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SEMIPERFECT RINGS WITH ABELIAN GROUP OF UNITS

W. K. NICHOLSON

In 1963, Gilmer characterized all finite commutative rings
with a cyclic group of units and, in 1967, Eldridge and Fischer
generalized these results to rings with minimum condition.
In the present paper these results are extended to semiperfect
rings and generalizations of the three theorems are obtained.
It is shown that a semiperfect ring with cyclic group of units
is finite and is either commutative or is the direct sum of a
commutative ring and the 2 X 2 upper triangular matrix ring
over the field of two elements. Let R be semiperfect with
an abelian group of units. It is shown that R is finite if
either the group of units is finite or the group of units is
finitely generated and the Jacobson radical is nil.

The proofs of all these results depend on our main
theorem: The structure of a semiperfect ring R with an
abelian group of units is described completely up to the
structure of commutative local rings. (That is commutative
rings with a unique maximal ideal.) The groups of units
of these local rings are shown to be direct factors of the
group of units of R.

1. Preliminaries. Throughout this paper we assume that all
rings are associative and have an identity and that all modules are
unital. If R is a ring we denote its group of units by R* and its
Jacobson radical by J(R). The ring of residues of the integers modulo
n will be denoted by 2. The following notions will be referred to
several times below.

DerFINITION 1. Let R, R,, ---, R, be rings and, if ¢ = j, let X;;
be an R; — R; bimodule. We define the semidirect sum [R;, X;;] to
be the ring of all » x n “matrices” (x;;) where z; € R; for each 7 and
x;;€ X;; for all 1235, These are added componentwise and we define
the product (z;;)(v:;) = (2;;) as follows:

Rig = TiYis forall ¢=1,2 «-- n,
Zi; = TuYs; + @iy for all 47

It is easy to verify that [R;, X;,;] is an associative ring. If the
bimodules X;; are all zero the semidirect sum [R;, X;;] reduces to the
usual direct sum R, PR, P --- P R,. More generally, we have that
[0, X;;] is an ideal of [R;, X;;] which squares to zero, and the quotient
ring is isomorphic to R, P R. P --- P R,. Clearly the direct sum of
two of these semidirect sums is again a semidirect sum.
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DEFINITION 2. Let R be a ring. A left R-module X is said to
be G-unital if ux = x for all we R* and all xe X. A bimodule is
called G-unital if it is G-unital as a left and as a right module.

Clearly 0 is a G-unital module and submodules and quotient
modules of such modules are again of the same type. If X is a G-
unital R-module we have « + x = 0 for every x¢ X since —1e R*.
In other words X is an elementary abelian 2-group.

ProrosiTION 1. Let R, R, -+, R, be rings and let X;; be an
R; — R; bimodule for all © +# j. The semidirect sum [R;, X;;] has the
following properties:

(1) [R;, Xii]* = {(%:;) | @i; € B;* for each t}.

(2) [R;, Xi5]* s abelian if and only if each R} is abelian and
each X;; is G-unital.

(3) If [R;, Xi5]* is abelian it is isomorphic to the direct product
of all the multiplicative groups R} and all the additive groups X;;.

Proof. (1) If (x;;) is given and z,;; ¢ R;* for each ¢ it is easy to
verify that (x;;) ™= (y;;) where y;=2x7;' for each ¢ and y;; = — x;'e; 05
for all 7 # j. The converse is clear.

(2) Suppose [R;, X;;]* is abelian. Then (1) and the definition
of multiplication in [R;, X;;] imply that each R} is abelian. Now
choose arbitrary elements =z, v,; € Rf for each 4 and x;;, ¥;; € X;; for
all © # j. The units (x;;) and (y;;) commute so, for all ¢ = j:

Tilsi T CiilYi; = Yasllss T Yiilys «
If 2,;, =0 and x;; =1 this shows x,¥;; = ¥:;» Similarly z,y,; = ®;;
and it follows that each X, is G-unital.

Conversely: If (w:), (¥:;) € [R;, Xi;]* then, using (1), zuyi = yus.
Furthermore, since the X;; are G-unital, we have

Tlis T Xii¥s55 = Yis + To5 = Ci5 + Yig = Yuilis + Yii®%55

for all 7+ 7 and it follows that [R;, X;;]* is abelian.
(8) This follows easily from the definition of multiplication in
[R;, X;;] and the fact that each X;; is G-unital.

