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A NUMERICAL RANGE FOR TWO LINEAR OPERATORS

CHARLES F. AMELIN

A numerical range for two closed, linear operators is
defined for the purpose of obtaining some new results on
the stability of index of a Fredholm operator perturbed by
a bounded or relatively bounded operator.

()• Introduction* One of the objects of the present paper is to
study the eigenvalue problem Tx = xAx by means of a two (linear)
operator or "bioperative" numerical range. We recall that Toeplitz [30]
defined the numerical range for matrices in 1918. Then Wintner
[31] in 1930 and Stone [27], [28] in 1930 and 1932 discussed the
relationship between the convex hull of the spectrum of a bounded
linear operator on a Hubert space and its numerical range. In 1943, J.
Dieudonne [4] and S. M. NikoPskii [24] laid the groundwork which
would later help to show that the index of a bounded semi-Fredholm
operator is stable under perturbation by a bounded linear operator of
sufficiently small norm. This result was established in 1951 for bounded
operators on a Hubert space by F.V.Atkinson [2] and (independently)
I. C. Gohberg [9], [10], and [11]. The following year, M. G. Krein and
M. A. KrasnosePskii [20], B. Sz.-Nagy [29], and I. C. Gohberg [12] gen-
eralized these results to unbounded closed linear operators. M. G. Krein
and M. A. KrasnosePskii also established the semi-stability of the
nullity and deficiency. To understand the foundations and historical
development of the whole theory, the reader is referred to the com-
prehensive article of Gohberg and Krein [13] which appeared in 1957.

Among the many innovations appearing in the 1958 paper of T.
Kato [18] was the concept of the "lower bound" (now called the
"minimum modulus") of a linear operator A defined on a Banach space.
The main reason for defining the minimum modulus of A was to obtain
as small a disc about the origin as possible so that ind(Ύ— XA) = ind(A)
for all λ outside that disc, A being semi-Fredholm and T being
bounded or relatively bounded with respect to A. In this paper we
introduce a bioperative numerical range which will improve that
result for Fredholm operators defined on a Hubert space. The im-
provement is a consequence of the fact that the bioperative numerical
range for Fredholm A and relatively bounded T defined on a Hubert
space is always contained in the aforementioned disc and that the
index of T — XA remains constant if λ is not in the closure of that
bioperative numerical range.

For another use of the bioperative numerical range, we recall
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that W Givens [8] showed that co σ(T) = f\{ W(STS"1): S is invertible}
if dim(iϊ) < oo. S. Hildebrandt [17] extended this theorem in 1966
to bounded linear operators defined on infinite dimensional Hubert
spaces H. In 1968, J. G. Stampfli and J. P. Williams [26] defined
an "essential" numerical range Wes8(T) for Te^(H). It was shown
that Wess(T) = Π{W(T+ K): K is compact} and co σeS8{T) c Wess(T).
According to a result of Stampfli and Williams [26], if T is normal
then coσess(T) = Wβ98(T)f but equality does not hold in general. In
paragraph 2 of this paper we obtain the convex hull of the essential
spectrum of a bounded linear operator defined on a separable Hubert
space in terms of intersections of appropriate bioperative numerical
ranges.

In paragraph 3, we indicate how to extend some of the results
of the first paragraph to Banach and Frechet spaces. We give two
examples in paragraph 4. Any one of the texts Kato [19], Goldberg
[14], or Schechter [25] would be a suitable introductory reference to
the elementary definitions and basic theory assumed here.

I would like to thank Robert T. Moore of the University of
Washington for suggesting a problem in generalized spectral theory
which led to this paper, and Seymour Goldberg and David Lay of
the University of Maryland for their suggestions.

1* Stability of index theorems in Hubert space*

DEFINITION 1.1. Let H and K be Hubert spaces and T, Ae
<Zf(H, K). We define W(T, A) = {(Tx, Ax): \\Ax\\ = 1, x e &(A)Γi&(T)}.

Clearly, if H = if, A is the identity, and Te^(H), then W(T, A)is
the Toeplitz numerical range W(T) = {(Tx, x): \\ x || = 1} If A~ι e ^(H)y

then W(TA^) = W(T, A).

LEMMA 1.2. W(T9 A) is a convex set.

Proof. We may assume that there exist two distinct points
\, λ2e W(T, A) since the lemma is trivial otherwise. I.e., there
exist xu xze&(A) f] £&(T) such that (Txu Axt) = \ \\ Axt || = 1 and
(Tx2, Ax2) = λ2, || Aα?2|| = 1. Since &r(A) Π &(T) is a subspace of H
we may consider the binary forms d: C x C —> C, i = 1, 2 defined
by

Cλ(alf a2) = (T(a,x, + a2x2) , A(aίx1 + a2x2))

C2(alf a2) = (A(a1xι + a2x2) , A(a,x, + a2x2)) .

