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LIMITS FOR MARTINGALE-LIKE SEQUENCES

ANTHONY G. Muccl

The concept of a martingale is generalized in two ways.
The first generalization is shown to be equivalent to con-
vergence in probability under certain uniform integrability
restrictions. The second generalization yields a martingale
convergence theorem.

1. Introduction. In what follows {X,, ®B,} is a sequence of
integrable random variables and sub-sigma fields on the probability
space (2,9, P) such that

X, is B,-measurable
%ﬂc QS‘n-l-l

B = a([) %,,) )

We call the sequence {X,,%8,} an adapted sequence. In [2] Blake
defines {X,, B,} as a game which becomes fairer with time provided

E(X,|B,) — X, —250 as n=m—> oo,
i.e., provided, for all ¢ > 0:

lim P(E(X,|B,) — X.|>€ =0 as m— co.
n>m

It is proven in [1] that if {X,, B,} becomes fairer with time, and if
there exists Ze L, with |X,| < Z for all #, then X, — X, some
Xe &,

In the present paper we will show that X, — X under the less
restrictive assumption that {X,} is uniformly integrable. We will
further show that in the presence of uniform integrability {X,, %3,}
becomes fairer with time if and only if {X,} converges in probability,
i.e.,

BX,|D,) — X, — 06X, — X, —50.

Finally, by using the more restrictive concept that {X,, B,} is a
martingale in the limit, namely,

lim (B(X,|®,) — X,) =0 a.e.,

n2m—roo

we will prove (Theorem (2)) a generalization of a standard martingale
convergence theorem.
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2. PROPOSITION 1. Let the sequence {X,} be uniformly integrable
and assume

limS X, ewists, all AeUS, .
A 1

n—oo

Then there exists X e &, such that

lim SAX,, - SX all AcS.

n—ox

Proof. Let Ae®B, 6> 0. There exists 4, U7 B, with P(A44,) <
0. This, together with the augument in Neveu [3] (page 117) proves
the desired result.

REMARKS. Let 2 =[0,1) with Lebesgue measure. Let 8, be
the o-field generated by the subintervals A4,,, = [k/2", (kK + 1)/2"), k =
0,1,+-+,2" — 1. Bet X, = 335 (—1)*1,, , where I, is the indicator

function of A. Then for any Ae U8B, we have limn_,ms X, =0.

A
Further, {X,} is uniformly integrable. However, {X,} does not con-
verge in the &-norm.

PROPOSITION 2. Let {X,} be wumniformly integrable and assume
{X.,} becomes fairer with time:

(*) lim P(E(X,|SB,) — X.|>¢) =0.
Then there exists X € &4 such that X, =L X,
Proof. Let AeD,,p=q= m. Then

| x-]x = zxim) - x

IA

IE(Xpl%q) - qu + €

SA(!E(Xpmq)—que)

= 2sup g
k AUB(X pIB)—X gl>e)

[ X+ €.
By uniform integrability and the assumption (*) we see that

lim S X, converges, all Ae lj B, .
A 1

n—oo

By Proposition 1, there exists X e <& with

limg X,,:SX, al AcS.
A A

n-—c0
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Note that {E(X|%,), 8,} is a martingale and E(X|8,) — X both in
the &2 and the almost sure sense (Levy’s Theorem). Since

[1x - x1=|1x - B3| + || BXIB) - X1,
it will be enough to show ngn — E(X|%8,)| — 0. Now

[1x. - BxiB)| = | (X, — B(X|B.)

(X pZE(X12,))

(E(X|B,) — X,) .

+ g
(X p<E(X18y))

Letting #n’ = n and setting A = (|E(X, |8, — X,.| > ¢), we have

X, - BxI) = | 1%+ | X,

S(x,,gmxmnn

+ (X,,—X)!-H-:

S(X,,gmxnmnn

§2supg | X |
k A

+ (Xn,-X)§+e.

.‘(anE(XJBn)

By uniform integrability and condition (*), the first integral is small.
Letting »' — o, the difference in the remaining integral tends to
zero. An identical analysis shows

(E(X|®,) — X,) — 0.

