in E\

2.1. Suppose that p e Es and that Xl9 , Xn are compact subsets
of E3 satisfying

(1) If i, j, and k are distinct indices, then X4 Π X3 Π Xk = 0 .
(2) If XiftXsΦ 0, then H(XiuXj)aE3- {p}.

Then X = \JiXi does not separate 2? from infinity.

Proof. By [13, Theorem VI 10, p. 97], it suffices to show that
X is nullhomotopic in E3 — {p}. The sets Xl9 , Xn cover X; let N
be the nerve of that covering: one vertex v{ for each nonempty Xi9

one 1-simplex v{vά for each nonempty intersection Xt Π -X}. The nerve
N contains no higher dimensional simplexes by (1). The vertex Vi
can be realized geometrically as a point of Xi9 the simplex v^,- as the
straight line segment in H(Xi (J Xj) joining vt and vά. Map the sets
Xt ΓΊ Xj to the midpoints of the 1-simplexes vtvd and extend these
partial maps on the sets Xi Π Xj to maps from the sets Xk into the
stars of the vertices vk in N (the star is an absolute retract). This
map can be realized as the final stage of a straight line homotopy in
E* from X into the (possibly singular) geometric realization of N
in \J{H(Xt U Xj) I Xi Π Xj Φ 0}. The homotopy moves X only in
\J{H(Xi \jXj)\XiΓiXjΦ 0} c # 3 - {p}. Since the geometric realiza-
tion of N is nullhomotopic in i?3 — {p}, the proof is complete.

2.2. Suppose S is a 2-sphere in Ez and ε > 0. Then there is
a δ > 0 such that if K is a compact set in S and if has no com-
ponent of diameter > <5, there exists a finite number of disjoint ε-disks
Ely •••, En in S such that JBΓc U i I n * ^ >

Proo/. This can be deduced easily either from [9, Theorem 4.8.7]
or its proof.

2.3. Addendum to the S.A.T. [7, §7]. The following conclusion
may be added to the S.A.T.: There are disjoint ε-disks El9 ---,Em

on h(S) such that
(3) h(S) - U; Ej c Int S.
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Proof. Choose p e Int S. We may assume that p(p, S) > 2ε. By
(2.2), there is a δ, 0 < § < ε, such that if jSΓis a compact subset in S
having no component of diameter greater than 3<5, there exist disjoint
ε/3-disks Eu-- ,EmmS such that Ka U J n t E{.

By the S.A.T., there are disjoint δ-disks A, " , A> in S and
a δ-homeomorphism from S into E3 such that

(1) h(S) is polyhedral, and
(2) S- U AcExt/KS) .
Let £Γ0 - Λ(S) Π Ui A and if - hrι(K^. Then if has no com-

ponent of diameter greater than 3δ and is covered by the interiors of
disjoint ε/3-disks E[, , E'm in S. Let E3 = h{Ef

3). Then E19--,Em

are disjoint ε-disks on Λ(S) such that S Π fe(S) c U i I n t -̂ i It remains
only to show that h(S) - \J3 E3 c Int S. Since /θ(p, S U h(S)) > ε and
S is homeomorphically within ε of S, pe Int h(S) [13, Theorem VI
10, p. 97]. Since ^(p, S U h(S)) > ε and each Z>4 and i?, has diameter
less than ε, it follows from (2.1) that (U; A) U (Ui Ei) does not
separate 39 from infinity. Let R be a ray from p to infinity in E3 —
ί(U< D^ U (Ui -#i)]- L e t Q be the first point of B Π (S U h(S)). If one
had q £ S, then one would have a contradiction to (2) S — Uί A ^
ExtΛ(S). Hence qeh(S) and (3) fe(S) - Ui EJ c I n t S. This com-
pletes the proof.

S.A.T. for open subsets of spheres [7, §8], [8]. If U is an open
subset of a 2-sphere in E3 and / is a positive continuous real function
on U, then there exists a homeomorphism h of S into i?3, a locally
finite collection of disjoint disks {A} in U and a locally finite collection
of disjoint disks {E3 } in fe(ϊ7) such that:

(1) h is the identity on S — U.
(2) |0(ί£, h(x)) < /(a?) for each x e U.
( 3) /ι( U) is locally polyhedral.
(4) U - U Int A c Ext h(S).
( 5) ^f/j-U^t^c Int S.
( 6 ) Diam Di < min value of / on D{.
( 7) Diam £7, < min value of / on /

Proof. The proof proceeds almost without change from that of
the S.A.T. One chooses an infinite triangulation of U rather than
a finite triangulation of S. Otherwise the argument is entirely local
and the desired result follows.