We must show that CΊ assumes every value on the line segment
joining \ and λ2 while C2 = 1. If we let
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Q \ n _ _ _
C(aly a2) = —i — = aγax + α12αxα:2 + a2ιaxa2

where

(\ - λ2)α12 = (Γα;2, Ax,) - λ2(Aa;2, AaJ

and (λL — λ2)α21 = (Txu Ax2) — \2(Axu Ax2), then it suffices to show that
the form C takes on every real value from 0 to 1, while C2 = 1.
Choose β of modulus 1 so that (α12 — a2ι)β is real and

ΈLe(Axl9 Ax2)β ^ 0 .

If a, = u and a2 = βv where u and v are real variables, then C =
2ύ2 + r^v and C2 = u2 + 2suv + v2 where r — βa12 + βa2ι is real and

0. Solving for C2(u, βv) = 1 we obtain v = — su + V l + (s2 — l ) u 2

which is real valued for ue[ — l, + 1] Since v is now a function

of w, we can let CQ(u) = C(%, #y) = ^62(l — rs) + ru Vl + (s2 — 1)%2.
For ^ e [0, 1], C0(u) is evidently a continuous real valued function with
C0(0) = 0, C0(l) = 1 so that C0(u) assumes all values between 0 and
1.

This proof was adapted from the proof given by Stone [28], p. 131.
Certain other facts about the bioperative numerical range are easy
to verify; e.g., W(aT + βS, A) aaW(T, A) + βW(S, A) where we
set Sf{aT + βS) = &(T) Π &(S). For another fact, let T, A e &(H)
and ϊ7*, A* denote the Hubert space ad joints of T and A. Then
W(T, A) lies on the line y = x tan(^0) if A*T = eUΘ«T*A. In particular,
if T and A are self-adjoint and commute, then W(T, A) is real.

In what follows if A e ^(H, K), we let PA denote the projection
PA: H —> N(A)L onto the orthogonal complement of the nullspace of
A, and we denote the class of semi-Fredholm operators with finite
nullity by Φ+. We recall that the minimum modulus of A e CSP{H, K),
is the greatest number 7 which satisfies the inequality

7 dist (x, N(A)) ^ || As ||

for every xe&(A). Thus

7(A) = inf j }lAxj}τ, . xeD(A)}
i dist (x, N(A)) )

and

(where 0/0 = cc). If xeH and x = xx + n e N(A)1 0 N(A), then
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| | a ? | | 2 = | | α ? 1 | | I + \\n\\2 a n d άist(x,N(A)) = \\xί\\ = \\PAx\\. I n o t h e r
words, if H is a Hubert space and Ae^(H, K), then

Ί{A) =

THEOREM 1.3. Let T,Ae <έ?(H, K) with &(T)n&(A). IfAeΦ+
and X $ W(TPA,A), T-xAeΦ+, then ind(Γ- λA) = ind(A), nul(Γ- λA)^
nul(A), and def (Γ - XA) ^ def (A).

Proof. Since Γ, A e i f (#, ϋΓ) and 3f{T)z>3f(A) there exist non-
negative constants α, 6 such that || Tx || tS α || x || + & || Ax || for every

In particular, 11 TPAx \\ £ a \\ PAx \\ + 611 Ax \\ for every
We recall that Kato [18] has proven that if

then {T-ζA)PA is semi-Fredholm and ind ((T - ξA)PA) = ind (A).
But if λ£ W(TPA, A), we can find a δ > 0 such that (*) δ \\Ax\\ ^
|| (Γ - xA)PAx || for every α? e &{A) = ^ ( Γ - λA) = ^ ( ( Γ - λA)P^).
(Apply the Schwarz inequality and the fact that \\Ax\\ — 1, to the
inequality d ̂  \(TPAx, Ax) — λ|). The starred inequality implies that
(T- XA)PA is closed. By the same inequality nul((Γ- XA)PA) ^ nul(A)
so that the dimensions nul((Γ — XA)PA) and nul(A) are equal by the
definition of PA. (Notice A = APA). Furthermore, since H is a Hubert
space, 7(A) equals Ύ(A\NU)±) and thus 7(A)||PA^|| ^ ||Aa?|| so that the
range of (T—XA)PA is closed (by the starred inequality); i.e., (T—XA)PA