S(Xn<E(X|93))
REMARKS. SupposeX, —2 X. Then since
Lxi={x-xi+|1x,
A A
we see that {X,} is uniformly integrable. Further

P E(X,|B,) — X.| >¢) = %‘S‘E<an%m) - X,
1

so {X,, B,} becomes fairer with time. It is shown (Neveu [3], page
52):

{X.} is Cauchy in the &£ norm &= {X,} is uniformly integrable
and {X,} is Cauchy in probability.

We tie these results together with Proposition 2 to get
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THEOREM 1. Let {X,,%B,} be an adapted sequence. Then the
following three statements are equivalent:

(a) There exists Xe & and X, —5 X .
(b) {X.} is uniformly integrable and E(X,|8,) — X,,,—P> 0.
(c) {X.,} is uniformly integrable and X, — X,, — 0.

COROLLARY 1. Let the adapted sequence {X,,B,} be uniformly
integrable. Then

E(X,|%,) — X, 4> 0= X, — X, —50.

REMARKS. In the absence of uniform integrability we have neither
implication. Consider the following two examples:

(1) Set X, = >y, where {y,} is a sequence of independent
identically distributed random variables with zero means. Set B, =
oYy, Yoy +++, Ys). Clearly {X,,%8,} is a martingale, so E(X,|%,) —

X, —— 0. But, if, for instance

1 with probability %

Y = : S B
—1 with probability 5

then

| m—

P(X, - Xz =P(|Suz1)

Sy =0)~1— % 9,
zl“yk / Vn—m

so X, — X, -/11 0.
(2) Let {y.} independent where P(y, = k°) = 1/k* and P(y, = 0) =
1— 1/k%
Then, setting X, = >*y, we have
|E(X,|B,) — X, | =E X y=1

m+1

while

so in this case X, — X, —— 0 while E(X,|B,) — X, -5 0.
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Recall now the definition that {X,, B,} be a martingale in the
limit, namely:

** EX,|8B,) — X, — 0 almost everywhere.

THEOREM 2. Let the adapted sequence {X,,%B,} be uniformly
integrable and a martingale in the limit. Then there exists X e &
such that

X, — X almost everywhere and in the F-norm.

Proof. Clearly, {X,, B,} becomes fairer with time, so from Theorem

1 there exists Xe . with X, —% X. Now, for an arbitrary sub-
sequence {n'},

| X — X| = | X — B(X|B,) | + | E(X, — X[B,)| + | E(X[DB,) — X .

By Levy’s theorem, the third term is less than ¢/3 for large enough
m. The first term is also bounded by ¢/3 for large m,n’ since
{X., ®B,} is a martingale in the limit. We must now show that the
second term is small. Note first that for an arbitrary o-field .7 we
have

EX,| ) =% EX|s7 .

Now start with the o-field B, and note that the convergence
z

E(X,|8,) — E(X|D,) implies the existence of subsequence {n.}c {n}
with E(X, |8B,) — E(X|8,) almost everywhere. Continuing, we have
E(X,,|B) — E(X|B,), and we can extract {n,} C {n,} with E(X,,|B;)—
E(X|%B,) almost everywhere. Thus, there exists a subsequence {n} C
{n} with E(X;|%8,) — E(X|B,) a.e. for all m, namely the diagonal
subsequence. Now choose {n'} as a subsequence of {#}, and we can
bound the second term above by &/3.

Applications. 1. Let {y,} be a sequence of independent random
variables such that
2| =0.

m

lim S

n—oco

Then 37y, exists a.e. and in the .&F-norm.
Proof. Set S, = >.*y,. Then

s = [ isa+{| S w

b
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so it is clear that {S,} is uniformly integrable. Further, setting
2811, = O.(yl, Yoy o0, yn), we have
<]

so {S,, B,} is a uniformly integrable martingale in the limit.

n

> Ui

m+1

’

BB — Sal = |5 0

2. Let {X,,®B,} be an adapted uniformly integrable sequence
with |E(X,,|8,) — X,| <c, where {c,} is a sequence of constants
with 3¢, < co. Then there exists ze ¢ with X,— X almost
everywhere and in the ¢-norm.

Proof. We have
E(X,|%8,) — X, = n%E(Xkﬂ — X, 1%,)
= 72 E(Ek+1 - in%k) I%M)'

Thus

n—1

Editorial note. See also R. Subramanian, “On a generalization
of Martingales due to Blake,” Pacific J. Math., 48, No. 1, (1973),
275-278.
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