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EQUALLY PARTITIONED GROUPS

I. M. IsAaAcs

It is proved that the only finite groups which can be
partitioned by subgroups of equal orders are the p-groups of
exponent p. The connection between equally partitioned
groups and Sperner spaces is discussed. It is also proved that
finite groups partitioned by pairwise permutable subgroups are
abelian.

1. Let G be a group and let IT be a collection of proper sub-
groups of G. Then I7 is said to partition G if every nonidentity
element of G is contained in exactly one Hell. If G is a p-group
of exponent p and |G| > p, we may let I7 be the set of cyclic sub-
groups of G. Then II is a partition consisting of subgroups of equal
finite orders. Our main result is that the p-groups of exponent p are
the only finite groups which can be equally partitioned.

The methods of proof in this paper depend strongly on the finiteness
of the group and give no information about which infinite groups
can be partitioned by subgroups of equal finite orders.

I began to consider equally partitioned groups after attending a
lecture by Prof. A. Barlotti on Sperner spaces. Examples of these
geometric objects (which generalize affine spaces) are provided by such
groups. In fact the Sperner spaces which arise from finite equally
partitioned groups are exactly those which Barlotti and Cofman [2]
call translation spaces. This will be discussed further in § 3.

2. Only finite groups will be considered. A great deal is known
about partitioned groups. (We mention in particular the papers [1]
and [5].) Our theorem, however, is much more elementary and does
not depend on the deeper results.

The following easy lemma (which appears in [1]) is crucial to
the study of partitioned groups.

LEMMA 1. Let G be partitioned by II and let x, ye G — {1} with
xy = yx. Suppose x and y lie in different elements of II. Then x and
Yy have equal prime orders.

Proof. Suppose o(x) < o(y). Then (xy)*™ =y = 1. Let ye H
€ Il then (zy)°* ¢ H and hence zy e H. Thus z¢c H, a contradiction.
Therefore o(x) = o(y). Similarly, o(z™) = o(y) = o(z) for positive inte-
gers n < o(x). It follows that o(x) is prime.

LEMMA 2. Let G be equally partitioned by II and let X = G be
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a subset, X & {1}. Then there exists He Il such that H contains no
conjugate of X.

Proof. Suppose that the lemma is false and for each He Il,
choose X, conjugate to X with X, & H. Let Ny = N,(X},) so that
H contains at least | H: Ny | conjugates of X. Let N = Ny (X). Then
if |G|=gand |H|=h for He Il, we have

|G:N|[=[G:No(Xp) | =[G:Ny|=|G:H||H: Ny
and hence
|H: N, | =h|G:N|/g.
Now |G : N| is the number of conjugates of X in G and thus

|G:N| = Syen H: Ny
= [IT][G:N|hig .

However, |II| = (9 — 1)/ (h — 1) > g/h and this yields a contradiction.

NoTE. It follows from Lemma 2 that if G is equally partitioned
by II, then no element of /7 can contain a full Sylow p-subgroup of
G for any p||G|. Otherwise, every He /I would contain an S, sub-
group, violating the lemma.

LEMMA 3. Let G be equally partitioned. Then every element of
G has prime order.

Proof. Suppose that e G has composite order and let .2~ be the
conjugacy class of . Let /I be the given partition. By Lemma 2,
there exists He Il with HN . = ¢. By Lemma 1, no element of
H centralizes any element of 2", Thus H acts semi-regularly on .97~
and hence |H|||.27|.

Now pick Ke Il with xe K. Then K acts semi-regularly by con-
jugation on 9 — K so that |K|||(2¥ — K)|. Since |H| = |K]|, we
conclude that |K ||| N K|. This is a contradiction because
0<|Z NnK|<|K|

The next two results are routine applications of standard facts.
We include them for completeness.

LEMMA 4. Suppose G has a nontrivial normal p-subgroup where
p 18 the largest prime divisor of |G|. Assume that every element of
G has prime order and let PeSyl,(G). Then either P= G or |G: P|
18 prime and P <] G.
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Proof. Let 1+ U<|G where Uis a p-group. Now G can contain
no subgroup, W, of order qr where q and » are (possibly equal) primes
different from p. This is so since otherwise Cy(w) = L forall1 = we W
and this forces W to be cyclic (Satz V. 8. 15b of [3]).