is semi-Fredholm with finite nullity for every λg W(TPA, A). Since
W(TPA, A) is a convex, subset of the complex plane, its complement is
connected. But this implies by the asserted result of Kato et aL, that

i n d ( ( Γ - XA)PA) = ind (A)

for every λg W(TPA, A) because φ(X) = ind ((Γ - XA)PA) is a constant
function on connected subsets of the plane for which (Γ — XA)PA is
semi-Fredholm. Γ — λA must have nullity smaller than that of
nul (A) = nul (PA), because (T — XA)PA is one-to-one on N(A)1 and
equals T — λA on N(A)L. In fact, suppose there exists an orthonormal
set {Xii i = 1, , n + l } c ^ ( Γ - λA) with n = nul(A), ( Γ - λA)^ = 0.
Write α?i = j?< + qieN(A)λ φiV(A). Since ϊ7 — λA is one-to-one on
N(A)1, qι Φ 0 for every i. At most n of the ĝ  are linearly inde-
pendent so qn+ι = Σ?=i /Si?*- Since

(Γ - XA)Pi = - ( Γ - λA)?4, (Γ -

and thus pw + 1 = Σii/Si^i by the linearity of the one-to-one map
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T — xA. The resulting fact, xn+ί = Σ"=ι β&i ί s a contradiction so
n u l ( Γ - XA) ^nul(A).

Further,

(T - XA)2f{A) = (Γ - λA)ΛΓ(A) + (Γ - λA)(iV(A)' n ^(A))

is closed being the sum of two closed subspaces one of which is finite
dimensional. Since T — XA is thereby semi-Fredholm for every
X$W{TPA,A),

ind(Γ - XA) = ind(T - xA) + inA(PA) = ind((T- XA)PA) = ind (A) .

But then def (Γ - XA) ^ def (A).

By the Schwarz inequality

I (TPAx, Ax) I ίS || TPAx \\ ^ a \\ PAx || + b \\ Ax \\ ̂  -?~ + b

if || Ax || = 1. We recall that Kato [18] proved that if

| λ | > + b

and A is semi-Fredholm, then ind (T — λA) = ind (A). Since we have
shown that W{TPA, A) c {z: \z\<> (a/y(A)) + 6}, Theorem 1.3 always
gives results at least as good as those previous for AeΦ+ defined
on a Hubert space. The examples in paragraph 4 demonstrate that
W(TPA, A) sometimes gives better results. We note that the stability
of index result ind (T — λA) = ind (A) of Theorem 1.3 remains valid
for λ ? Π {W(TPA + K, A): K is compact} but the semi-stability of
the nullity and deficiency need no longer hold.

For the case of semi-Fredholm A with finite deficiency it is pos-
sible to define a "dual" bioperative numerical range

W(T*, A*)- = {(A*x, T*x): || A*x || = 1, a e ^(A*) n

and prove similar results using W(T*PA*, A*)~ in place of W(TPA, A)
being careful to hypothesize &r(T*)z>&(A*). (The small bar denotes
complex conjugation.) If Γ, A e &(H, K) and A is Fredholm it is
easy to verify the stability results for λ g W(TPA, A) Γi W{T*PA*, A*)~.
This may be of interest since both W(TPA, A) and W(T*PA*y A*)~ are
contained in {z: \ z \ ̂  (|| Γ||/7(A))}.

For simplicity suppose now that T and A are bounded,

r(Γ, A) = sup {| λ |: T - λA is not Fredholm}

and I W\(T9A) = sup{|λ|: λe W(T, A)} .
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We have seen that if A is Fredholm, r(Γ, A) ^\W\ (TPA, A). If T
is not Fredholm, then 1 ^ r(A — T, A) so we have just proven the
following: If \W\(A- TPA, A) < 1 and A is Fredholm, then T is
Fredholm.

Theorem 1.3 holds if we replace W(TPA, A) by W(T, A) since
W(TPA, A) c W(T, A). But W(T, A) may be too large. In fact, let
A,Te^(H), A be Fredholm, and T(N(A)) ς£ R(A)λ. Then there
exists an neN(A) and an a eff such that (Tn, Ax) Φ 0, ||Aa?|| =
]| A(x + an) || = 1 for every α e C and

(Γ(a? + an), A(x + an)) = (Tx, Ax) + a(Trc, Ax) ,

so that TF(T, A) — C. On the other hand, one can verify that the
condition T(N(A)) c R{A)] or the condition that N(A) reduces both
T and A each guarantee that W(T, A) = W(TPΛ, A).

