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RADIAL AVERAGING TRANSFORMATIONS
WITH VARIOUS METRICS

CATHERINE BANDLE AND MoSHE MARCUS

In [5] one of the authors introduced the notion of a radial
averaging transformation of domains in the plane, which
was based on the metric given by the line element ds® =
1/r2)(dx? + dxl) where (x1, %;) are the cartesian and (r, 0) are
the polar coordinates. This transformation is useful in obtain-
ing estimates for conformal capacity of condensers and for
conformal radius of domains. In this paper we discuss averag-
ing transformations in m-dimensional spaces (m = 2), based
on various metrics of the form ds?* = g%r) >\i%; (d:)?, where
g(r) is a positive, continuous function of »(0 < » < o).

With the help of these transformations we are able to
obtain estimates for energy integrals of the form

S |PF 2 gyrsmde  (do = dwsdas -« - ditw) -
Q2

These estimates can be used to compare capacities of different
condensers filled with nonhomogeneous dielectric [¢f. Kiihnau
[8] and the literature cited there]. As a further application
we derive inequalities for conformal capacity and conformal
radius in the plane and similar results in higher dimensional
spaces. In this direction we have results for the case where
g(r) =718 8= m — 3. They include the symmetrization results
obtained by Szegé in [7]. The method presented seems to be
quite general, and we believe that it might be employed also
with other classes of metrics g.

1. Estimates for energy integrals. Let g(r) be a positive con-
tinuous function for 0 < r < = and let G(r) be a primitive of g.
(r, 6, +++, 0,_,) are the polar coordinates defined in the following way:

x, = rcos b, % = rsinf, cos b, x, = rsinb,sin g, cos b,

2, =rsinéd, sinf,---sinf,_,sind,_,

where 0 <0, <mfori=1,---,m—2and —7=<40,_, <n. Letpbhe
a fixed positive number and set:

[ = G() — G(o)

1.1
( ) l’vizﬂi 7:—_—-1,"',m—1-

Let 2 be an open set in R™ which does not contain the sphere
{o; |#| < o} and the hyperplanes ¢, =0 7=1,2, .-+, n — 2. Then for
F)eC'(Q) [r = (x, % +++, x,)] We have
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m—1

1.2) [PF "= F; + 3 r7fF%,
i=1

where f; = fi(0,, 0y ++-,0;,_) if i =28, ++-,m — 1 and f, = 1.

If dw = 0@, +--, 0,_,)d0[d6 = db,, ---, db,._,] denotes the surface
element of the unit sphere, then the volume element dx is given by
dx = (r™*/g(r))dudw. Hence

(1.3) Sg |PF [ g(r)r—rds = S [ﬁirzgz(r) + Elfffl]dudw

2
where @ is the image of 2 by (1.1), and
Fu, v,y ++, vo_) = Fla,(r, 0), -+, 2.(r, 0)

where 6 = (0, -+, 0,,_.).
We denote

(1.4 q = rg(r) .

DerINITION 1.1. Let D be an open set containing {x;|z| < o}
and D, = D — {z; || < p}. Denote

(1.5) uoy =\ otryar
where

E,=D,N{x=(r0);0 =6}.
we define
(1.6) E() = G[L0) + G(0)] -
Clearly R(6) does not depend on p. Let

D¥={o=(0;0=r<RO,0=0.<mi=1-r,m—2,

1.7
(L. —r=0,,=7}.

The transformation D — D* will be called the radial concentration
with metric g.

ExXAMPLE. Suppose that D is compact and that the rays 6 =
constant intersect 0D in a finite number of points 7,(9) < 7.(6) < +++ <
74,41(0). In the case where g(r) = 7™, we have

{Tf + i (41 — ng)}llﬂ if =0
(1.8) R(H) = =t

"'112_1?[%L if g=0.

I=L Ty
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REMARK. If D, is the image of D, by (1.1) and D} is the image
of D¥ by (1.1), then D# is obtained from D, by:

(1.9 D ={u, )| 0<u<l@®),0<v, <7 if i=1,++,n — 2
— T =V =T

where v = (v, +++, v,_,) and

(1.10) l(v) = linear measure of (D* N {v = vy}) .