There is nothing to prove if P = G so suppose P < G and let ¢
be the smallest prime divisor of |G|. Let Qe Syl (G). Then |Q| =¢q
and thus G has a normal g-complement, M.

If M = P, the proof is complete. Suppose that P < M. Then
@ normalizes some ReSyl. (M) for »# p. Thus |R|=7r and
|QR| = gr, a contradiction.

COROLLARY 5. Assume that every element of G has prime order.
Let P e Syl,(G), where p is the largest prime divisor of |G|. Then P
s a T. I. set (i.e., PN P* =1 for all x¢ N(P)).

Proof. Assume that the corollary is false and let 1 < D = P P®
where P = P* and | D| is maximal. Then Ny (D) = N does not have
a unique Sylow p-subgroup. This violates Lemma 4 as applied to N.

THEOREM 6. Let G be equally partitioned. Then G is a p-group
of exponent p.

Proof. Let p be the largest prime divisor of | G| and let P € Syl (G).
By Lemmas 38 and 4, N(P) = PC where either C =1 or |C| =g¢q, a
prime. By Corollary 5, P is a T. L. set.

We establish some notation. Let |G| =g, |P| = p* and |C| =c.
Let IT be the given partition and let | H| = h for all He Il. Let p*
be the p-part of h.

Since P is a T. L. set, it follows that PN UeSyl,(U) for all
subgroups US G with PN U= 1. Thus |PNH| = p* for all Hell
such that PN H=+1. Since P = Ug.(PN H), it follows that
(p* — 1) | (p* — 1). We can also conclude from the fact that Pisa T. L.
set that G contains exactly g(p® — 1)/p’¢ elements of order p.

Now by Lemma 2, we may choose He Il with Hn C° =1 for all
geG. Let P,eSyl,(H). We may assume that P, < P. Since P is a
T. I. set, Ny(P,) & N4P) = PC. It follows that N,(P,) = P,C, where
C, = C’ for some g. Thus C,=1 and P, = Ny(P,). By Sylow’s
Theorem it follows that Z/p* = 1 mod p.

Let Ke Il and let P,eSyl,(K). Reasoning as above, we conclude
that Ng(P,) = P.C, where C, < C* for some z. Thus 2/(p*|C,)=1
mod p and hence [C,| =1 mod p. However, |C,| =1 or ¢ where ¢
is a prime < p. It follows that C, = 1 and thus every K € IT has self-
normalizing Sylow p-subgroups.

Since the Sylow p-pubgroups of Kec Il are T. I. sets, it follows
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that each such K contains exactly A(p® — 1)/p* elements of order p.
Since |IT| = (g — 1)/(h — 1), this yields

(1) 9(»* — 1)/p'c = (9 — Dh(p* — 1)/(h — 1)p° .
Since g/h < (9 — 1)/(h — 1), we conclude from (1) that
/e > (p" — D/p'e > (p* — D/p* =1 - 1/p* = 12
and thus ¢ = 1. Now (1) yields
(2) (¢ — Dr(»* — 1)p* = (b — Dg(p" — D)p* .
Since ((g — 1), gp®) = 1 and (p* — 1)/(p* — 1) is an integer, we obtain
gp° | hp" .

The p-parts of gp® and hp® are equal and h|g. It follows that Ap’|gp®
and thus

(3) hp® = gp* .
Combining this with (2) yields
(4) =@ -1 =(@-DH» -1

and subtracting (4) from (3), one obtains
h+p =g+ p.
Since % |g and & < g, we have
9g2=<g—h=p —p*<p.

Since p°|g, we conclude that p* = g and the result follows.

NoTE. Once it was established that ¢ = 1, above, the proof could
have been finished using Frobenius’ Theorem, ([3], Hauptsatz V. 7. 6).
Since P is a self-normalizing T. I. set, Frobenius’ Theorem yields a
normal p-complement, U, for G. Also Cy(x) =1 for all 1#xzeP. If
U+ 1, it follows from the fact that P has exponent p that |P| = p.
A contradiction now results by applying the note following Lemma 2.

