O-PRIMITIVE ORDERED PERMUTATION GROUPS II

STEPHEN H. MCCLEARY

This paper is a sequal to o-primitive ordered permutation groups [Pacific J. Math., 40 (1972), 349-372]. There it was shown that if $A(\Omega)$ is the lattice-ordered group of all o-permutations of a chain Ω , and if G is an l-subgroup of $A(\Omega)$ which is periodically o-primitive (transitive and lacking proper convex blocks, but neither o-2-transitive nor regular), then the (convex) orbits of any stabilizer subgroup G_{α} , $\alpha \in \Omega$, themselves form a chain o-isomorphic to the integers. Let Δ be any nonsingleton orbit of G_{α} . Here it is shown that G_{α} is faithful on Δ and that $G_{\alpha} \mid \Delta$ is o-2-transitive and contains an element $\neq 1$ of bounded support. From this it follows that all o-primitive groups (except for certain pathological o-2-transitive groups) are complete l-subgroups of $A(\Omega)$, and hence are completely distributive. When G is "full", $G_{\alpha} \mid \Delta$ satisfies an important "splice" property, and G_{α} and G are laterally complete. There is a detailed description of the unique full group G for which Δ is an α -set, and a listing of the other "nice" permutation group representations of G.

We assume throughout that G is a transitive l-subgroup of $A(\Omega)$ (except that the more general coherent subgroups of $A(\Omega)$ are discussed briefly in the last section). Thus the orbits of G_{α} are convex, and the concepts of "orbital" [6] and "orbit" coincide. Although familiarity with [6] is assumed, we recapitulate most of Main Theorem 40 for l-permutation groups.

Theorem 1. Let (G,Ω) be an o-primitive l-permutation group which is neither o-2-transitive nor regular, and let $\alpha \in \Omega$. Then the long orbits of G_{α} form a chain o-isomorphic to the integers. Let $\Delta_1 = (\Delta_1)_{\alpha}$ denote the first positive long orbit, and let Δ_{j+1} be the first long orbit greater than Δ_j . Between Δ_j and Δ_{j+1} there lies at most one point of Ω . Either there is a positive integer n such that $\sup \Delta_j \in \Omega$ if and only if $j \equiv 0 \pmod{n}$, and we say that G has $\operatorname{Config}(n)$; or $\sup \Delta_j \in \Omega$ only when j = 0, and we say that G has $\operatorname{Config}(\infty)$. There is a unique o-permutation z of $\overline{\Omega}$, $\overline{\Omega}$ the Dedekind completion (without end points) of Ω , such that $\alpha z = \sup (\Delta_1)_{\alpha}$ for each $\alpha \in \Omega$. z is the period of G in the sense that it generates (as a group) the centralizer $Z_{A(\overline{\Omega})}G$; so that $(\overline{\beta}z)g = (\overline{\beta}g)z$ for all $\overline{\beta} \in \overline{\Omega}$, $g \in G$.

This periodicity is of paramount importance, and is the key to most of the following results. The action of $g \in G$ on any Δ_j determined the following results.

mines its action on all of Ω . $(\Delta_{j+1})_{\alpha}$ is "one period up" from $(\Delta_j)_{\alpha}$ in the sense that $(\bar{\Delta}_j)_{\alpha}z = (\bar{\Delta}_{j+1})_{\alpha}$.

Full groups are those for which G is the entire centralizer $Z_{A(\overline{\wp})}z$. It is shown that G is full if and only if G_{α} is the set of all o-permutations of Δ_1 which preserve the sets $\Delta_j z^{1-j} \subseteq \overline{\Delta_j}$; and that the full group G is determined by these sets. It is shown also that the *primitive* (in the ordinary permutation group sense) l-permutation groups are precisely those which are o-2-transitive or periodically o-primitive with Config (∞) .

2. Representations. A representation of an l-group G is an l-isomorphism θ of G into some $A(\Sigma)$. Here all representations will be transitive (meaning that $G\theta$ is a transitive l-subgroup of $A(\Sigma)$). Now let (G,Ω) be an l-permutation group, and let $\bar{\omega}\in\bar{\Omega}$. For $g\in G$, form $\hat{g}\in A(\bar{\omega}G)$ by first extending g to $\bar{\Omega}$ and then restricting to $\bar{\omega}G$. If G is faithful on $\bar{\omega}G$ (e.g., if $\bar{\omega}G$ is dense in $\bar{\Omega}$), the map $g\to \hat{g}$ is a representation of G into $A(\bar{\omega}G)$. We shall identify G with its image and speak of $(G,\bar{\omega}G)$. Of course, $(G,\bar{\omega}G)$ depends only on the orbit $\bar{\omega}G$ and not on the particular $\bar{\omega}$.

