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ON 2-TRANSITIVE COLLINEATION GROUPS
OF FINITE PROJECTIVE SPACES

WiLLiaAM M. KANTOR

In 1961, A. Wagner proposed the problem of determining
all the subgroups of PI'L(n, q) which are 2-transitive on the
points of the projective space PG(n — 1, q), where n = 3. The
only known groups with this property are: those containing
PSL(n, q), and subgroups of PSL(4,2) isomorphic to A.. It
seems unlikely that there are others. Wagner proved that
this is the case when 7 <5. In unpublished work, D. G.
Higman handled the cases n = 6,7. We will inch up to n <
9. Our result is that nothing surprising happens. The same
is true if n = r* + 1 for a prime divisor  of ¢ — 1.

One of Wagner’s results is that it suffices to only consider
subgroups of PGL(n, q). Once this is done, it becomes simpler
to view the problem as one concerning linear groups: find all
those subgroups G of GL(n, q) which are 2-transitive on the
1-spaces of the underlying vector space V. Our approach is
based primarily on three facts. (1) Wagner showed that the
global stabilizer in G of any 3-space of V induces at least
SL(@3, q) on that 3-space. (2) Unless G = SL(n, q) or n =4,
q =2, and G = A;, no nontrivial element of G can fix every
1-space of some n-2-space of V. (8) G = SL(m, q) if |G| is
divisible by a prime which is a primitive divisor of ¢™ — 1
for a suitable m < n — 2.

Wagner’s results are in [10]. Higman’s result, and the case n =
2% + 1 and ¢ odd, are mentioned by Dembowski [1], p. 39. The result
mentioned above in (2) is an easy consequence of results of Wagner.
The idea used in (8) is due to Perin [8] and, independently, to G.
Hare and E. Shult.

I am indebted to G. Seitz for several helpful remarks.

2. Notation and preliminaries. As already mentioned, we will
be dealing with linear groups. Let V be an n-dimensional vector
space over GF(q). We write GL(V) = GL(n, q¢) and SL(V) = SL(n, g).
It will be convenient to regard everything as taking place in the
relative holomorphic V. GL(V). For any subgroups K, L of this semi-
direct product we can then consider the normalizer N, (K) and central-
izer C,(K). If L < GL(V) and W is an L-invariant subspace of V,
we write L" = L/C,(W) for the subgroup of GL(W) induced by L.
C.(V/W) and L""" are defined similarly. For any group G, as usual
G’ is its commutator subgroup, Z(G) its center, and @(G) its Frattini
subgroup.
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A group A is said to be involved in a group B if A~ C/D with
B=C>=D.

(2.1) If R < GL(V) has prime power order and (| R|, ¢) = 1, then
V=C/(R)DIV, R], where [V, R] = (v — vr|ve V,re R) is Ny, (R)-
invariant.

Proof. [3], p. 177.

(2.2) Let R < GL(V) have prime power order with (|R|, q) = 1.
Let W be an R-invariant subspace. Then dim C,(R) = dim C,(R) +
dim Cy(R).

Proof. [3], p. 187, or (2.1).

Both (2.1) and (2.2) will be used frequently, generally without
reference.

A primitive divisor of ¢ — 1 is a prime r satisfying »|¢* — 1 but
ryq— 1 for 1 <1 <k; clearly kjr — 1.

(2.3) (i) If ¢ is a prime power and & = 2, then ¢* — 1 has a primi-
tive divisor unless k¥ = 6,¢ =2, or k =2 and ¢ is a Mersenne prime.

(ii) Let » be a primitive divisor of ¢* — 1, and let R be an #-
subgroup of GL(V) for a GF'(¢q)-space V. 1If C,(R) = 0, then k divides
dim V.

Proof. (i) [12].

(i) This is clear if |R|=<r. Let |R|>r, and let R, < Z(R)
have order . Then V= W[V, R], where W = C,(R,) is R-invariant
and C,(R) = 0. By induction, &k divides dim W and dim [V, R.].

(2.4) Suppose dim V = am, r is a primitive divisor of ¢ — 1, and
R < GL(V) is an r-group such that C,(R) = 0. Then:

(i) Each noncyclic composition factor of N = N, ,,(R) is involved
in PSL(x, ¢™); and

(ii) If R is abelian, each noncyclic composition factor of N/Cy(R)
is involved in the symmetric group S,.

