
PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 1, 1973

COMPLETIONS AND CLASSICAL LOCALIZATIONS
OF RIGHT NOETHERIAN RINGS

J. LAMBEK AND G. MICHLER

Given a right Noetherian ring R and a prime ideal P of
R, the injective hull of the right j?-module RIP is a finite
power of a uniquely determined indecomposable injective IP.
One forms the ring of right quotients RP of R relative to
IP and the right ideal M = PRP of RP generated by P. The
Jf-adic and Jp-adic topologies are compared; they turn out to
coincide on every finitely generated .Rp-module when RP is a
classical quasi-local ring with maximal ideal M. This condi-
tion also implies that R satisfies the right Ore condition with
respect to the multiplicative set ^(P) introduced by Goldie,
that the ikf-adic completion RP of RP is the bicommutator of
IP, and that RP is an n by n matrix ring over a complete
local ring.

Introduction* If P is a prime ideal of the commutative Noetherian
ring R, then, by a theorem of Matlis [8], the completion RP of the ring
of quotients of R at P is the bicommutator of the injective hull of the
j?-module R/P. Recently Kuzmanovich [5] proved an analogous result
for Noetherian Dedekind prime rings. Both these results are special
cases of Theorem 6 below: Let P be a two-sided prime ideal of the
right Noetherian ring R, and assume that the ring of right quotients
RP at P is a classical quasi-local ring with maximal ideal M = PRP,
that is, RP/M is a simple Artinian ring and, for every right ideal E
of RP, Π"=i E + Mn = E. Then the bicommutator of the jβ-injective
hull of R/P is the ikf-adic completion of RP. The hypothesis of Theorem
6 is satisfied by the prime ideals of the enveloping algebra of a finitely
generated nilpotent Lie algebra, by the augmentation ideal of a group
ring of a finite group over a right Noetherian prime ring of charac-
teristic zero, and by the nonidempotent prime ideals of a right and
left Noetherian hereditary prime ring.

These results are consequences of Theorem 5, which states that
RP is a classical quasi-local ring with maximal ideal M if and only if
RpjM is a simple Artinian ring, and, on any finitely generated RP-
module, the ilί-adic topology coincides with the IP-adic topology. Here
Ip denotes the unique (up to isomorphism) P-torsionfree indecomposable
injective JS-module with associated prime P. By [7], Theorem 3.9,
the injective hull IB{R/P) of the E-module R/P is isomorphic to a
direct sum of g copies of IP, where g is the Goldie dimension of the
prime ring R/P. Thus the bicommutators of IP and IR(R/P) are
isomorphic.
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Concerning terminology, we refer to [6], [7], and [8]. All rings
are associative and have a unity element. Modules are right i£-modules
and unitary. We put

9f(P) = {ceR\Vr£RcreP==>reP} .

We begin by comparing topologies, generalizing the known result
when R is commutative [6]

PROPOSITION 1. If R satisfies the right Ore condition with respect
to ^ ( P ) , then on any finitely generated RP-module the IP-adic topology
contains the M-adic topology, where M = PRP.

Proof. Let G be any finitely generated i?F-module. Take any
fundamental open neighborhood GMn of zero in the M-adic topology.
We claim that GMn is also open in the /P-adic topology, in fact,
G/GMn G J^, the class of all iϋp-modules isomorphic to submodules of
finite powers of IP.

Since j ^ is closed under module extensions, and since

GMn s GMn~ι £ . s GM £ G ,

it suffices to show that GMklGMk~ι e j ^ ~ . Put H = GMk, then H is
a finitely generated i?P-module. Now RP/M is a simple Artinian ring,
by [7], Theorem 5.6. Hence H/HM is isomorphic to a finite direct
sum of minimal right ideals of RP/M.

It remains to show that RP/Me^. Indeed, in view of [7],

Lemma 5.4, the mapping R > RP —> RP/M has kernel P, and so
RPjM may be regarded as an J?-module extension of RIP. Actually,
it is an essential extension; for, if 0 Φ [q] e RP\M, then q£ M, but
qc e h(R), for some c e cέ?{P), and gc ί h{P), since otherwise q = qcc~ι e
h(P)RP = PRP = M. Thus RP/M is isomorphic to an i?-submodule of
IB(R/P) = Ip. By [7], Theorem 5.6, RP/Mi$ torsionfree and divisible,
hence RP/M is also isomorphic to an Sp-submodule of Ia

P, and so

This completes the proof. In the converse direction we have the
following result. We remark that condition (1) plays an important
role in [4], Theorem 5.3.

PROPOSITION 2. Suppose M = PRP is a two-sided ideal of RP.
Then (1) => (2) — (3):

(1) For each right ideal E of RP there exists a natural number
n such that E Π Mn £ EM.