3. In this section we discuss the connection between Sperner
spaces and equally partitioned groups.

DEFINITION. ([4].) A Sperner space is a set, S, of “points” and
a collection, .<Z, of proper finite subsets of S, called “lines” such that

(a) every two points determine a unique line,

(b) all lines have equal numbers of points,
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(¢) an equivalence relation (called “parallelism”) is defined on &¥
and

(d) for each xe S, there is exactly one line which contains x in
each parallel class.

If G is a group which is equally partitioned by /7, we may define
a Sperner space by taking S = G, & = {Hx| HeIl, x € G} and setting
(Hz) || (Ky) if and only if H = K. It is routine to check that this does
define a Sperner space. We denote this space by S(G, II).

Given a Sperner space, (S, &), we consider the groups, G(S, &),
consisting of all those collineations of S which map each line to a line
parallel to itself. Since no two distinct parallel lines of (S, &) can
intersect (by condition (d)), it follows that if g € G(S, &) fixes a point,
x€ S, then g fixes every line through 2. It now follows easily that
only the identity of G(S, &) fixes two points of S.

Let G(S, &) = {1} U{ge G(S, &) | g fixes no points of S}. In
[2], Barlotti and Cofman call a Sperner space (S, &) a translation
space if G4(S, &) is a group which is transitive on S. If S is finite,
it follows from Frobenius’ Theorem ([3], Satz. V. 8. 2 (a)) that (S, &) is
a translation space if and only if G(S, &) is transitive on S. If (G, II)
is a finite equally partitioned group and (S, &) = S(G, II), then G(S, &)
contains right multiplications by elements of G and hence is transitive.
It follows that S(G, IT) is a translation space and G,(S, &) is the group
of right multiplications.

We claim that if (S, &) is any finite translation space then
(S, &¥) = S(G, II) for some equally partitioned group (G, II). Let
G = Gy(S, &¥) and choose a point ecS. For le &, let H, be the
(setwise) stabilizer of [ in G and let I7T = {H,|le &¥ and ecl}. If
e,xecland ge G with eg = , then x el N lg and thus [l = lg and g € H,.
It follows that H; is transitive on [ and | H;| = |l|. Therefore, all
He Il have equal order. If H, Kell with H+ K, then HN K fixes
¢ and hence HN K =1. Also

G| =|S|=1+23{l|—1|le and ecl}
=1+ 3{H|~1|Hell} = |U 1]

and thus 7 is a partition for G.

To see that S(G, IT) = (S, &), define 6: G— S by 6(9) = eg. It
is routine to show that # is an isomorphism of Sperner spaces.

One further remark on the correspondence between finite transla-
tion spaces and finite equally partitioned groups is in order. If (G, )
and (G, II,) are two equally partitioned groups such that S(G, IT) =
S(G,, I1)), then G = G, and this group isomorphism can be chosen so
as to carry I7 to II,. This follows since G = G,(S(G, 7)) and under
this (natural) isomorphism, I7 corresponds exactly to the set of
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stabilizers of the lines through 1.

Let (S, &) be a finite translation space. By Theorem 6, | S| = p*
for some prime, p, and |l| = p* for le . Also, (p*—1)|(p* —1)
and as is well known, this forces a |b. We may define the dimension
of (S, &) to be b/a.

Let ¢ = p* and let K = GF(q). Let V be a vectorspace of di-
mension n over K and let 7 be the set of one-dimensional subspaces
of V. Then I7 equally partitions V and of course S(V, II) is an affine
space of dimension n. This suggests the question of which translation
spaces, (S,.%), correspond to abelian equally partitioned groups.
These are not necessarily affine although they do satisfy the following
condition:

(*) Letl,mex withlnm=g. Letxecland yem. Letl'|l
with yel’ and m'|| m with xem'. Then I' N m' == @.

It is easy to see that S(G, II) satisfies (*) if and only if for every
H, KelIl and every he H and k¢ K we have Ht N Kh # . This con-
dition is clearly satisfied if G is abelian since then hke Ht N Kh. In
the next section we prove that only in abelian groups does this con-
dition hold.

4. We begin with the following lemma.

LEMMA 7. Let HH K= G. Then HK = KH if and only if for every
he Hand ke K we have Ht N Kh + 1.

Proof. Suppose HK = KH. Let he H and ke K. Then kh™'e
KH = HK and kh™ = h, ™'k, for some h,c¢ H and k, ¢ K. Thus hk =
k.h e Hk N Kh.