Proof. Write V=W, H--- P W,, with each W, a sum of R-
isomorphic irreducible R-spaces and no two W, having isomorphic
irreducible R-subspaces. Set R; = Co(W,. Then Z(R/R,) is cyclic
and nontrivial; let Z; be its subgroup of order ». By (2.3 ii), dim W, =
me,; for some e¢;. Consequently, 8 < a and ¢; < a.

N permutes the W,. Let K be the kernel of this permutation
representation. Then N/K is involved in S; < S., and hence in
GL(x, q™).
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Set K; = Ny.wy(Z;). Then K is contained in K, x .-+ X K.
Moreover, K; is contained in 7/"L(e;, ¢™). This proves (i).

Now assume that R is abelian. Then R/R; is a cyclic group
normalized by K. Since N R; = 1, it follows that K/C.(R) is abelian.
Since N/K is involved in S, this proves (ii).

(2.5) Let ¢q be odd, and let H < GL(V). Suppose that H>>A =1,
where A is an elementary abelian 2-group. Set

m = min {{H: Ny(B)||B < A4, |A: B| = 2} .
Then m < dim V.

Proof. (G. Seitz.) Let V be an H-irreducible section of ¥V on
which A acts nontrivially. Let H and A be the groups induced by
H and A. Then A =1, and the corresponding 7 = m. We may
thus assume that V = V is H-irreducible. By Clifford’s Theorem
(3], p-70), V=V, --- @V, with the V; direct sums of A-isomor-
phic irreducible A-spaces, no two V; having a common irreducible con-
stituent. Here A induces a group of order 2 on each V,, while H is
transitive on {V,, ---, V,}. Thus, {C,(V)|t =1, -.-, ¢t} is an orbit of
H of subgroups of A of index 2. Consequently, ¢ = m, so dim V = m.

(2.6) Let L be a finite group and K <] L with L/K simple.
Suppose L has no proper subgroup L, for which L,/L,N K~ L/K.
Then:

(i) K is nilpotent; and

(ii) Each proper normal subgroup of L is contained in K.

Proof. (i) Let S be a Sylow subgroup of K. By the Frattini
argument, L = KN,(S), so our conditions on L imply that L = N,(S).

(i) Let M<IL and M £ K. Since 1 # MK/K<I1L/K, MK = L
and hence M = L.

(2.7 Letd>e=2and ¢t =1. Then PSL(d, q) is not involved
in PSL(e, q%).

Proof. If p is the prime dividing ¢, then p-Sylow subgroups of
PSL(d, q) and PSL(e, q*) have nilpotence class d — 1 and e — 1, re-
spectively.

We now come to our main technical lemma.

(2.8) Let ¢ = p°, where p is a prime, and m = dim V. Suppose
either m =3,4,or 5, or m =6 and p =2. Let L<GL(V) and H,K <L,
where H< K, L/K~PSL(3, q), and L/H~PSL(3, q) or SL(3, g). Assume
that L has no proper subgroup L, for which L,/L,N K ~ PSL(3, q).
Finally, assume: (£) If 1 # he H and p /| k], then dim C,(h) < m — 3.
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Then there are L-invariant subspaces X, Y with X > Y such that
the following hold.

(@ K= Px C with P a p-group, |C|=@8,¢—1), and H= P
or K.

(b) L/P~ SL(, q).

(c) PVIX, PXI¥ and PY are all 1.

(d) dim X/Y =3 and L*" =SL(X/Y).

(e) If m<5 and ¢+ 2, then L"/* and L* are 1. Moreover,
some element g of order p in the center of a p-Sylow subgroup of L
satisfies dim Cy(9) = m — 2, and even dim C,(g) = m — 1 if P = 1.

Proof. Everything is obvious if m = 3, so assume m > 3. We
will proceed by a series of steps.

(i) Clearly L = L'. We can apply (2.6) to L. In particular, K
is nilpotent.

(ii) Suppose that there are L-invariant subspaces V,, V, with
V.= V,and dim V,/V, £ 2. We claim that L centralizes V,/V,. For,
C.(V,/V,) <1 L, and since L"/": does not have PSL(3, ¢) as a homomor-
phic image, (2.6) implies that C.(V,/V,) = L.