( 2) For each element ίe IP there exists a natural number n such
that iMn = 0.
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( 3 ) On any finitely generated Rp-rnodwle the IP-adic topology is
contained in the M-adic topology.

Proof. Assume (1). Let 0 Φ i e IP, and put F — {qe RP\iq — 0},
E = {q e RP | qM £ F). Note that EM £ F £ #• Pick rc, so that # Π
Af* £ #Λf, then # Π (Mn + .F) = ( # Π Mn) + F = F. Since /P is
indecomposable, F is meet-irreducible, hence F = E or Mn + F = F.
We shall prove that F Φ E, hence ilf* £ F , and so (1) implies (2).

As P is the associated prime ideal of the JS-module 7P, P is the
right annihilator of some nonzero i2-submodule U of IP. Putting V —
URP, we see that VM = 0 and F ^ 0. Now i # P = RP/F, hence 0 ^
F Π iRP = G/JF7, say, where F ^ GS E,F Φ G, hence F φ E, as
remained to be shown.

Assume (2), and let G be a finitely generated i£P-module. Take
any fundamental open neighborhood of zero in the 7P-adic topology.
By definition, this has the form Ker / , where / : G —> /; for some
positive integer n. Let pk: I%—+IP be the canonical projections, with
k = 1, 2, , n, and put Gk = pk{f(G)). Then Gλ is a finitely generated
i2p-submodule of IP.

By assumption, there is a natural number u(k) such that GkM
u{k) =

0. Let w = Max {u(l), , tφ&)}, then f(G)Mu — 0, hence Ker / contains
GMU, a fundamental open neighborhood of 0 in the ikf-adic topology.
It follows that every open set in the JP-adic topology is also open in
the ikf-adic topology. Thus (2) ==> (3), and the proof is complete.

We know from [7], Lemma 5.2, that for each element qeRP there
exists an element ce^(P) such that qc e h(R), where h: R—> RP canon-
ically. This does not imply that RP is the classical ring of quotients
of h(R) with denominators in h(^(P)), unless R satisfies the right Ore
condition with respect to ^(P). (See [7], Proposition 5.5.) However,
we have the following.

PROPOSITION 3. Let P be a two-sided prime ideal of the right
Noetherian ring R, and assume that M = PRP is a maximal two-sided
ideal of RP such that RP/M is Artinian. Then, for every integer n^l,
RP/Mn is the classical ring of right quotients of h(R)/(Mn Π h(R)), and
its elements have the form [h(r)][h(c)]~\ with reR and ce^(P).

We could deduce this from [9], Theorem 2.4, by first proving
that the ideals h~ι{Mn) are the nth. symbolic powers Pin) defined there
in a different fashion. However, it is a bit quicker to deduce this
directly from the following result by Small. (See [10], Theorem 1.)

Suppose P is the prime radical of the right Noetherian ring S,
and ^ is a multiplicatively closed subset of S consisting of elements
with zero right annihilators. Suppose the classical ring of right
quotients of S/P has elements of the form [s][c]~ι, with seS and ce
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<ĝ . Then S satisfies the right Ore condition with respect to ^ and
has a classical ring of right quotients with elements of the form sc~\

Proof. In [7], Theorem 5.6, in the proof of the implication (1) =>
(2), it is shown that RP/M is the classical ring of right quotients of
R/P, and that its elements have the form Mfc]"1, where r e R, and
cerέf(P). Since hr\M) = P, by [7], Lemma 5.4, the result holds for
n = l.

To obtain the result for n = 2, we shall apply Small's Theorem
to the ring S = h(R)/(M2 Π h(R)). To this purpose we must show that
the elements of h(^(P)) modulo M2 have zero right annihilators. In
fact, we shall see that they have left inverse in RP/M2.

Take any ce cέ?{P). In view of the case n = 1, we have RP =
RPc + M. Hence M= MRP = Mc + M2, and so RP = RPc + Me + M2 ==
RpG +' M2. By SmalΓs Theorem, RP/M2 is the classical ring of right
quotients of h(R)/(M2 Π h(R)), and denominators may be taken in ^ ( P )
modulo M2.

Repeating the same argument, we see that RP = RPc + M3, and that
RP/M* is the classical ring of right quotients of h(R)/(M* Π A(iϋ)), with
denominators in ^ ( P ) modulo ikί3. Etc, etc.

In accordance with [7], we call the ring S a classical quasi-local
ring if it is right Noetherian, it has a maximal ideal M such that
S/M is Artinian, and every right ideal of S is closed in the ikf-adic
topology. In view of the following lemma, this implies that M is the
Jacobson radical of S.