Conversely, let € KH. Write x = kh™ for some k¢ K and h e H.
Now choose ki = hke Kh N Hk so that k,¢ K and h,eH. Then
x=kh™ = h"k,ec HK and KH < HK. The reverse inclusion follows
symmetrically and the proof is complete.

The main result of this section is the following.

THEOREM 8. Let G be a finite group partitioned by I[I. Assume
that HK = KH for all HA  Kell. Then G is an elementary abelian

D-gTouD.

Note that we do not assume that all elements of I7 have equal
order. Theorem 8 and Lemma 7 prove the claim made at the end of § 3.
To prove Theorem 8, we strengthen it somewhat and use induction.

THEOREM 9. Let G be finite and partitioned by II. Suppose
Acll and AH = HA for all Hell. Then A <G.
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Proof. We use induction on |G|. If A< L <G, then L is par-
titioned by II,={HN L|Hell}. If Hell, then AH is a group and
AHNL =AHNL). Thus A(HN L) = (HnN L)A and by induction
A<]L. LetN= N(A). If Hell and AH < G, it follows that 4 <{|AH
and HZ N.

Assume N< Gandlet I, ={Hell | HZ N}. Then HA = G for
all Hell, and hence | H| = |G:A| for these H. Also for Hell,, we
have N= A(NN H) and thus NN H|=|N:A|

Now

G- N=U{H—- (HNN)| Hell}
and since this union is disjoint, we obtain
|G|~ |N|=|IL|(|G:A]| - |N:A)).

Solving this yields | /7,| = [A]l.
Now

(UL =1+ |IL|(G:A]—-1)
=1+ |G| —]A].

It follows that 77 = I7, U {A} and every element of G — A lies in some
Hell,.

Let ge G. Toshow that A = A, it suffices to show that A’NH =1
for all Hell,. Choose Hell,. Since G = AH, we may write g = ah
for some a ¢ A and he H. Then

AANH=A"NH=ANH) =1
and the proof is complete.

Proof of Theorem 8. By Theorem 9 we have H <] G for all
Hell. Therefore, if H Kell, H+# K we have K = C(H) and hence
G = HU C(H). Since H< G, we have G = C(H) and H S Z(G).
It follows that G is abelian. The result now follows by Lemma 1.

5. In this section we discuss a class of examples of equally
partitioned groups. Since every p-group of exponent p is equally
partitioned by its cyecliec subgroups, it is interesting to look for ex-
amples of groups partitioned by subgroups of order ¢ = p* > p. The
elementary abelian groups of order ¢" have this property. Nonabelian
examples are provided by the next result if p > 2.

THEOREM 10. Let n < p and ¢ = p°. Then the Sylow p-subgroups
of GL(n, q) are partitioned by abelian subgroups of order g.
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Note. If n > p, then the Sylow p-subgroups of GL(n, ¢) do not
have exponent p and hence cannot be equally partitioned.

Proof of Theorem 10. Let K = GF(q) and let 4 be the space of
strictly upper triangular n x n matrices over K. Then P={I+ a|ac A}
is a Sylow p-subgroup of GL(n, q). For acA, let M,(t) = exp (at)
for te K. This is well defined since (at)* =0 and n < p. Since
M (s)M.(t) = M, (s + t), we conclude that P, = {M,(t) [t € K} in an abelian
subgroup of P.

We will show that if a,be A and exp (a) = exp (b), then ¢ = b.
It will follow that | P,| = q if @ # 0 and that P, N P, = 1 unless b = at
for some te K; in which case P, = P,. Taking I = {P,]|0 +# ac A}
we have || = (JA| — 1)/(¢ — 1) and

UL =[H[g-1)+1=[A]=][P]

as desired.

Suppose then that exp (a) = exp (b). For m e Z, exp (ma) = exp (a)™
and thus exp (at) = exp (bf) for all ¢ € GF(p). Let « be an indeterminate
and let E(z) = exp (ax) — exp (bx). Then E(xr) is a matrix with poly-
nomial entries of degree < p. Since E(t) = 0 for all teGF(p), it
follows that E(z) is identically 0. Comparing coefficients of z yields
a = b and the proof is complete.

We close with the following question: Does there exist a group
partitioned by subgroups of equal order not all of which are abelian?
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