(ili) Next, suppose that there are L-invariant subspaces X, Y
with X > Y, dim X/Y = 8 and L*”* = 1. We claim that (a)—(e) hold.

Arguing as in (i) we find that L*”* = SL(X/Y), while L"/¥ and
L¥ are both 1 or SL(3, q). Write K= P x C with P a p-group and
C a p'-group. C induces a group of order L or (3,¢ — 1) on V/X, X/7,
and Y. By (2.2), (a) holds unless |C| =9 and m = 6. However, in
this case C = Z(L), so L/P = (L/P)’ is a central extension of SL(3, q)
by a group of order 9, and this is impossible [2].

Thus, (a), (b), (¢), and (d) hold.

Now let m < 5. Then dim V/X and dim Y are =< 2, so L"'¥ and
LY are 1 by (ii). If P 1 then, by (c), each g =1 in P satisfies
dim Cy(9) = m — 2.

Suppose P =1, so L ~ SL(3,q). By results of Higman [4], §5,
if ¢ # 2 then there is an L-invariant 3-space 7T, and each element of
L inducing a transvection on 7T is a transvection of V. This proves
(e).

(iv) From now on we assume that m and L are chosen with m
minimal such that (2.8) is false. Then m > 3.

L is irreducible on V. For otherwise, there is an L-invariant
subspace W with V> W > 0.

Then LY %1 and L"/" = 1. For suppose, say, that L""" = 1.
Consider L7, K", and H". By (2.2), (¥) is inherited by L". Also,
if Ly, L and LY/LY N K¥ ~ PSL(8, q) then L,K/K ~ L,/L,N K has
PSL(3, q) as a homomorphic image, so that L,K = L and hence L, = L.
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Consequently, L" satisfies the hypotheses of (2.8). Then we can find
subspaces X and Y of W such that (iii) applies, whereas (2.8) is
assumed false. Thus, L” = 1 and L"/" # 1.

By (ii) we must have m = 6 and dim W = 3. Then (iii) again
applies, and this is again impossible.

(v) By (iv) and the nilpotence of K, ((K|, q) = 1.

K is not central in L. For suppose K < Z(L). Since L = L', L
is a homomorphic image of the covering group of PSL(3,q). Then
L is PSL(3, q) or SL(3, q) (see, e.g., [2]).

On the other hand, L has an irreducible GF(qg)-representation of
degree m, where 4 < m < 6 and ¢ is even if m = 6. No such repre-
sentation exists by [7] and [9].

(vi) Let » be a prime and R, an r-Sylow subgroup of K such
that R, £ Z(L). Set R= R NH. Then RZL Z(L) and R < L.

Let A be a characteristic elementary abelian subgroup of R. By
®, [A] = r

We claim that A < Z(L). For otherwise, L has a nontrivial
GF(r)-representation of degree < m — 3 <3. By (2.6ii), PSL(3,q)
is involved in GL(, r). Thus, ¢ = 2 and r = 3. Since A4 is a non-
cyclic elementary abelian subgroup of GL(6, 2), |A| = 7>. Then L acts
transitively on A — {1}. However, not all elements of A — {1} are
conjugate in GL(6.2).

Thus, A < Z(L). In (iv), |A| = r. In particular, Z(R) is cyclic.

(vii) Suppose rtq — 1. By (vi), R < GL(6, q) is nonabelian, so
r=3|¢g+1 and m = 6. Moreover, R[> B with |R: B| =3 and B
abelian. By (vi) we can find B, # B with R[> B,, |R: B,| = 3, and B,
abelian. Then BN B, £ Z(R) and |R/Z(R)| £ 9. Consequently, L
centralizes Z(R), R/Z(R), and hence also R, which is not the case.

Thus, r|¢—1. In (iv), ASLNZ(GL(V))=Z(SL(V)), so r|(g—1, m).

There are now just three possibilities: m = 4,r = 2; m = 5,r = 5;
and m = 6,7 = 3.

(vii) Let m =4, r=2. By (vil), —1e R. There is an involution
t+ —1in R. Either dim C,(f) = 2 or dim C,(—t) = 2. This contradicts (¥).