Holland [3] defined a transitive l-permutation group (G,Ω) to be weakly o-primitive if for every o-block system $\widetilde{\Delta}$ of G (except the system of singletons) there exists $1 \neq g \in G$ such that $\Gamma g = \Gamma$ for all $\Gamma \in \Delta$. A representation θ of an l-group G into $A(\Sigma)$ is complete if it preserves arbitrary sups that exist in G, or equivalently, if $G\theta$ is a complete l-subgroup of $A(\Sigma)$ in the sense that if $g \in G$ is the sup in G of $\{g_i \mid i \in I\}$, then g is also the sup in $A(\Sigma)$ of $\{g_i\}$. In [8], the present author defined an o-2-transitive group G to be pathological if it contains no element $\neq 1$ of bounded support. We collect some facts about representations of o-primitive groups.

Theorem 2. Let (G, Ω) be o-primitive, but not pathologically o-2-transitive. Let θ be a weakly o-primitive (alternately, a complete transitive) representation of G as an l-subgroup of some $A(\Sigma)$. Then there is an o-isomorphism ψ from some $\bar{\omega}G$ onto Σ which, together with θ , furnishes an o-isomorphism from $(G, \bar{\omega}G)$ onto $(G\theta, \Sigma)$. The collection of $(G, \bar{\omega}G)$'s constitute (up to o-isomorphism) all weakly o-primitive (alternately, all complete transitive) representations of G.

Proof. At present we shall treat only weakly o-primitive representations; after Theorem 6, we shall return to complete representations. If (G, Ω) is o-2-transitive (and not pathological), the first statement is a special case of [3, Theorem 7]; and by the proof of that theorem it suffices in general to show that a prime subgroup of G which moves every $\overline{\beta} \in \overline{\Omega}$ must in fact be all of G. If (G, Ω) is regular, this is obvious. Now suppose (G, Ω) is periodically o-primitive, that P is a prime subgroup of G moving every $\overline{\beta} \in \overline{\Omega}$, and that $1 < g \in G$. Then

(as in [2, p. 329]) given any bounded interval Π of Γ , we may take the sup of an appropriate finite collection of elements of P and raise it to an appropriate power to obtain $1 < f \in L$ such that f exceeds g on Π . We take Π to be of the form $(\alpha, \alpha z)$, and periodicity guarantees that f exceeds g on Ω . Therefore P = G, concluding the periodically o-primitive case. Finally, anticipating Theorem 3, we find that every $(G, \bar{\omega}G)$ is in fact weakly o-primitive (indeed, primitive).

An l-group G is $laterally\ complete$ if every pairwise disjoint set of elements has a sup in G. For an l-permutation group (G,Ω) , we formulate a much stronger property: Let $\mathscr{D}_1 = \{\Delta_{i,1} \mid i \in I\}$ be a collection of pairwise disjoint nondegenerate segments of Ω such that $\bigcup \mathscr{D}_1$ is dense in Ω , with \mathscr{D}_1 totally ordered in the natural way; and similarly for $\mathscr{D}_2 = \{\Delta_{i,2} \mid i \in I\}$. Let f be an o-isomorphism from \mathscr{D}_1 onto \mathscr{D}_2 such that whenever $\overline{\mu}$ is a proper Dedekind cut in \mathscr{D}_1 (and thus may be considered as an element of $\overline{\Omega}$), $\overline{\mu}$ and $\overline{\mu}f$ lie in the same orbit of G. Suppose that for each $i \in I$, there exists $g_i \in G$ such that $\Delta_{i,1}g_i = \Delta_{i,2}$. We shall say that (G,Ω) has the splice property if whenever these circumstances occur, there exists $g \in G$ such that $g \mid \Delta_{i,1} = g_i$ for each i. It is easily checked that it suffices to consider the special case in which each g_i is positive ($\omega \subseteq \omega g_i$ for each $\omega \in \Delta_{i,1}$).

If (G, Ω) is *entire* (i.e., if $G = A(\Omega)$), then G has the splice property. Actually, $A(\Omega)$ satisfies a stronger property, whereby $\overline{\mu}$ and $\overline{\mu}f$ are required only to be both in Ω or both in $\overline{\Omega} \setminus \Omega$; but there are examples in which this stronger property does not carry over to $(A(\Omega), \overline{\omega}A(\Omega))$.