PROPOSITION 2. Let R be a local ring. (R/J(R) a divisor ring.)

(1) If the group of wunits of R is abelian then R is commutative.

(2) If R possesses a nonzero G-unital module then R[J(R) = 2.

(3) If R/J(R) = 2, the G-unital R-modules are precisely the
(additive) elementary abelian 2-groups.

Proof. (1) Ifa,beJ(R)thenl+a,1+bcR*so(1l+ a)(l+0b)=
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@1 + b@A + a). This implies ab = ba. If acJ(R) and uec R* then
1+ au = u(l + a) so au = ua.

(2) Let X 0 be a G-unital left R-module. If xe X and acJ(R)
then (1 + @)z = = so ax = 0. Hence X is a G-unital R/J(R) module
so we can assume R is a division ring. But then if 0% re R we
have that (1 — )¢ = 0 for every x ¢ X. Since X = 0 this means 1 — r
is not a unit so r = 1. Hence R = 2;.

(38) If X is an elementary abelian 2-group then it is a vector
space over 2;. Since R/J(R) = 2;, R acts on X as follows: If vxe X
and re¢ R we have rx =z if re R* and rx = 0 if reJ(R). Clearly,
X is G-unital. Conversely: Every G-unital module is an elementary
2-group since —1 e R* and the action is as described.

In the next section we shall use these results to characterize the
semiperfect rings R where R* is abelian.

2. The main theorem. Throughout this section R will denote
a semiperfect ring with R* abelian. It is well known [2, Th. 20,
p- 159] that R is semiperfect if and only if we can write 1 = ¢, +
¢ + +++ + e, where the e; are orthogonal local idempotents. Hence
each of the rings e¢;Re; is local and, if 7+ j, the ring ¢;Re; is an
e;Re; — e;Re; bimodule. For the moment let [¢;Re;] denote the set of
all n x n “matrices” (x;;) with the (¢, j) entry x,; drawn from e¢;Re;.
This is a ring if ordinary matrix operations are used.

Define a map ¢: R — [¢;Re;] by ¢(r) = (e;re;) for each re¢ R. Then
¢ is clearly a homomorphism of additive groups and it is a ring
homomorphism since the (7, 7) entry of #(r)é(s) is

Zk] (e;re)(erse;) = er(e, + e + <+« + e,)se; = erse; .

Moreover ¢ is one-to-one. Indeed, if ¢(r) = 0 then ere; = 0 for all
1, J and so r = > ; ;ere; = 0. Finally ¢ is onto. For if (e;7;;¢;) € [e; Re;]
is given let r = 3, ;eri;e;. It is easy to check that (1) = (e e;).
Hence ¢ is a ring isomorphism and so we have represented R as a
generalized matrix ring. Our aim is to show that it is a semidirect
sum.

LemMMA 1. If e; # e; and e; + ¢, then e;Re;Re, = 0.

Proof. Let xece;Re; and yce;Re,. Then z* = 0 (since ee; = 0)
so 1+ % is a unit. Similarly 1+ y is a unit and so, since R* is
abelian, xy = yx. But « = ¢;x and y = e,y so that xy = evy = e;yx =

e;e;Yr = 0.

It now follows easily that the multiplication in [e;Re;] is that of
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the semidirect sum. Indeed if (x;;), (v:;) €[e;Re;] and we write
(@:7)(¥:5) = (2:;5), then using the lemma:

%y = Z LirYri = X35l fOI‘ all 'i - 1, 2, e, M,
k
zij = % LixYr; = LiilY i + TiilYi; for all ’L ES j o

Hence, in the notation of §1, R = [¢;Re;, ¢;Re;]. But then Proposi-
tion 1 shows that each (¢;Re;)* is abelian and each ¢;Re; is a G-unital
bimodule. Since each ¢;Re; is local, it is commutative by Proposition 2.
Furthermore, ¢; is central if and only if ¢;Re; = 0 = ¢,;Re; for all j = 1.
It follows that either e; is central or e;Re; possesses a nonzero G-unital
module. In the latter case e;Re;/J(e;Re;) = %, by Proposition 2. This
proves the “only if” part of the following theorem; the rest follows
from Propositions 1 and 2.