(ix) Let m =5,r=5. A 5-Sylow subgroup of GL(5,¢) has a
normal abelian subgroup of index 5 (the “diagonal subgroup”). Thus,
we can find B < R with B abelianand |R: B|=1or 5. By (vi), |R: B| is
5 and B is not characteristic in R. Let B, < R, B, +# B, satisfy the same
conditions as B. Then B,NB < Z(R) and |R: Z(R)| < 5*. By (vi),
Z(R) is cyclic, so L centralizes Z(R), R/Z(R), and hence also R, which
is not the case.

(x) Finally, let m =6, =3, and ¢ = 2. Here 3|]¢g—1. On
the one hand, L/C.(R/®(R)) can be regarded as a subgroup of GL(e, 3)
for some e; on the other hand, using (2.6) and ((K|,q) =1, we
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find that this group has an elementary abelian 2-subgroup of order
¢* whose normalizer is transitive on the nontrivial elements. By (2.5),
e=q — 1. However, a 3-Sylow subgroup of SL(6,q) has order
<3(¢ — 1% Thus, 37 = 3° < |R| <3¢°% and since ¢ =4 this is
ridiculous.

This contradiction completes the proof of (2.8).

3. Wagner’s results and some corollaries. Let V be #n-dimen-
sional over GF(q), n = 3, and let G =< GL(V) be 2-transitive on 1-spaces.

(3.1) For each 3-space T, N,(T)" = SL(T).
Proof. Wagner [10], p. 417.
(8.2) If n < 5then G = SL(V), unless » = 4, ¢ = 2, and G~ A,.

Poof. Wagner [10], p.422.

(8.8) For each n-l-space W, N, (W) is 2-transitive on the 1-spaces
of V not in W.

Proof. [6], p. 6.

(3.4) If G has an element g +# 1 such that dim C,(g) = n — 2,
then G = SL(V) or n =4,q = 2, and G~ A..

Proof. We may assume that |¢g| is prime and % > 5. Since
dim [V, g] < 2 and g centralizes V/[V, g], there is a 3-space T > [V, ¢]
such that g7 = 1. Then 1 C(V/T)" <A N,(T)". By (3.1), C(V/T)" =
SL(T). Choose ¢g'e Cy(V/T) with |¢'||¢ + 1 and dim C,(¢’) = 1. Then
dim C,(¢") = n — 2.

We may thus assume that (J¢g], ¢) = 1. Since ¢!"?1+~ 1, as before
C.(V|T)" = SL(T) for each 3-space T'> [V, g]. By the 2-transitivity
of G, this holds for every 3-space of V.

Choose m < n maximal with repect to C,(V/U)” = SL(U) for all
m-spaces U. Suppose m < n. By Wagner [10], p. 420, m = n — 2.
Take any subspace W of dimension m + 1 or m + 2. For each m-space
U< W,C,(V/U) fixes W and centralizes V/W, while C,(V/U)" =
SL(U). By Wagner [10], p. 420, and (3.2), C(V/W)" = SL(W) for
each m -+ l-space W. This contradicts the maximality of m.

(3.5) Let s be a prime and S an s-group maximal with respect to
dim C,(S) = 3. Then N,(S) is 2-transitive on the 1-spaces of C,(S).

Proof. Take any 3-space T < C,(S). Then S is Sylow in C.(T).
By the Frattini argument and (3.1), (N.(S) N N/(T))" = N(T)" =
SL(T). Our assertion follows immediately.
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4., The case n = r* + 1. There is one very easy case of our
problem.

(4.1) THEOREM. Let r be a prime divisor of ¢ — 1, and let a = 1.
Then every collineation group of PG(r%, q) which is 2-tramsitive on
points contains PSL(r* + 1, q).

We first prove:

(4.2) Let r be a prime divisor of ¢ — 1, and let «a > 1. Let V
be an r*-dimensional vector space over GF(q). If G < I'L(V) is transi-
tive on V — {0}, then »||G N Z(GL(V))|.

Proof. Let ## be the largest power of » dividing ¢* — 1, where
d = r* Then ¢ is not an r*th power, so »||G N GL(V)|.