 (G,Ω) is depressible if given any $g\in G$ and $\gamma\in\Omega$ for which $\gamma g\neq \gamma$, there exists $h\in G$ such that $\omega h=\omega g$ if ω lies in the interval of support Conv $\{\gamma g^n\mid n \text{ an integer}\}$, and $\omega g=\omega$ otherwise. Clearly groups having the splice property are depressible as well as laterally complete. On the other hand, if Ω is the real numbers, and G is the set of all o-permutations g of Ω for which there exists no monotone sequence $\omega_n\to\omega$ such that $(\omega_n g-\omega)/(\omega_n-\omega)\to 0$ or ∞ , then G is a depressible, laterally complete, o-2-transitive l-permutation group, but it does not have the splice property. (When showing that G is closed under product, use the fact that if $u_n v_n\to 0$ or ∞ ($u_n,v_n>0$), then some subsequence of $\{u_n\}$ or of $\{v_n\}$ approaches 0 or ∞ , respectively.)

Holland [3] defined a transitive l-permutation group (G, Ω) to be locally o-primitive if in the totally ordered set of o-block systems (excluding the system of singletons), there is a smallest system $\widetilde{\Delta}$. The o-blocks in $\widetilde{\Delta}$ are called the *primitive segments* of G. If Γ is a primitive segment, let $G \mid \Gamma$ denote the restriction of G to Γ , i.e., $\{g \mid \Gamma: g \in G \text{ and } \Gamma g = \Gamma\}$. All $(G \mid \Gamma, \Gamma)$'s are isomorphic as o-permutation groups, and they are o-primitive. A property preserved by isomorphism and enjoyed by $(G \mid \Gamma, \Gamma)$ for one (hence every) primitive

segment Γ will be said to be enjoyed locally by (G, Ω) . In view of Theorem 1, every locally o-primitive group must be locally o-2-transitive, locally regular, or locally periodically o-primitive.

For any o-primitive (G, Ω) , and any $\bar{\omega} \in \bar{\Omega}$, $\bar{\omega}G$ is dense in $\bar{\Omega}$ ([3, Theorem 2]). Thus Theorem 2 leads us to

THEOREM 3. Let (G, Ω) be a transitive l-permutation group and let $\bar{\omega} \in \bar{\Omega}$ with $\bar{\omega}G$ dense in $\bar{\Omega}$. Then

- (1) Extension to $\bar{\Omega}$ followed by restriction to $\bar{\omega}G$ provides a canonical one-to-one correspondence between the collection of non-singleton o-blocks of (G, Ω) and that of $(G, \bar{\omega}G)$.
- (2) The image under this correspondence of an o-block system of (G, Ω) is an o-block system of $(G, \bar{\omega}G)$.
- (3) A canonical o-isomorphism from the tower of o-block systems of (G, Ω) onto that of $(G, \bar{\omega}G)$ is given by (2).
- (4) Corresponding o-primitive components of (G, Ω) and $(G, \bar{\omega}G)$ are o-isomorphic, with the following exception: In the locally o-primitive case, if Γ is the primitive segment of (G, Ω) for which $\bar{\omega} \in \bar{\Gamma}$, $\Gamma_{\bar{\omega}} = \Gamma \cap \bar{\omega}G$ is the primitive segment of $\bar{\omega}G$ containing $\bar{\omega}$. But at least $(G \mid \Gamma, \Gamma)$ and $(G \mid \Gamma_{\bar{\omega}}, \Gamma_{\bar{\omega}})$ are both pathologically (or both nonpathologically) o-2-transitive, both regular, or both periodically o-primitive (in which case both have the same period z).

Moreover, the following properties are enjoyed either by both (G, Ω) and $(G, \bar{\omega}G)$, or by neither:

- (5) Weak o-primitivity.
- (6) The splice property.
- (7) Depressibility.
- (8) Entirety on some dense orbit of G.
- (9) Completeness in the entire group $A(\Omega)$, respectively $A(\bar{\omega}G)$. (See the comments preceding Theorem 8.)

All parts of the theorem are routine except for (9), which is contained in [5, Theorem 1]. In connection with (8), we mention that examples in which entirety does not carry over to $(A(\Omega), \bar{\omega}A(\Omega))$ are to be found in [7, Theorem 15].

3. Periodic o-primitivity. Let (G,Ω) be periodically o-primitive with Config (n), and let I_n be $\{1,\cdots,n\}$ if n is finite, and be the integers if $n=\infty$. Let $\Omega_k=\Omega z^{1-k}\subseteq \overline{\Omega}(k\in I_n)$. Since z centralizes $G,\Omega_kG=\Omega_k$ for each k. Let $\alpha\in\Omega$, and let the long orbits $\{\Delta_j\}$ of G_α be denoted as in the introduction. $\Delta_jz^{1-j}=\overline{\Delta_1}\cap\Omega_k$, where $k\equiv j\pmod{n}$. By the signature of G we shall mean the collection $\{\overline{\Delta_1}\cap\Omega_k(=\Delta_kz^{1-k})\mid k\in I_n\}$. [6, Theorem 54] gives three conditions which the signature must satisfy.