If A e &(H, K), then H = N(A) 0 N(A)\ K = Έ(A) © R(A)L

and A is a one-to-one operator from NiA)1 onto R(A). A+, the
generalized inverse of A, has domain &{A+) — R(A) 0 R(A)L and is
defined to be zero on R(A)1 and the inverse of the one-to-one operator
induced by A on R(A); i.e., A+Ax = P ^ , a? e ^ ( A ) . (α? e &r(A) c ^ ( ϊ 7 ) )
Since

(TPAx, Ax) = {TA+Ax, Ax) ,

the following reduction of the bioperative numerical range to the
Toeplitz numerical range is immediate: W(TPA, A) = W(TA+ \A{H)).

2. The convex hull of the essential spectrum* For simplicity
we assume in this paragraph that all operators are bounded. There
are many possible definitions of the essential spectrum of T; e.g.,
the semi-Fredholm spectrum σSF(T), the Fredholm spectrum σF(T),
the Weyl spectrum ω(T), or the Browder spectrum. But it is easy
to see that the convex hull is the same for any one of the various
essential spectra and the essential radius ress(T) — sup {| λ |: λe σess(T)}
is uniquely defined.

PROPOSITION 2.1. Let H be a separable Hubert space and
Te &(H). Then co σess(T) c f| {W(ATP,AP): AeΦ+,P a projection
with nul(P) < oo} c WeS8(T).

Proof. If λg Π W(ATP,AP), then λg W(ATP,AP) for some
AeΦ+, some projection P with finite nullity; i.e., there exists a
8 > 0 such that

δ || APx || ^ I (ATPx, APx) - λ |
^\\A(T-X)Px\\
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Thus (T - λ)P and therefore T - XeΦ+ which yields

σSF(T) c Π {W{ATP, AP): AeΦ+,P a projection with nul(P) < 00}

and the first inclusion.
For the second inclusion we let PJΆ = ~sp {e{: i Ξ> n) where

{e,: ΐ = 1, 2, •} is an orthonormal basis for H. If λ 6 ΠW(TPn,Pn),
then there exists yn such that || Pnyn |] = 1 and | {TPnyni Pnyn) - λ \<ljn.
If xn = Pnyn, then ^ ^ 0 , ||α;Λ | | = l and (Txn, xn)~+X so that
λe Wess(T) by Theorem 5.1 of Pillmore, Stampfli, and Williams [6].
But fi {W(ATP, AP): AeΦ+,P a projection with

nul ( P ) < 00} c f "

THEOREM 2.2. Lei H be a separable Hilbert space and T
Then ress(T) = inf {|| ATA+/iP(//) ||: A e Φ+, P a projection with
nul(P)< co, PAP = P).

Proof. By the remark made at the end of paragraph 1 and the
fact that A+AP = PAP = P, it is clear that Proposition 2.1 and the
Schwarz inequality imply that ress(T) ^ inf {|| ATA+/ΛPiH) ||: A e Φ+,P
a projection with nul (P) < ©o, P = P^P}. We now prove the reverse
inequality; i.e., if ress(T) < 1, then for any ε > 0, there exists an
AeΦ+, A: H-+12

+(H) and a projection P: ϋ->£Γ with nul (P) < co,
PAP = P such that sup{|| ATPx ||: ||APa?H = 1} g 1 + ε.

According to a theorem of Stampfli (cf Lancaster [21]) for any
Te&(H), there exists a compact operator K such that σ(T + K) —
ω(T). If ε > 0 is given, there exists a projection P: £Γ—>iJ with
nul(P)<oo such that || iΓP || < e/Σ?=01| (Γ + iΓ)% ||2 since ff is a
Hilbert space and the spectral radius of T + K, r(T + K) < 1. (We
omit the trivial case Γ = —K). If A: £Γ —> Z2

f(ίί) i s defined by Ax —
(Px,P(T+ K)x, . . . , P ( Γ + jBΓJ ίc, •••) then

It is clear that AeΦ+ and P^P = P. Also A(T + K) = U*A where
U* is the backward shift. Thus

\\ATPx\\ ^ ||AXPa;|| + || UΐAPx\\

^\\A\\\\KP\\\\Px\\ + \\

Taking the sup over ||APα;|| = 1 yields the desired result.