Let R be an r-Sylow subgroup of G. By [11], p. 6, each orbit
of R on V — {0} has length divisible by 4.

R fixes no nontrivial proper subspace of V. For, if it did we
would have r#|¢g™ — 1with1=<m <d. Sete= (d, m). Then rf|¢g°—1.
However, as d/e is a power of »,(¢* — 1)/(¢° — 1) is divisible by », and
this contradicts the definition of »%.

Let xe Z(R) N GL(V) have order ». Since r|q — 1, x can be
diagonalized. By the preceding paragraph, x is a scalar transforma-
tion, that is, xe Z(GL(V)).

(4.3) Let » be a prime divisor of ¢ — 1, and let « = 1. Then a
collineation group of the affine space AG(r%, q) which is 2-transitive
on points contains the translation group.

Proof. (4.2).
Now (4.1) follows immediately from (3.3) and (4.3).

5. Primes dividing |G|. We will consider the following situa-
tion in the remainder of this paper.

Let V be an n-dimensional GF(qg)-space, n = 6, and G be a sub-
group of GL(V), 2-tramsitive on l-spaces, such that G 2 SL(V). We
may clearly assume that G > Z = Z(GL(V)).

In this section let s be a prime dividing (|G|, q™ — 1), 1< m <
n — 2, such that s is a primitive divisor of ¢ — 1. (5.1) is essentially
due to Perin [8] and, independently, to E. Shult and G. Hare.

(5.1) If m = n — 2 then ¢ = 2 and n» is even.

(5.2) Suppose that n = am + B, @ < 8 = m + 2, and an element
of order s centralizes some 3-space X. Then, for some %’ satisfying
5<n <nand » = n (mod m), there is a subgroup of GL(7/, ¢), not
containing SL(n', q), which is 2-transitive on the points of PG(n'—1, g).
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Clearly (5.2) has an inductive flavor. Since the proofs are similar,
we will only prove the second of the above results.

Proof of (5.2). Choose S < Cy(X) as in (8.5). Set W = C,(S),
W* = [V, S], and N = Ny(S). Then V= W W*, Cy«(S) = 0, and
NV is 2-transitive on 1l-spaces.

Set n’ = dim W, so »’ = 3. By (2.81ii), since 8 < m + 2 we have
dim W* = ym with y<a. Then v ' =n—-—Tm=n—am=B>a=".

We must show that »’ > 5 and NV 2 SL(W). Deny this. Then
either NV = SL(W) or n' = 4,9 = 2, and N" ~ A,. In particular,
the commutator subgroup N’” contains a nontrivial element central-
izing an n’-2-space.

In this situwation, C,(W*)" < Z(GL(W)). For otherwise,
Cw.(W*)* <IN'" implies that C,.(W*)” = N’". Then Cy(W?*) has
a nontrivial element ¢ centralizing an w'-2-space of W. Hence,
dim Cy(9) = n» — 2, which contradicts (3.4).

It follows that N’"" has PSL(n/, ¢) as a homomorphic image, unless

n' = 4 and ¢ = 2, in which case 4, may be a homomorphic image.

Since C,+(S) = 0, we can apply (2.4): each noncyclic composition
factor of N7 is involved in PSL(v, q™). Since n’'>7, by (2.7) PSL(%’, q)
cannot be such a composition factor. Thus, n’' = 4,9 = 2,7 < 3, and
A, is a composition factor of N’”". However, A4, is not involved in
PSL(3,2™). This is a contradiction.

REMARK. It is useful to note that the above proof holds under
slightly weaker hypotheses: s is a primitive divisor of ¢ —1,S =1
is an s-subgroup of G with W = C,(S) of dimension #’ =3, (n — n')/m <
7, and Ng(S)"” is 2-transitive on 1l-spaces.

We conclude this section with two miscellaneous results.

(5.8) Assume that G has a cyclic subgroup H of order ¢" — 1
containing an ~-Sylow subgroup of G for some prime r dividing
¢+ q+ 1. Then ¢ =2 and 7 is even.

Proof. Suppose ¢ # 2 or ¢ =2 and % is odd. By (2.3), H is
transitive on V — {0}. Thus, H is transitive on the 3-spaces fixed by
its subgroup R of order 7.