3. Proof of the ELA/Γ* (statement appears in §1Φ) Throughout
this section we assume that S is a 2-sphere in E3 which satisfies the
hypothesis of the H.A.T.; i.e., for each ε > 0, there is an ε-homeomor-
phism from S into IntS. By the S.A.T., we may assume that the
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image of S is a polyhedral 2-sphere in Int S which we call a poly-
hedral ^-approximation to S in Int S.

DEFINITION. Suppose K is a (curvilinear) simplicial complex in
S. We say that K can be polyhedrally collared from Int S if there
is an embedding h: K x [0, 1] —> S U Int S such that

(1) h(k, 0) = ft if keK.
(2) h(K x (0,1]) c Int S.
(3) ft I If x (0,1] is locally piecewise linear. Then h is called

a polyhedral collar on if from Int S. (We identify if x [0, 1] with
some abstract simplicial complex for the purpose of defining piecewise
linear.)

3.1. Each simple closed curve J in S can be polyhedrally collared
from IntS.

Proof. In outline, the S.A.T. for open subsets of spheres (§ 2)
implies that we can raise a blister near one of the disks on S which is
bounded by J; we can then use the polyhedral approximations to S in
Int S supplied by the hypothesis of the H.A.T. to cut off the feelers of
the blister which reach back through S (see Figure 4).

In more detail, let D be a disk in S bounded by J. Let f(x) =
p(x, S — D) for each xelτΛD. By the S.A.T. for open subsets of
spheres (§2), there exists a homeomorphism of S into EB, a locally
finite collection of disjoint disks {Z)J in Int D, and a locally finite
collection of disjoint disks {E3) in ft(IntjD) such that:

(1) h I S - Int D = identity.
(2) ρ(x, h(x)) < f(x) for each x e Int D.
( 3) ft (Int D) is locally polyhedral.
( 4) Int D - U Int A c Ext h(S).
( 5) ft(Int D) - U Int Ei c Int S.
( 6 ) Diam D{ < min value of / on Zλ:.
( 7) Diam E, < min value of / on h~ι{Eτ).

Feeler

Bliί

IntS FIGURE 4
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Let V denote the component of Λ,(Int D) — S which has limit
points in J. Note that h(Int D) — (J Int Eά c V. By the hypothesis
of the H.A.T., S, and hence also each disk Di9 can be approximated
very closely by a polyhedral set in Int S. It follows easily that there
is a null sequence D[, D'2, of disjoint polyhedral disks in Int S, each
Ώ\ approximating the corresponding disk D{ and each in general posi-
tion with respect to h(S) such that

(8) Dlf] h(S) c U Int Eά.
(9) No component of V — \J D[ has limit points both in J and

in IntZλ
Let W be the component of V — \J Ώ\ which has limit points in

J. Note that fe(Int D) - U Int Eό c W. Consider the set Cl (W) - W.
The components of this set form a null sequence J, Jl9 J2, of simple
closed curves, each J{ lying in some Int Ό] and only finitely many of
the Ji in any one D]. For those curves /; which lie in Int D[, we
fill in the holes in Cl(W) bounded by the J{ with disks D{J%) in D[
and push these disks slightly to one side of D[, pushing those furthest
which are innermost on D\. If this is continued sequentially (say, in
the order D[, D'2, •) and if care is exercised in the adjustments which
push the disks D(Ji) away from the disks D], one will obtain thereby
a disk E — Cl (W) U D(Ji) (adjusted) which has J as boundary and
has interior which is a locally polyhedral subset of IntS. A poly-
hedral subset of IntS. A polyhedral collar for J from IntS can
easily be identified in E.

3.2. If K is a #-curve in S (i.e., the union of three arcs with
common endpoints and disjoint interiors) and J is a simple closed
curve in K, then any polyhedral collar on J from IntS can be ex-
tended to a polyhedral collar on K from Int S.

Proof. Let D be the disk in S which is bounded by J and con-
tains the arc a = Cl (K — J). Let β be an arc which has the same
endpoints p and q that a has and which lies except for p and q in
S — D. Then J ' = a U β is a simple closed curve in S. Let Π be
a disk bounded by Jf in S.