LEMMA 4. Suppose M is a primitive ideal of the ring S> and
every finitely generated right ideal of S is closed in the M-adic topology.
Then M is the Jacobson radical of S.

Proof. The first assumption assures that M contains the radical.
We claim the second assumption implies the converse. We shall prove
that if E is any right ideal of S and M + E = S then E = S.

Suppose M + E — S. Without loss in generality, we may take E
to be finitely generated. Now M = SM = M2 + EM, hence M2 + E =
M2 + EM +E=M+E=S. Similarly Mz + E = S, and so on. Hence
the Λf-adic closure Π*=i (E + Mn) of E is also S. By assumption,
E is closed, hence E = S.

THEOREM 5. Let P be a two-sided prime ideal of the right Noetherian
ring R, and put M = PRP9 where RP is the ring of right quotients
of R at P. Then the following conditions are equivalent:

( * ) jβ satisfies the right Ore condition with respect to ̂ (P)
and, for each right ideal E of RP> there exists a natural number n
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such that E Π Mn £ EM.
( ** ) Rp is a classical quasi-local ring with maximal ideal M
( ***) M is a two-sided ideal of RP, RP/M is a simple Artinian

ring, and on any finitely generated right RP-module the IP-adic and
M-adic topologies coincide.

(****) M is a two-sided ideal of RP, RP/M is simple Artinian,
and for each finitely generated right ideal E of RP there exists a
natural number n such that E Π Mn £ EM.

Proof. We shall show that (*) => (**) =* (***) => (****) =- (*).
Assume (*). In view of [7], Theorem 5.6, (**) will follow if we

show that every right ideal F of RP is closed in the ikf-adic topology.
Now its closure is given by E == ΠϊU (F + Mn). Pick n so that E Π
Mn £ EM, then

E £ (F + Mn) Π E = F + (M* Π E) £ ^ + # M .

Take any ee E, then e = / + ΣJU e*mi> where f eF, eiβ E, and m< e
Λf. Then [e] = Σ*=i KN<> modulo F, hence j^/i*7 £ (E/F)M.

It was pointed out in the discussion preceding [7], Theorem 5.6,
that RP is right Noetherian. Thus E and E/F are finitely generated
iϋp-modules. We may therefore invoke Nakayama's Lemma and deduce
that E/F = 0. Thus F = E, and so (**) holds.

Assume (**). By Lemma 4, M is the Jacobson radical of RP. By
[7], Theorem 5.6, R satisfies the right Ore condition with respect to
<g"\P). Let G be any finitely generated right i?P-module. Then, by
Proposition 1, the Ip-adic topology on G contains the ikf-adic topology.
By Proposition 2 and [4] Theorem 5.3, the converse is true. Thus
(***) holds.

Assume (***). Suppse E is any finitely generated right ideal of
RP. Then EM is an open subset of E in the Λf-adic, hence in the
ip-adic topology. Now the /P-adic topology on any module induces the
Ip-adic topology on any submodule. Therefore, EM= E Π F, where V
is an open subset of RP in the Ip-adic topology. Since RP is a finitely
generated i2P-module, V is an open set in the ilf-adic topology, hence
MnSV for some n, and so E Π Mn £ E Π V = EM. Thus (****) holds.

Assume (****). It remains to prove the right Ore condition. Given
aeR and ce^(P), we see from Proposition 3 that, for each positive
integer n, there exist ane R and cn e ^(P) such that h(acn — can) =
h(un) G F Π h(R).

Let F be the right ideal generated by the un, then F = uJR +
• + ukR, since R is right Noetherian. Taking E = jPi2P in the above,
we see that FRP Π Mn £ jFikf, for some w. Hence &(>O = ^ Λ + +

where the m{ e M.
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Pick d e <ST(P) so that all m4 e h(E), then m4 e M Π h(R) = h(P),
and we may write m$ — h(Pi), where Pi e P.

Put & = cnd — Σ<=i ciPi a n ( i α ' — a^d — Σf=i αiϊ>*> then an easy
calculation shows that h{acr) — h{ca'). Moreover C" e ^ ( P ) , since cwώe
^ ( P ) and X c ^ e P. Since αc' — cα' 6 Ker h, we can find δ! e C^{P)
so that (acf — cα')' = 0, hence a(c'd') = c(α'd'). This establishes the
right Ore condition for ϋJ, and our proof is complete.

THEOREM 6. Let P be a two-sided prime ideal of the right Noetherian
ring R such that RP is a classical quasi-local ring with maximal
ideal M = PRP. Then

(a) the M-adic completion RP of RP is the bicommutator of the
P-torsionfree indecomposable injective R-module IP with associated
prime P,

(b) RP is a ring of n x n matrices over a complete local ring D
whose Jacobson radical J is finitely generated.