THEOREM 1. Let R be a semiperfect ring. The group of units
of R is abelian if and only if R= T S where T s zero or a direct
sum of commutative local rings R; and S is zero or S=[L;, X;;]. Here
each L; is a commutative local ring with L;/J(L;) = 2, and each X;;
is a G-unital L, — L; bimodule. Moreover:

(1) The bimodules X;; can be chosen to be arbitrary elementary
abelian 2-group where the action of L, is defined as follows: If
reL; and e X;; set re = if re L and re = 0 if reJ(L,).

(2) The group of umnits of R is isomorphic to the direct product
of all the groups R}, all the groups L} and all the (additive) groups
X

This characterizes R completely up to the structure of the com-
mutative local rings involved. The groups of units of these local
rings inherit many properties from R* by (2) and often this leads to
a complete characterization. This will be exemplified in § 3 below in
the case where R* is assumed to be cyclic. Also, each of these local
rings is a homomorphic image of R so they inherit many ring-theoretic
conditions which could be imposed on R, for example the descending
chain condition.

An immediate consequence of Theorem 1 is that if R is semiperfect
and R* is abelian then R/J(R) is a finite direct sum of fields. Of
course this result follows from structure theory.

The next result is a generalization (in the case where R has an
identity) of a theorem of Eldridge and Fischer ([3], Th. 1, p. 244).

COROLLARY 1. Let R be a semiperfect ring with abelian group
of units. Then R is commutative if either of the following conditions
1s satisfied:
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(1) 22 =0 in R tmplies x =0
(2) R* has no direct factor each element of which has order 2.

Proof. Let [L;, X;;] be the semidirect sum appearing in the
decomposition of R. If xe X;; then 2x = 0 since X;; is G-unital so
each X;; = 0 if condition (1) holds. If condition (2) holds each X;; = 0
by (2) of the theorem. The result follows.

COROLLARY 2. Let R be a semiperfect ring. If the group of
units of R 1is abelian and finite then R is finite.

Proof. By (2) of Theorem 1 each of the local rings appearing in
the decomposition of R has a finite group of units and each of the
bimodules appearing in the semidirect sum is finite. But if L is a
local ring and L* is finite then J(L) is finite since 1 + J(L) & L* and
L/J(L) is finite since [L/J(L)]* = L*/(1 + J(L)). This implies L is
finite and the result follows.

A natural question is whether a semiperfect ring R must be finite
when R* is assumed to be abelian and finitely generated. The answer
is yes if R* is cyclic (see Theorem 2 below) or if J(R) is nil. The
next result will be useful in both cases.

LEMMA 2. Let R be a commutative local ring. If R* is finitely
generated then R is noetherian, R/J(R) is a finite field and J(R)"[J(R)"*
is a finite ring for each n.

Proof. If A, S A, < --- is a chain of (proper) ideals of R we
have the chainl + 4, &1 + A4, & --. of subgroups of B*. It follows
that R is noetherian. We have [R/J(R)]* = R*/1 + J(R) so the field
R/J(R) has a finitely generated group of units. Hence it is finite.
Finally, J(R)*/J(R)"** is a vector space over R/J(E) and is finite
dimensional since R is noetherian.

We can now prove the following result which generalizes another
result of Eldridge and Fischer ([3], Th. 2, p. 245).

PropPoSITION 8. Let R be a semiperfect ring with R* abelian.
If R* is finitely generated and J(R) is nil then R is finite.

Proof. Decompose R as in Theorem 1 and let L be one of the
commutative local rings which appear. Then L* is finitely generated
by (2) of Theorem 1 and J(L) is nil (L = eRe for some ¢* = ec R).
Since L is noetherian by Lemma 2, write J(L) = La, + La, + +-- + La,
where the a; e J(L). Hence, if m =1 we have J(L)™ = > La¥a¥* -+ akr
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where the sum is taken over all k; = 0 satisfying &k, + &k, + «++ + k, = m.
Since J(L) is nil this implies that J(L) is nilpotent. But then Lemma
2 implies that J(L), and hence L, is finite.