We are given by hypothesis an annulus A which polyhedrally
collars J from Int S. The annulus A comes equipped with an assigned
product structure A = J x [0,1] (J = J x {0}) which we shall consider
in more detail at the end of the proof. The proof of (3.1) showed
how to construct a disk E very near the disk Όf such that J ' =
Bd E, Int E c Int S, and Int E is locally polyhedral. It is clear from
the proof of (3.1) (choose / appropriately) that we may further require
that E Π (J x {1}) = 0 . We require that Int E and A be in general
position.
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The inexperienced reader should compare the following discussion
with [12]: Since Inti? and A are in general position, there are only
countably many components Ku K2, of Af] Int E and they form
a null sequence, locally finite except possibly at p and q (the endpoints
of a), and satisfying for each individual ί either

(1) Cl (Ki) = Kt is a simple closed curve in Int E,
(2) Cl (Ki) = K{ U {p} or ϋQ U {q} is a simple closed curve con-

taining p or q, or
(3) Cl(Ki) = KiU {p, q} is an arc from p to q.
If i? is chosen near enough to £)', then is follows that each com-

ponent Ki of type (1) or (2) bounds a (unique) disk A(Ki) in A. Such
a i^ also bounds a (unique) disk E(K{) in i?. Let

Eo = E - U {Int #(ίQ I ΛΓ, is of type (1) or (2)}, and
E' = E0\J [\J {Int A(Ki) I K< is of type (1) or (2) and K, c Eo}]. If

Ki U K3 c #0(ί =£ j), Ki and IT, are of type (1) or (2), and A(Kt) c A(iΓ, ),
then one is to understand that E' contains two copies of A(Ki) — {p, q),
one corresponding to Ki9 the other lying in A(KS) and corresponding
to K3. With this understanding, E' is a singular disk which may be
made nonsingular by pushing the sets A(Ki) — {py q) slightly to one
side of A in Int S. If A(Ki) c A(Kj), then the copy of A(K{) correspond-
ing to Ki must be pushed further away from A than is the copy of
A(Ki) in A(Kj).

If each of the sets A(Ki) — {p, q) is pushed to the appropriate
side of A and other appropriate care is taken, the nonsingular E'
obtained will satisfy all of the conditions that the original E satisfied
except that there will be only finitely many components of A Π Int Ef

and each will be of type (3).
Since J separates Int a = a — {p, q) from Int β in S», it follows

that A Π Int Ef Φ 0, hence that there is a disk E" in Ef such that
E" Π A is a single arc in A Π Bd E" from p to q and such that the
complementary arc in Bd E" is the original arc α. Standard cut and
paste techniques allow one to adjust E" so that the arc A Π Bd £"'
runs up the fiber {p} x [0,1] in A = J x [0,1], arond the upper rim
/ x {1} of A, and back down the fiber {q} x [0,1]. The desired poly-
hedral collar for K from Int S can be identified in A U E" (adjusted).
This completes the proof of (3.2).

3.3. COROLLARY TO (3.2). If T is a curvilinear triangulation of
S, then the 1-skeleton of T can be polyhedrally collared from Int S.
If T' is a curvilinear derived subdivision of T, then any polyhedral
collar from Int S on the 1-skeleton of T can be extended to a polyhedral
collar from Int S on the 1-skeleton of T".

Proof. The 1-skeleton of a triangulation can be built up from an
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initial simple closed curve by adding arcs spanning the 2-cells of in-
creasingly fine cellular subdivisions of S. Thus the corollary follows
directly from (3.1) and (3.2).

3.4. Suppose Tis a curvilinear triangulation of S, h: \ T1 | x [0, 1]—>
S U Int S is a polyhedral collar on the 1-skeleton T1 of T from Int S,
and a and β are positive numbers less than 1. Then there is a poly-
hedral embedding /: S —>Int S such that:

(1) /(S) separates h(\ T1 | x {1}) from S in E\
(2) f{t) = h(t, a) for each t e \ Tι |, and
(3) /(Int σ) c N(σ U h(Bd σ x [0, a]); β) - h(\ T1 | x [0,1]) for each

2-simplex σ e T\

Proof. Suppose that, for each 2-simplex σ e T2, we have shown
how to construct a polyhedral disk σr such that Bd σ = h(Bd σ x {a})
and Int σ' c JSΓ((τ U λ(Bd σ x [0, α]); /9) - h(\ T1 \ x [0,1]). Then, for β
sufficiently small (which we may certainly assume), S' = U {σ' \ σ e T2}
will automatically be a polyhedral 2-sphere in Ez which separates
h(\ Tι I x {1}) from S in EB; and a homeomorphism f: S—+S' satisfying
the requirements of (3.4) can be constructed by defining f\\Tι\ by
requirement (2) and then, for each σ e T2, extending /1 Bd σ across
Intσ to take σ to σ'. Thus it suffices to construct σf.