On the other hand, by (3.1) each 3-space is fixed by a conjugate
of R. Thus, G is transitive on 3-spaces, and this contradicts Perin
[8] or (5.1) since n = 6.

(5.4) Assume that G has a cyclic subgroup of order ¢"*' —1
fixing some n — l-space W and transitive on W — {0}. Then N (W)
is 2-transitive on the l-spaces of W, ¢ = 2, and » is even.
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Proof. We may assume that G — Z has no element fixing all
1- spaces in W. By [6], Lemma 7.3, Ny (W) is 2-transitive on the
1-spaces of W. The result now follows from (2.3) and (5.1).

6. The case n =9. Let n, V,G, and Z be as in §5, so G £
SL(V). Let p be the prime dividing q.
Assume that 6 < n < 9.

6.1) n = 6.

Proof. Suppose n =6. If ¢ =2 then ¢°— 1 is a prime. By
(5.4), the stabilizer of a 5-space W is 2-transitive on W — {0}. By
(3.2) and (3.4), G = SL(V), which is not the case.

Thus, ¢ > 2. Let r be a prime dividing ¢ — 1.

Suppose that there is 3-space T for which N, (T) — Z contains an
element inducing a scalar transformation of order » on 7. Using Z,
we find that »||Cy(T)|. Let R be an r-Sylow subgroup of Cy(T).
By (8.4), T=Cy(R). By (8.5), Ny(R)"=SL(T). Also, Ny(R) normalizes
the 3-space [V, R]. An element of order p in the center of a p-
Sylow subgroup of N (R) centralizes 2-spaces of both C,(R) and [V, R],
and hence centralizes a 4-space of V=C,(R)@[V, R]. This contradicts
(3.4). Thus, no element of G — Z of order r has an eigenspace of
dimension > 2.

Now take any 8-space T, and write T= X@P Y with dim X = 2
and dim Y=1. Set F = NyX) N Ny(Y), so F* = GL(X). Take
R < F of order » with R £ Z and R” £ Z(F7). By the Frattini argu-
ment, Ny(R)* = GL(X). Let F =< Ny(R) be minimal with respect to
E* = SL(X).

Since R is diagonalizable and each of its eigenspaces has dimen-
sion 1 or 2, we can write V=X@PW,PH W, with W, > Y, dim W,=
2, and W, invariant under Ny(R). If ¢ = 3, E = E’ centralizes W,,
so an element of F of order p centralizes a 4-space, which contradicts
(3.4). If ¢ = 3, R cannot have more than two eigenspaces as |R| =
2, which is again a contradiction.

(6.2) ¢ is even.

Proof. Assume that q is odd. There is an involution te G — Z.
Since n = 6, dim C,(¢) or dim C,(—t) is = 3. Let S be a 2-group in
G maximal with respect to dim C,(S) = 8. Set W = C,(S) and W* =
[V,S], so V= W@ W*. Set M = NyS). By (3.5), M" is 2-transi-
tive on 1-spaces. Since M > Z and all involutions in M" centralize
at most a 2-space (by the maximality of S), dim W < 4. Consequently,
by (3.2), M" = SL(W).

By (4.1) and (6.1), » =T or 8, so dim W* < b.
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We claim that C,,(W*)" < Z(GL(W)). For otherwise, C,(W*)"<Q
MY yields C,(W*)" = SL(W). Then C,(W?*) contains a nontrivial
transvection of V, which contradicts (3.4).

Thus, C,(W*) is cyclic and M’'"" has PSL(W) as a homomorphic
image.

Suppose that dim W = 4. Then dim W* = 3 or 4. Use of M'""
yields dim W* = 4 and M'" = SL(W*). If g # 1 is in the center of
a p-Sylow subgroup of M’ then ¢" and ¢"" are transvections, and this
contradicts (3.4).

Thus, dim W = 3. Let L < M be minimal with respect to having
PSL(3,q) as a homomorphic image. Let H= C, (W) =< K <L with
L/K ~ PSL(3, q). Then (2.8) applies to W*, L"", K", and H"".

Choose ge L so that ¢"" is as in (2.8 e). If ge H= C, (W), then
dim C,(g) =n — 2. If H" = 1then H =1, and both ¢" and ¢"" are
transvections, so once again dim C;(g) = n — 2. In either case we have
contradicted (3.4).