It remains to show that if [L;, X;;] is the semidirect sum appear-
ing in the decomposition of R then each X;; is finite. But each Xj;
is finitely generated as an additive group and so, since it is a vector
space over 2, it is finite. This completes the proof.

We remark that the hypothesis that J(R) is nil was used only to
show that J(L) is nilpotent.

3. Cyclic groups of units. Gilmer [4] has characterized all
finite commutative rings with a cyclic group of units and Eldridge
and Fischer [3] have extended these results to artinian rings. In
order to cover the semiperfect case we need the following negative
result.

ProPOSITION 4. If R is a commutative local ring the group of
units of R is mot infinite cyclic.

Proof. Assume, on the contrary, that R* is infinite ecyclic. Then
the characteristic of R is two since (—1)’=1. By Lemma 2 R is
noetherian and R/J(R) is finite. Hence, J(R)* # J(R). But the additive
group J(R)/J(R)® is cyclic since it is naturally isomorphic to the
multiplicative group 1 + J(R)/1 + J(R)®. Since the characteristic is
two, it follows that J(R)/J(R)* has two elements. But J(R)/J(R)® is
a vector space over the field R/J(R) so R/J(R) = £,.

We now claim that R is an integral domain. If not let P be any
prime ideal of R. Then P+ 0 so (R/P)* = R*/1 + P is finite cyeclic.
Since R/P is local it follows that R/P is a finite integral domain and
hence that P is maximal. Hence every prime ideal is maximal and
so ([6], p. 203) R is artinian. But then R is finite by Proposition 3,
a contradiction. Hence R is an integral domain.

Now let u be a generator of R* =1+ J(R). Write u=1+a
and v =1+ b where a,beJ(R). Then 1+ a + o* is a unit so 1 +
a+ a* = (1 + a)* for some ke 2. It is easy to check that £ = 0,1, 2
are impossible. Suppose £ = 3. Then we have

l+a+a*=1++ va+ 60+ atu

where 3 <¢<k,u is a unit and v and 6 are each either 0 or 1.
Since R is a domain it is easy to check that each of these possibilities
for v and 6 lead to a contradiction. Hence we must have 1+a-+a2= %~
for some [ =1. But 1+a+a*=1+u+% and 1 +b+0*=1+
w4+ u~* as is easily verified. Hence
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140+ =u?l+a+a)=uu"= 1+ b".

This leads to a contradiction just as before and so completes the
proof.

We can now obtain a generalization of another result of Eldridge
and Fischer ([3], Th. 3, p. 248) and, in so doing, obtain a much
easier proof of that result.

THEOREM 2. Let R be a semiperfect ring with cyclic group of
units. Then R is finite and is either commutative or is isomorphic
to the direct sum of a commutative ring and the ring of 2 X 2 upper
triangular matrices over 2.

Proof. Decompose R as in Theorem 1. By (2) of Theorem 1,
each of the local rings appearing has a cyclic group of units and, by
Proposition 4, it is finite. It follows that each of these local rings
is finite. Now let [L,, X;,] be the semidirect sum appearing. Each
X;; is cyclic as an additive group and so, since it is an elementary
abelian 2-group, it has two elements. Hence R is finite. Furthermore,
the fact that all X;; are direct factors of B* means that at most one
is nonzero. If all are zero then [L,, X;;] is commutative so R is
commutative. If, without loss of generality, X, = 0, we have

L1X12

[Li, Xi5] = (0 L)@L3®"- DL,

where (él‘%:) is a semidirect sum.

Moreover, each L} has odd order so L; has characteristic two.
But then, if aeJ(L;), there exists an odd integer = such that
l1=@1+a)"=1+a+ a» wherere L;. Hence a(l + ar) = 0 so a = 0.

This means J(L;) = 0 so L, = 2;. In particular, (g‘lXﬂ

I ) is isomorphic
to the ring of 2 X 2 upper triangular matrices over 2;. This com-
pletes the proof.

This theorem completely characterizes the semiperfect rings with
a cyclic group of units since the finite commutative local rings of
this type have been characterized by Gilmer [4] and later by Ayoub
[1] and Pearson and Schneider [5]. Gilmer cited the ring of 2 x 2
upper triangular matrices over 2; as an example of a finite non-
commutative ring with cyclic group of units. Theorem 2 shows that
this is essentially the only such semiperfect ring.
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