Suppose that σ is a 2-simplex in the 2-skeleton T2 of T. Let So

be a polyhedral /9-approximation to S from Int S with &(Bd σ x [0,1])
and So in general position. For β sufficiently small it will be true
that

(4) So Π h(Bά σ x [0,1]) c fe(Bd σ x (0, a)),
(5) So separates h(βά σ x {1}) from S, and
(6) some component C of S - h(\ T11 x [0,1]) will lie in N(σ; β),

have its boundary components in JV(Bdσ x [0,1]), and have precisely
one boundary component which is not contractible in the annulus
h(Bdσ x [0,1]).

Fill in those boundary components of C which are contractible in
h(Bd σ x [0,1]) with the disks they bound in h(Bd σ x [0, a]) and push
them to the "σ"-side of h(Bd σ x [0, a]). This yields a disk σ' with
Bd σf = K and Int σ' c Int S - h(\ T1 \ x [0,1]). Since the simple closed
curves K and h(βdσ x {a}) are parallel in ^(Bdα x (0, a]), cut and
paste can be used to slide K upward in the annulus fe(Bd σ x [0, a])
so as to coincide with h(Bdσ x {a}) as required. This completes the
construction of σf and the proof of (3.4).

Proof of the H.A.T. We now construct a homeomorphism from
S U Int S to the unit ball Bz in Ez centered at the origin.

Let 2\ denote a curvilinear triangulation of S and T2, T3,
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successive curvilinear derived subdivisions of 2\ so chosen that mesh
Ti —> 0 a s i —• oo.

By (3,3), there exist for i = 1, 2, polyhedral collars A<: | (Γ*)11 x
[0,1] —>S U Int S on the 1-skeletons (T^1 of these triangulations, hi+1

extending h{. We may clearly require that, for each te \(TiY\, Diam
hMU} x [o, l/i]) < i/ί.

By (3.4), there exist for i = 1, 2, polyhedral embeddings /*: S—>
IntS such that:

(1) /4(S) separates ht(\ (T,)11 x {1}) from S in E\
(2) /<(«) = Λ,(ί, l/2i) for each te | (T,)11, and
(3) /.(Int σ) c N(σ, l/2i) - A«(| (77,)11 x [0,1]) for each 2-simplex

Let nx = 1, n2y be a subsequence of X, 2, so chosen that
/»<(S) ΓlΛj.OS) = 0 for i ^ i. Let fl*. be the restriction of the poly-
hedral collar hn. to the set | (Tn.y \ x [0,1/2^]. Then

X=SU iUif^S)} U {\Ji Image JH.J

is the template which we shall use to describe a homeomorphism

h:S [jlntS >B3.

Description of h\S. Let h \ S: S — (S2 = Bd JS3) be any homeo-
morphism.

Description of h | Image Hn.. If t e | (ϊ7^)11 and α e [0,1/2^], let
h{Hn.(t, a)) be on the radius joining h(t) and the origin in B3 and at
a distance a from

Description of h\fn.(S). If s€<S, let h{fni{s)) be on the radius
joining h(s) and the origin in J53 and at a distance 1/2% from h(s).

Description of h | (S U Int S) — X Let U be a component of
(S U Int S) - X. Then Bd Z7 is a polyhedral 2-sphere in Z of which
U is the interior. By Alexander's Theorem (see [2], [11] or [14]),
U U Bd U is a 3-cell. The map h | Bd U is already defined and takes
Bd [/ homeomorphically onto a curvilinear 2-sphere /ι(Bd U) in Int i?3.
Obviously, fe(Bd 17) U Int fe(Bd U) is also a 3-cell. Since both U U Bd U
and Λ(Bd J7) U Int ft(Bd U) are 3-cells, there is an extension of h\BdU
which takes U U Bd U homeomorphically onto h(Bd U) U Int fe(Bd i7).
We take h \ U (J Bd U to be this homeomorphism.

One checks easily that h defined piece by piece above defines a
homeomorphism from S (J Int S onto B\ This completes the proof of
the H.A.T.
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APPENDIX. We give an example of the type of argument one
might use in establishing such things as the claims in Steps 1 and 3
of the proof of the S.A.T., Property (9) in the proof of (3.1), and the
statements involving "for β sufficiently small" in the proof of (3.4).
Such details are often omitted as essentially obvious in the mathema-
tical literature (or hidden under the rug, depending on one's viewpoint).