6.3) n=T,8.

Proof. Let n =17 or 8 Fix a prime r|q + 1.

Take any 3-space 7. By (3.1), N(T)" = SL(T). Also, N4(T)
actson V/T. By (3.4), C.(V/T)" £ Z(GL(T)) (since otherwise, C,(V/T)
would have an element of order »), so C,(V/T) is solvable. Thus,
N (T)"" has PSL(3,q) as a composition factor. By (2.8), there is
an r-group R+ 1 in N, (T) such that dimC,;,(R) = 2, and then
dim C,(R) = 3.

This contradicts (5.2) with # =2-2 + 3 or 2.2 + 4.

(6.4) If =9 then ¢ =2 or 4.

Proof. Suppose n =9 and ¢ > 4 is even.

(i) By (56.2) with » = 2.8 + 3, no nontrivial element of order
dividing (¢* + ¢ + 1)/(¢ + 1, 3) can centralize a 1-space.

(ii) Let T be any 3-space. Let L = N,(T) be minimal with
respect to having PSL(3,q) as a homomorphic image. By (3.4),
C,(VIT) £ Z(GL(T)), so (2.8) applies to L"””. Consequently, by (i)
there is a 6-space Y > T such that L"" = SL(Y/T) and L"" = SL(V/Y).

(ili) Let s be a prime dividing ¢ + 1. By (ii), there is an element
of order s centralizing a 3-space.

Let S be an s-group maximal with respect to dim C,(S) = 3. By
(3.5), N(S) is 2-transitive on the l-spaces of C,(S). In view of (i),
it follows from (3.2), (6.1), and (6.3) that dim C,(S) = 3.

Let T = C,(S) in (ii), and choose L < N,(S) there. By (i) and
the proof of (2.4), (LS)" 51 acts as a subgroup of I"L(3, ¢"), with S
inducing scalar transformations.
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(iv) Since ¢>4, by (2.3 i) there is a prime r = 8 dividing ¢ — 1.
Moreover, if ¢ = 16 we can choose r # 5.

We claim that some element of order r centralizes a 4-space. For,
since » = 8, in (ili) we can find ge L — Z of order » such that ¢"-5]
has an eigenspace of dimension = 4. Consequently, some element of
{g, Z) of order r centralizes a 4-space.

(v) Let R be an r-group maximal with respect to dim C,(R) = 3;
by (iv), R+ 1. Set T'= C,(R) and T* = [V, R]. By (3.5), Ny (R)"
is 2-transitive on 1-spaces, so dim 7= 8 by (i). We can thus choose
L £ Ny(R) in (ii).

We claim that LR centralizes R and that R is diagonalizable.
Certainly (LR)™ < GL(T*). Suppose r > 5. Then an r-Sylow sub-
group of GL(6,q) is diagonalizable, and hence abelian. By (2.41ii)
(with m = 1, &« = 6), each composition factor of L/C,(R) is involved
in S;. By (2.6ii), L = C,(R), so R < Z(LR).

Consider the case » = 5,q = 16. Suppose L > C,(R). Then L
acts nontrivially on R/@(R), where |R/®(R)| < 5. By (2.6ii), 16 + 1
divides |GL(7, 5)|, which is not the case.

Thus, L centralizes R. There is an s-group S, < L such that
dim C,.(S)) = 2. Since R normalizes C«(S,) and [T*, S,], it follows
that R is again diagonalizable. Thus, R < Z(LR).

(vi) T* is the direct sum of R-invariant subspaces, each invariant
under LR. By (ii) and (v), there are 3-spaces X and X’ such that
T =X X', R* and R* consist of scalar transformations, L* =
SL(X"), and L* = SL(X").

Consequently, for each he R, dim C,(h) = 3, 6, or 9.

(vii) By (iv), there is an r-group R, = 1 maximal with respect
to dim C,(R,) = 4. By (vi), W = Cy(R,) has dimension 6. Set M =
Ny(R).