DErFINITION 1.2. Let D be a domain which contains |2| < o.
Let F(x) be a continuous function in R™ such that F = 0 outside D
and FF =1 in a compact subset of D (denoted by E) such that
{le]| £ p}c E. Suppose that in 2=D — E, 0 < F <1 and that on
every ray through the origin F' takes every value ), (0 <) < 1),
only a finite number of times. Let

(1.11) DyF) = {(@) [ Fl®) >}, (0=x<1).

Let Df be the g-radial concentration of D, and let F'* be defined as
follows:

1 in E*
(1.12) F* = {\ on the boundary of D, 0<a<l1

0 outside D*.

(Here E* is defined as in Definition 1 except that in (1.7) 0 < » < R(6).)
Then F* will be called the radial concentration of F, with metric g.
The following results are proved exactly in the same way as in [5]:
(i) D* is a starlike domain.
(ii) E* is a compact, connected, starlike set.
(iii) If F' is continuous then F* is continuous.
(iv) If F is continuous in RB™ and Lip in every compact subset
of D — E, then F* has the same properties with respect to D* — E*.
Also the following basic result is obtained by essentially the same
method as in [5].

LEMMA 1.1. Let D, 2, F be as in Definition 1.2. Suppose also
that Fe C(Q), that FeC® in R™, and that on every ray 6 = constant,
the set of points in 2 where (OF/or) = 0 is at most a finite set.
Finally suppose that:

pu) = [rg(r)],—rwy 7S cOnvVEx or monotone .

Then we have:

(1.13) Sm |PF* [ g(r)s—mda < gg \PF [ g@)rt—"da
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where 2* = D* — E*, Q=D — E.

We shall sketch the main ideas of the proof for the case 2 ¢ R2
It is not difficult to see that the same proof works also for
Qc R™(m > 2).

Proof. Consider the level line F(u, v) = ) where 0 < x <1 and
v = v,. Except for a finite number of A the rays v = constant inter-
sect the level line in a finite number of points (u;, v) with

ul()\', v) < uz()\', U) < e < u2»+1(k’, 'U) *

Actually we shall show that not only the total energy integral is
diminished by radial concentration but even each of its infinitesimal
parts between two level lines given by

Fu,v) = and F(u,v) =+ dn.

Introducing A\, v as new variables we find that this infinitesimal part
is given by

c B {ERT e

Because of the Schwarz inequality, (1.14) is greater than

2v+1 2 2v+1 2
- [Erw ] +[E 10uvi]
[ = LA Ny
N Jzzl [ Ou;/oN |
From the monotonicity or convexity of p(u) it follows [ef. 8]
2v+1 . 2v+1
(S (~17u) < 5 () -

Thus, by Minkowski’s inequality we have that (1.14) is greater than
2v+1 N 2
[p(E )] +

ST (— 1y 0u/on

S (= 1) ouylon ||
J=1 andv .

(1.15) S;_z

Since (0u;/on) has alternating signs, the denominator of (1.15) does
not vanish. The assertion follows immediately from (1.15). We now
define the radial averaging transformation with metric g in the same
way as it was defined in [5] for the logarithmic measure.

DerFINITION 1.3. Let {D,, ---, D,} = & be a family of open sets
in R™, each containing the sphere |x| < p(o arbitrary real number).
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Let A = {a;}}-, where a; > 0 and >".,a; = 1. Let [;(f) be defined as
in Definition 1.1 for D;. Then set

(1.16) 0) = Xj-aili(0)
(1.17) R*(6) = GT'[I*(6) + G(0)] ,

and finally define D* as in (1.7) with R(f) replaced by R*(4). We
shall denote D* = &2, ,(=), and call the transformation & — D* the
radial averaging tramsformation with metric g.

In the special case where D; i = 1,2, -.., n are obtained from a
fixed domain D by a combination of simple transformations such as
rotations around the origin and reflections with respect to a plane
through the origin, then the transformation R, , becomes a symmetri-
zation. For example, in R, with g =1 and o, =1/n, =1, -+, n),
we obtain, by rotations, the symmetrization given by:

R*(8,, 0;) = —};ﬁl RO, + Bs, 0. + V5) s
J=1

where ;,v; are arbitrary numbers. D* is defined as in (1.7) with
R replaced by R*.

It might be observed that the radial concentration (1.7) is a par-
ticular case of the radial averaging transformation, i.e., the case n=1.