EXAMPLE (cf. the second paragraph of the proof of (3.4)). Let
S be a 2-sphere in E\ D a disk in S; and suppose J — Bd D has a
polyhedral collar h: J x [0,1] —• S U Int S from Int S. For each ε > 0,
there is a δ > 0 such that if S has a polyhedral ^-approximation
/: S-^IntS from IntS with f(S) and h(J x [0,1]) in general position,
then:

(1) f(S) separates h(J x [0,1]) from S in E\ and
(2) there is a component C of f(S) — h(J x [0,1]) such that

C c N(D, ε) and Cl (C) — C has precisely one component in h(J x [0,1])
which does not bound a disk in h(J x [0,1]).

(Note that if f(S) Π h(J x {1}) Φ 0 and if C is any component of
f(S) — h(J x [0,1]), then Cl (C) is a disk-with-holes with interior equal
to C" and boundary curves in h(J x [0,1]).)

Proof. We first require an auxiliary construction: let a and β
be arcs with common endpoints peInt D and ge S — D such that
a - {p, q) c Int S - h(J x [0,1]) and β - {p, q) c Ext S. Let Dp c Int D
and DqaS — D be disks such that p e Int Dp and q e Int Dq.

We choose δ > 0 and smaller than the following numbers

8, = p[S, h(J x {1})]

δ2 = p[Dp U Dq, h(J x [0,1])]

δ3 - min {p(p, S - D), p{q, D)}

34 = min {ε/2, p[S - N(D, ε/2), h(J x [0, 1])]}

δ5 = ρ(S - (Int Dp U Int Dg), a U β] .

( a ) f(S) separates h(J x {1}) from S in E3: Indeed, δ < δx im-
plies that S and f(S) are homotopic in Ez - h(J x {1}), hence that
λ(J x {!}) c Int/(S) by [13, Theorem VI10, p. 94]. Since S c Ext/(S),
the result follows.

(b) f(Dv) n h(J x [0,1]) = 0 = f(Dq) n h(J x [0,1]) since δ < δt.
(c) The component C of f(S) — λ(J x [0,1]) which contains

f(Dv) (such exists by (b)) does not contain f(Dg): Indeed, suppose
{f(p)9 ΆQ)} C C. Let 7 be an arc in C from /(p) to f\q). Let 7P and 7, be
the straight line segments in E3 joining p to f(p) and f(q) to g, respec-
tively. Let 7' be an arc from q to p in Ext(S) U {p, ?}. Because δ< δ3,7P Π
S c l n t l ? and γ g n S c S - i ) . It follows that the loop Γ which
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traverses 7, 7g, 7', and yp (in that order) has linking number ± 1 with
/. Since δ < δ2, Γ Π h(J x [0,1]) = 0 . Hence L{Γ, h(J x {1})) = ± 1
by (0.5) or (0.6), and Γ is noncontractible in E* - h(J x {1}) by (0.5).
But Γ is homotopic in E% — h(J x {1}) to the loop Γ' which traverses
first /~x(7) and then 7' since δ < δlf and Γ' is contractible in the
simply connected set S U Ext S9 a contradiction.

(d) CaN(D, ε). The proof is like that of (c) with the following
adjustments. One uses q' such that f(q') eC — N(D, ε) instead of the
original q in the construction of Γ. One uses the fact that δ < <?4 to
prove that Ygn SaS - D and that Γ Π h(J x [0,1]) = 0 .

(e) Cl (C) — C has a component which bounds no disk in h(J x
[0,1]). Indeed, L(Bά Dp, a U β) = ± 1 by construction (cf. (0.7)). Also,
Bd Dp and /(Bd Dp) are homotopic in ί/3 - (a U /9) since δ < δ5. Thus
L(/(Bd Dp), αUj8) = ± l . If each component of Cl (C) - C bounded
a disk in λ(J x [0,1]), then /(Bd Dp) would bound a singular disk in
[C - Int Dp] (J λ(J x [0,1]) c Ez - (a (J /S), a contradiction to (0.5).

(f) Cl (C) — C has at most one component which bounds no disk
in h(J x [0,1]). For otherwise, at least one such component would
bound a disk in f(S) — (Dp U Dq) c Ez — (α U β) even though it would
link α U /9, a contradiction.

Added in proof. O. G. Harrold has pointed out an unwarranted
assumption at the beginning of [12] (cf. paragraph 3 of the proof of
our Lemma 3.2) which invalidates the main result of [12] but does
not invalidate the very nice treatment of infinite cut and paste
techniques in [12]. Indeed, the false assumption of [12] is valid in
many situations, including ours (i.e., the paragraph cited above is
correct). L. Keldys has also claimed the main result of [12], her
proof is also incorrect [Math. USSR Sbornik, 10 (1970), 267-287]. The
status of the main result of [12] is apparently undecided.
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