Take any 3-space T < W. Let R= R, be an »-Sylow subgroup
of Ci(T). If R= R, then Ny(T)" = SL(T) by the Frattini argument.
If R> R, then the choice of R, implies that C,(R) = T, and hence
that R is an r-group maximal with respect to dim C,(R) = 3; by (v),
Cu(R)* = SL(T), so again Nu(T)" = SL(T).

Consequently, M" is 2-transitive on 1-spaces. Then (¢°—1)/(¢—1)
divides |G|, and this contradicts (5.2).

6.5) If » =9 then q # 4.

Proof. Suppose n =9 and ¢ =4. We will try to imitate the
proof of (6.4) using » = 3. Steps (i) and (ii) of that proof still hold.
We begin by showing the existence of #e€ G of order 3 such that
2¥ = &~ for some 2-element y. Take T and L as in (ii). Then we
can find ¢, ye L with |2| = 3, y a 2-element, and «* = x™'a, a € C,(T).
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By (2.8), C.(T) = P x C with P a 2-group and |[C| =1 or 3. Then
{x) is Sylow in (=, y>P. By the Frattini argument, some element of
{y>P inverts {x), and we may assume this is ¥.

We next claim that some element of order 3 centralizes a 4-space.
For, assume that this is false, and choose x, ¥ as above. Since ¢ =
4, x is diagonalizable and has at most 3 eigenspaces. However, no
element of <z, Z) — {1} centralizes a 4-space, so C,(x) = T is a 3-space
and x has two other 3-dimensional eigenspaces T,, T.. Moreover, by
our assumption, C,(7T) has a cyclic 3-Sylow subgroup. Thus, by the
Frattini argument, N ({x))" = SL(T), so Cgx)* = SL(T). Since
|GL(T): SL(T)| = 3, y"€ SL(T), so we can find ce C,(X) such that
c'ye Cy(T). Clearly c¢™'y inverts », so there is an involution te
{c™'y>. Here, t centralizes T and centralizes 2-spaces of each T}, so
dim C,(t) = 7. This contradicts (3.4), and proves our claim.

Now define R, T, T*, and L as in (v). We will be able to obtain
a contradiction precisely as in (vi) and (vii) if we can show that R <
Z(LR) and R is diagonalizable.

By (2.6), L > K with L/K ~ PSL(3,4) and K nilpotent. By (2.2)
and (2.8), K = P x C with |C| =3 or 9 and P a 2-group; moreover,
there is an L-invariant 3-space X < T'* such that L* = SL(X), L™* =
SL(T*/X), and P centralizes T, X, and T*/X. By (3.4), no nontrivial
element of P centralizes a 4-space of T*. Consequently, P is elemen-
tary abelian of order < 4°%. Thus, if P £ Z(L) then PSL(3, 4) is iso-
morphic to a subgroup of GL(6, 2), which is not the case ([7], [9]).
Thus, K < Z(L).

Now suppose that L acts nontrivially on R, and hence on R/@(R).
Since R =< GL(6, 4), |R/O(R)| < 3°-3%. Thus, PSL(3, 4) or SL(3, 4) is
isomorphic to a subgroup of GL(8,3). Then GL(8,3) has an ele-
mentary abelian subgroup of order 4* whose normalizer is transitive
on the nontrivial elements. By (2.5), this is impossible.

Consequently, L < C,(R). An element of L of order 5 centralizes
1-spaces of X and T*/X. It follows that T* is the sum of R-invariant
2-spaces. Thus, R is diagonalizable and R < Z(LR). This completes
the proof of (6.5).

Last, and least:

6.6) If n =9 then g+ 2.

Proof. Suppose n =9 and ¢ = 2. Using (5.1) and (5.2) we find
that |G| =2%.3#.5.7.17.73 for some «, G.

Let S be a 73-Sylow subgroup of G. By (5.3), |C,(S)| = 73. Thus,
|INAS)| = 87-73 with v < 2.

By Sylow’s theorem, 2%-3#7.5.7.17 = 1 (mod 73). A little arith-
metic shows that this is impossible.
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In view of (8.2) and the results of this section, we can now state:

THEOREM 6.7. Let H be a subgroup of PI'L(n,q) which is 2-
tramsitive on the points of PG(n —1,q9). If 3=<n <9, then HZ= .
PSL(n,q) or n =4,q = 2, and H~ A,
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