Proof, (a) By Theorem 5, R satisfies the right Ore condition with
respect to ^ ( P ) . By [7], Theorem 5.6, every torsionfree i2-module is
P-divisible. In view of [6], Proposition 2, RP is therefore a dense
subring of the bicommutator S of IP with respect to the finite topology,
as the P-torsion theory coincides with that determined by IP, by [7],
Corollary 3.10. By [6], Corollary 1, the finite topology coincides with
the ip-adic topology on RP, and S is the completion of RP. By Theorem
5, the Jp-adic topology on RP coincides with the M-adic one. Therefore
S is the M-adic completion of RP.

(b) follows immediately from (a) and [9], Corollary 2.7.

REMARK 7β By [9], Remark 3, there exists a right Noetherian
ring R with a two-sided prime ideal P such that R satisfies the right
Ore condition with respect to ^ ( P ) , even though RP is not a classical
quasi-local ring with maximal ideal M In that example RP is not
Hausdorff with respect to the M-adic topology, hence the bicommutator
of IP is not the M-adic completion of RP.

Thus the right Ore condition does not imply the second part of
(*) in Theorem 5. Conversely, Example 5.9 of [7] shows that the
second part of (*) does not imply the right Ore condition.

We conclude by giving some classes of examples satisfying the
condition of Theorem 5. But first we note that, in view of Theorem
3.3 of [9], each of these is also equivalent to the following, which
involves only the ring R itself:

( + ) For every right ideal F of R there exists a positive integer
n such that F Π P{n) C clP(FP), where Pn) is the nth right symbolic
power of P.
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For notation see [9]

COROLLARY 8. Let R be the enveloping algebra of a finitely
generated nilpotent Lie algebra, and assume that P is a nonzero prime
ideal of R. Then the conclusions (a) and (b) of Theorem 6 hold.

Proof. In Theorem 2.6 of [9], it is shown that, if R is right and
left Noetherian, P{n) coincides with the symbolic nth power defined
by Goldie in [4]. To deduce (+), we therefore refer to [2], namely
to Theorem 6, Corollary 7 and Remark I.

COROLLARY 9. Let R = AG be the group ring of a finite group
G over a right Noetherian prime ring A of characteristic zero, and let
P be the augmentation ideal of R. Then the conclusions (a) and (b) of
Theorem 6 hold.

Proof. Condition (+) holds by Corollary 3.7 of [9].

Actually, in this example RP is the classical ring of right quotients
of R, and M — PRP = 0, because P is the P-torsion ideal of R.

COROLLARY 10. Let R be a right and left Noetherian hereditary
prime ring, and assume that P is not idempotent. Then the conclusions
(a) and (b) of Theorem 6 hold. Furthermore, D is a complete discrete
rank one valuation ring.

Proof. By [11], R/P is a simple Artinian ring. It is known that
P is an invertible ideal. By Lemma 1.1 of [3], it then follows that
P has the Artin-Rees property. Now, by Corollary 2.8 of [9], Pn =
Pin), hence condition (+) holds.

It remains to show that D is a rank one valuation ring. By the
remark preceding Theorem 5.6 in [7], RP is hereditary Noetherian and
quasi-local. As is well-known, this implies that RP is hereditary
Noetherian. By Morita equivalence, D is hereditary Noetherian. But
it is local, hence a discrete rank one valuation ring.

For the sake of completeness, we shall show that P is invertible.
Let Q be the maximal ring of right and left quotients of R and put
R..p = {q e Q\qP £ R}. It is known [3] that R S P(R.-P) provided
P is finitely generated and projective as a right JS-module and "dense"
in a technical sense, which means that P has zero left annihilator in
R when P is a two-sided ideal. Since R is right Noetherian, right
hereditary, and prime, P satisfies all three conditions.

Now P s (R.-P)P a R» and P is maximal. Therefore (R. P)P =
P or R. Suppose the former, then P f i P(R.-P)P = P2, which would
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lead to the contradiction that P is idempotent. Therefore, (R. P)P = R.
Finally, consider P .R = {q e Q \ Pq S R}. Then

P .R = (R..P)P(P..R)^R..P .

By symmetry we obtain P(P .R) — i? and R. P ̂  P\R, and so P is
invertible in Q.

For the sake of completeness, we shall also include the argument
of [1] to show that P has the Artin-Rees property. Let E be any right
ideal of R and put Ek = (E Π Pfc)P~fc. Since J? is right Noetherian,
there exists a positive integer fc such that Ek g JEΊ + + J£Λ-i Then
^ Π P = #AP* S Σ^<^ (-̂ Π Pι)Pk~ι s j^P, and this is the Artin-Rees
property.
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