THEOREM 2.3. Let Te.^'(H) where H is a separable Hilbert
space. Then
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co σess(T) = Γl {W(ATP, AP): AeΦ+, P a projection with nul(P) < 00}

= Π {W(ATP, AP): AeΦ+, P a projection with nul(P) <

PΛP - P)

Proof. In view of Proposition 2.1, we need only show

Π {W(ATP, AP): AeΦ+, P a projection with nul(P) < 00,

The proof of this inclusion is based on the fact that any closed,
convex subset of the plane is the intersection of all open discs con-
taining it. Let D be an open disc containing co σess(T) with center
λ and radius r. Then the essential spectrum of (l/r)(Γ — λl) lies in
the open unit disc so there exists an A e Φ4 and a projection P of
finite nullity such that sup || (l/r)A(T - Xl)Px ||: || APx || = 1} < 1.
Thus I WI ((l/r)A(T - λ/)P, AP) < 1 or 11 W \ (ATP, AP) - λ | < r; i.e.,
W(ATP, AP) is contained in D.

This proof is similar to one due to J.P. Williams in showing the
Givens-Hildebrandt result coσ(T) = Π{W(STS^): S is invertible};
cf. Fillmore [5], p. 22, To show the analogy between the Givens-
Hildebrandt result and our result we can rewrite the result of the

theorem as coσess(T) = Π {W(ATA+/AP(H)): AeΦ+,P a projection of
finite nullity}.

3* Extensions to Banach and Frechet spaces* Theorem 1.3 can
be extended to a certain extent to Banach or Frechet spaces by the
use of Lumer [22] semi-inner products or "states", cf. Bonsall and
Duncan [3]. E.g., if X and Y are Banach spaces and T,Ae &(X, Y),
by the Hahn Banach theorem there exists a choice function ξ: X—>X*
such that <&,£(&)> = ||α?|| and ||£(α?)|| = 1. The map ζ(x) = ||a?||£(a?)
then defines a semi-inner product [ , ]ζ on X x X by

[xl9 x2]ζ = <&!, ζ(x2)) .

It is easily verified that this semi-inner product satisfies most of the
usual properties of an inner product except for conjugate linearity;
cf. Lumer [22], Giles [7]. Since our numerical range theory does
not need conjugate linearity we can define

It can then be verified that Theorem 1.3 holds for W{TPA, A, ζ) in
place of W(TPA9 A) for any ζ (where PA is the continuous projection
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taking X onto M, the closed complement of N(A) in X). For a
Banach space, however, equality 7(A) = Ύ(A/M) is not valid in general
and therefore the remarks made immediately after Theorem 1.3 are
not quite relevant to this case. Much the same can be said about
operators T, AeL(X, Y) for (X, τ) and (Y,o) Freehet spaces with
topologies τ and υ generated by the families of semi-norms Γ and A,
respectively. According to a lemma of R. T. Moore [23], for every
pe A, there exists a choice function ζP: Y—> Y* such that

(a) p(yy =<y,ζ,(y)>

for every y e Y and

(b) KK.

For every pe A select a ζp and define Λ1 = {ζp: pe A). By using
techniques developed in Amelin [1], it can be shown that Theorem 1.3
holds with W(TPA, A) replaced by

W(TPA, A, Λx) = co {[TPAx, Ax)ζp: ζP e Λl9 p(Ax) = 1} .

4* Examples*

(a) Let T,Ae^(ll) be defined as T - KP(0), A = UP(0)P(ΐ)
where CΠs the bilateral shift, and if et = {(ξn) \ ί< = l, £, = 0, ί=£j}9 then

= P(0)P(l), so TPA = A and

A) - {|| Ax ||2: || Aα; || = 1} = {1}

Thus if λ Φ 1, ind (Γ — λA) = ind (A) = 0, We note that previous
results stated that for | λ | > || T ||/7(A) = 1, ind (T - λA) = ind (A).

(b) Cf Goldberg and Schubert [15] (G - S). Let T = Dn and
A = T — λ (for λ G Λ and w odd) be the maximal operators on
U [0, co); i.e., 3f(T) = ^ ( A ) - {/: / € L2 [0, oo), /<—1> absolutely con-
tinuous on [0, co), ϊ 7 / G L2 [0, oo)}# By Goldberg [14] Ch. 6, A is
Fredholm with nul(A) g w, def (A) = 0. By Theorem 9 of G - S, τ(A) =
min {| (iσ)n - λ|: σ e R} = | λ |. Since

by Kato's result, if | ζ \ > (α/7(A)) + 6 = 2, then

ind (T - f A) - ind(A) .

On the other hand,
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W(TPA, A) = {(TPAf, Af): \\ Af \\ = 1}

= ((Γ - X)PAf, Af) + X(PAf, Af)

= 1 + \{PJ, Af) .

But 1 (PAf, Af) 1 <ί [I PAf H ^ 11 A/H/7(A) = 1/1 λ I; i.e., λ(P4/, A/) c
{2: I2I ^ 1}. Thus W(TPA, A) is contained in a circle of radius 1
centered at (1,0).
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