DEFINITION 1.4. Let < and A be defined as above. Suppose
that D; is bounded. Let E; be a compact subset of D;, which con-
tains {|¢| < p}. Let & = {F,, ---, F,} be a set of functions such that
each F'; has the properties described in Definition 1.2 with respect to
D; and E;. We define D,(F;) as in (1.10) and

DT = %g,A(Dl(F1)> M) DZ(F'IL)) .

Finally we define F* as in (1.12). The transformation & — F* will
be called a radial averaging transformation on F with metric g.
We shall denote F* = ., ().

The analogous properties to (i)-(iv) for the radial averaging trans-
formation are verified exactly as in [5]. Also the following result is
proved essentially in the same way as the parallel result in [5].

THEOREM 1.1. Let =, & be as in Definition 1.4. Suppose also
that each F'; has the properties described im Lemma 1.1 with respect
to D;, E;. Finally suppose that p(u) (defined as in Lemma 1.1) is
convex. Then we have:

(1.18) S rE 90 gy < S, S 7 F 90
o r 7=1 2; 7
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where D* = 2, (), B* = B, (Eyy- -+, E,) 2* = D*— E*,2, = D;— E,.

REMARKS (1) Lemma 1.1 is contained in Theorem 1.1 for the
particular case n = 1.

(2) Szego [7] proved (1.18) for g(r) =™ and a;=1/n
j=1,+-+,n and for D; and F; j =1, ---, n obtained from D and F
by certain rotations. He assumed further that Q is starlike and that
F has starlike level surfaces.

(3) If g(») =1/r (i.e., the logarithmic metric) and m = 2, then
the results obtained here coincide with the results of [5,4]. In this
case we can obtain from (1.18) inequalities for the (conformal) capaci-
ties of cylindrical condensers with a homogeneous dielectric. By the
same method we can derive from (1.18) inequalities for capacities of
condensers with an inhomogeneous dielectric.

2. Estimates for capacities. In this section we describe a method
by which the results of Theorem 1.1, with various metrics g, can be
used to derive inequalities for condensers with homogeneous dielectrics.

Let D be a bounded domain and E a compact subset of D which
contains the sphere {{x| = p}. We denote as usual 2 =D — E. We
assume that the boundary of Q is sufficiently smooth so that Green’s
theorem may be used. Let C be the “inner boundary” of 2, i.e., 2 N E.

Consider a function ® which is continuous in R™ such that
we(C'(Q),w =0 outside D and w =1 in E. Let & be defined in 2
by h = w/q, where ¢ is a positive function of » (0 < » <) such that
g € C¥0, «=). Because of the identity

(grad uv)®* = u? grad®v + div (vu grad u) — vudu

we have

2.1) E P e = ! \Ph Pgde — S hiqdqdes — f @* 0g 4.
2 2 o q on

[# inner normal, ds surface element of C].

We now restrict our attention to the case where F = {|{z| < o}
in which case C is the sphere |x| = p. We also assume that o is
harmonic in 2 and that ¢(r) is analytic for 0 < r < co.

Let us apply the transformation of radial concentration with
metric g, where ¢°* = rg(r), to D and h. We denote the resulting
domain and function by D*, h* respectively and we set Q* = D* — K.
(In this case E* = E.) It is easily verified that

(2.2) SQ Rg(r)r~—™dx = gm h*g(ryr"de .
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Now suppose that ¢ is chosen in such a manner that:
2.3) (i) qdq = cg(r)r*™ where ¢* = r* ™g(r) and ¢ is an arbitrary
constant.
(ii) gq is positive and nondecreasing.
(iii) p(u) = [rg(")],—rw is convex (where r(u) = G'[u + G(p)]
see (1.1)).

Since @ is harmonic in 2 we have 0 < w <1 in 2 and since ¢ is
nondecreasing 0 < h < (1/g(0)) in 2 with & = (1/9(0)) on C and h =0
on the boundary of D. Furthermore since 7 is an analytic function
of r on the intersection of any ray 2 = constant with @, it is clear
that h satisfies all the assumptions of Lemma 1.1 (if 2 has a smooth
boundary). Hence we obtain:

2.4) gm |Ph* | gfds < SQ \Vh | g -
By (2.1), (2.2), (2.3), and (2.4) we get

(2.5) S 12 mgS | 7R Izqzdx—g h*qdqds — f 1 994,
2 o o* c q on

But, again by (2.1), the right-hand side of (2.5) is equal to:
S | Pda
.O*

where w** = h*q; note that w** =1 on C and w** =0 on the
boundary of D*. Also, since h* is Lip in every compact subset of
2%, so is w**. Hence w** is an admissible function for the varia-
tional definition of the capacity of the condenser 2*; if @’ is harmonic
in 2* and ® =1 on C and w’ = 0 on the boundary of D*, then:

(2.6) Q%) = gm Ve 'ds < Sm |Pw** Pde ,

where I(Q*) is the capacity of 2*. (As a reference for the facts quoted
here see for instance [1] and [6].) From (2.5) and (2.6) we finally obtain

2.7 Q") = 19 ,

where I(2) is the m-dimensional capacity of Q.
To sum up this result we state

LeEMMA 2.1. Let D be a bounded domain in R™ containing the
sphere {|{x| < p}. Let 2 =D — {|z| < p}. Let q(r) be a positive analy-
tic function of r for 0 < r < o, satisfying (2.3). Let D* denote the
domain obtained by radial concentration with metric g from the
domain D. We assume that D* is not the entire space B™. Then
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(2.8) I(2*) = 1(9)
where 2* = D* — {|x| £ o).

REMARK. In the previous discussion we assumed that the bounda-
ry of D is smooth; but the result of Lemma 2.1 is obtained for general
domains D by the standard method of approximating a given domain
by a sequence of domains with smooth boundary.

Using a result of Polya-Szego [6] on the connection between capa-
city and conformal radius, the following result is obtained as an
immediate consequence of Lemma 2.1:

LEMMA 2.2. Let D be a domain tn the plane containing the
ortgin and let D* be the domain obtained from D by radial concent-
ration with metric g. Suppose that g is analytic for 0 < r < = and
satisfies (2.3). Denote by v, (resp. ry) the conformal radius of D (resp.
D*) at the origin. (We assume that D* is not the entire plane.) Then:

(2'9) 7o é ’I"’S .

By the same arguments used in the proof of Lemma 2.1, one
obtains the following result (based on Theorem 1.1):

THEOREM 2.1. Let & = {D,, -+, D,} be a family of domains in
R™ each of which does mot contain z = oo and contains the sphere
|@| < p. Let q be a positive analytic function of r for 0 < r < oo,
satisfying (2.3). Let D* = 22, (=27) and suppose that D* is not the
entire space. Denote: 2, = D; — {|z]| < p}* = D* — {|{x| =< p}. Then:

(2.10) I(2%) < g a; 1(2;) .

In the particular case where g(r) = ™2, (2.10) holds for general
condensers 2; = D; — E;, (j =1, ---, n), where E; is a compact subset
of D; containing the sphere |x| < p. (In this case, 2* = D* — E*
where E* = 2, (E,, ++-, E,).)

The last statement of the theorem is an immediate consequence
of Theorem 1.1, since in this case ¢ = g(r)/r"2 = 1.

Again, applying the result of Pdlya-Szego [6] mentioned above
(see also Hayman [1, p. 82]) we obtain from Theorem 2.1 (with m = 2):

THEOREM 2.2. Let & = {D,, ---, D,} be a family of domains in
the plane containing the origin and let D* = B, (=) where g(r) is
positive and analytic for 0 < r < « and satisfies (2.3). Denote by r,,;
(resp. rs) the conformal radius of D; (resp. D*) at the origin. (We
assume that D* is mot the entire plane.) Then:
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(2.11) min (7o, *++, To,u) < 75 «

A family of functions ¢ which satisfy (2.3) (i) is established. It
depends on the constant ec.

(a) Lete> — ((m — 2)°/4) and set 6 = (m — 2)* + 4¢. Then the
general solution of (2.3) (i) is

q(r) = Aptmtolz 4 Bpe-m=aiz
(b) Let ¢c= — (m — 2)*/4). Then
q(r) = Ar'™"” 4+ B(ln r)r'—".
(c) Let e < — ((m — 2)*4). Then 6 = ik(k > 0) and

mje e [ K _ k
— k—m/[2 1—m (2
q(r) = Ar sin < 2 In r) + Br cos (-2 In r) .
Hence the functions

(2.12) {q:w ®=0

g = ritms3 vy=2a=0

satisfy (2.3). Indeed, since @ = 0 (2.3) (ii) holds. An easy calcula-

tion yields p(u) = (v + m — 2)u + 072, which is certainly convex.
Notice that for g = »#~' the domain D* = <2, ,(=) in the plane

is given by

D* = {(r,0); 0 <r < R*0), —n <6, <7}

where
{i a,-Rf}”ﬁ it 8=0
R*(6) = 9:1
II Ry if -0
=1

and R, is defined in (1.8) with respect to D;.
We mention also that for g = »#7'(8 = 0) in the plane, the ine-
quality (2.11) may be replaced by:

<]§=‘,1 ajré,j>1/ﬁ it >0

v

.11y T .
11 753 it g=0

The inequality for @ = 0 was proved in [5]. For 5> 0, (2.11) is
obtained from (2.11) as follows. Set D; = (1/ro)D;, G =1, «++, n).
Then the conformal radius of D, at the origin is 1. Let D* =
2, 4/(D,, +++, D,), where A’ ={a],+--,a.} and a, = awf,/S0, a;rh,.
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If #* denotes conformal radius of D* at the origin, we have (by (2.11))
7*>1. But D* = [(Sra;rE,)7#1D*. Hence #* =rf (raré,)"e=1.

Theorem 2.2 does not hold for g = " withn =2,3, --.. This
is shown by the following counterexample. Let D be the Koebe
domain i.e., the entire z-plane cut along the positive real axis from
2 =1/4 to infinity. Set D, = D, D, = ¢**°’D and D, = ¢**/*)D. Let
D* = &, (D,, D,, D;) with g as above and A = {1/3,1/3,1/3}. Then
D* is the entire z-plane, cut along the rays argz = 0, (27)/3, (47)/3
from |z| = ¥3/4 to infinity. But for n = 2,3, --- we have ¥3/4 <
¥1/4. Hence r < 1 while 7,, = 7., = 7., = 1. This contradicts (2.11).

It is possible, of course, that (2.11) is valid for other families of
functions g. In fact, examining the argument that proves Lemma
2.1 and Theorem 2.1 we observe that condition (2.3) is too restrictive.
This condition (part (i)) guarantees that the integral

g ihzqdqdwdy
)

is preserved under our transformation. But actually we need only
that this integral does not decrease.

Furthermore, even if (2.11) does not hold for a given metric ¢
for every family of domains, it might hold for certain types of domains.

Finally we shall indicate an application of Theorem 1.1 concerning
the harmonic radius. This notion was introduced by Hersch [2] and
is defined in the following way: Let D be a domain such that the
Green function g(P, Q) for the Laplace operator exists. The harmonic
radius R, is given by

1 .. _ 1
E"}ﬂ% (47rg(P, Q) PQ !)

where | PQ| is the distance between P and Q. Following [6] we can
characterize R, with the help of the capacity C.(Q) = SQ |V w [Fdx where
Q.=D—{PeD||PQ|<¢}. R, can be written as

@.13) R, = lim {47:0;1(@) - %}—1 .

LemmA 2.3. Let {D, D,,-+--,D,} = &7 be a family of open sets
in R® each containing the sphere {|x| < 0}, and let R,; be the cor-
responding harmonic radius with respect to the origin. If g =1 and
D* is defined by D* = R, (=) [¢f. Definition 1.3], then we have for
the harmonic radius Ry of D* at the origin

n
Sia;R,; < RY .
j=1



RADIAL AVERAGING TRANSFORMATIONS WITH VARIOUS METRICS 347

Proof. From (2.13) we have

(2.14) C;(0) =C,; = 4”( 7 +1/1. T O(s-)) ’

and by Theorem 2.1

1 — T(O%) < < .
(2.15) s e I < g a;1(2;,))

= S a;
j=1 Rj + 1/5]' + O(Sj)

[9j.; = D; — {Pe D; || PO| < &}l
If we choose ¢; = (¢R;/> 2, a;R;) = BR;. Then it follows from
(2.14) that

2.16 ¢ <3 BE; .
(2.16) eR} + 1+ 0(%) ~ %“JBR; +1 + 0@F)

The function (B8x/(8+* + 1)) is concave in the interval [0, m] where
m’ < 3/B. Since ¢ > 0 (and therefore B) is arbitrary, it is always
possible to find a number g, such that (8x/(8%* + 1)) is concave in
[0, max; R;]. Therefore

i a BoR; < B2 @i Ry)
FUBR A1+ 06) T H RIS 4Ry + 1+ 0@
&

=1 B(Xl a;R;) + 1 + O(1)

IA

3

and by (2.16) we have
R¥

v

€n
21 a;R; .
=
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