By an abstract *n*-signature $(n = 1, 2, \dots, \infty)$, we shall mean a

collection $\{\Sigma_k \mid k \in I_n\}$, with each Σ_k a specified subset of $\overline{\Sigma}_1$, satisfying the conditions (for the particular n) of [6, Theorem 54]. By an o-isomorphism of one such signature $\{\Sigma_k\}$ onto another $\{\Pi_k\}$ we shall mean an o-isomorphism φ from $\overline{\Sigma}_1$ onto $\overline{\Pi}_1$ such that $\Sigma_k \varphi = \Pi_k$ for each $k \in I_n$. The signature defined above for G is of course an n-signature, and by the transitivity of G, it is independent (up to o-isomorphism) of the choice of α .

Recall that the full groups are universal in the sense that every periodically o-primitive group G is contained in a full group having the same period z, namely $Z_{A(\overline{a})}z$.

THEOREM 4. For each $n=1, 2, \dots, \infty$, a one-to-one correspondence between the collection of (o-isomorphism classes of) full periodically o-primitive groups (G, Ω) of Config (n) and the collection of (o-isomorphism classes of) n-signatures is given by mapping each group to its signature. When n=1, the chain Ω determines the (full) group G and the signature of (G, Ω) .

Proof. In [6, Theorem 54] we constructed from an arbitrary n-signature $\{\mathcal{\Sigma}_k\}$ a full group (G,Ω) such that for an appropriate α , $\Delta_k z^{1-k} = \Sigma_k$ for all $k \in I_n$. Hence our mapping is onto. It is also one-to-one, for the signature of (G,Ω) determines Ω and determines the period z on Ω and hence on $\overline{\Omega}$; and then since G is full, $G = Z_{A(\overline{\Omega})}z$. If n = 1, $\Sigma_1 = \Delta_1$ is a closed interval of Ω . Since G is o-primitive, $A(\Omega)$ must be o-primitive and thus o-2-transitive, so that all nondegenerate closed intervals of Ω are o-isomorphic. Hence Ω determines Δ_1 and thus determines G.

LEMMA 5. Let (G, Ω) be a periodically o-primitive l-permutation group. Let $\alpha \in \Omega$ and let Δ be any long orbit of G_{α} . Then G_{α} is faithful on Δ , and (G_{α}, Δ) is a nonpathologically o-2-transitive l-permutation group.

Proof. Periodicity guarantees that G_{α} is faithful on Δ and that, in view of part (4) of Theorem 3, we may assume that Δ is the first positive orbit of G_{α} . Let $\Gamma = \Delta'$, the last negative orbit of G_{α} . Since (G_{α}, Δ) is transitive, it will be o-2-transitive if for $\beta \in \Delta$, $(G_{\alpha})_{\beta} = G_{\alpha} \cap G_{\beta}$ is transitive on $\Pi = \{\delta \in \Delta \mid \beta < \delta\}$. Pick any $\gamma, \delta \in \Pi$, with $\gamma < \delta$. Next pick $1 \leq h \in G_{\alpha}$ so that $\gamma h = \delta$. Then $\beta \leq \beta h < \delta$, so $\beta h \in \Delta$. Now pick $1 \geq r \in G_{\delta}$ so that $(\beta h)r = \beta$. Since $\alpha r \leq \alpha < \beta < \delta$, and since both αr and α lie in the last negative orbit Γ_{δ} of G_{δ} , we have $\alpha r, \alpha \in \Gamma_{\beta}$. Hence we may pick $1 \leq s \in G_{\beta}$ so that $(\alpha r)s = \alpha$. Now $hrs \in (G_{\alpha})_{\beta}$, and $\gamma hrs = \delta rs = \delta s \geq \delta$, so that γ and δ lie in the same (convex) orbit of $(G_{\alpha})_{\beta}$. Therefore, $(G_{\alpha})_{\beta}$ has only one positive orbit in Δ , so that (G_{α}, Δ) is o-2-transitive.

We can pick $g \in G$ such that $\alpha g < \alpha$ and $\beta g > \beta$. Then $1 \neq g \vee 1$ fixes each point in some segment Λ of Ω which meets both Δ and Γ , so that $1 \neq (g \vee 1) \mid \Delta$ has support which is certainly bounded below, and by periodicity, is also bounded above. Therefore, (G_{α}, Δ) is not pathological.

The author showed in [4, Theorem 7] that for a transitive l-subgroup G of $A(\Omega)$, the following are equivalent:

- (1) G_{α} is closed subgroup of G for one (hence every) $\alpha \in \Omega$, i.e., if $g = \bigvee_{i \in I} g_i$ with each $g_i \in G_{\alpha}$, then $g \in G_{\alpha}$.
 - (2) G is a complete subgroup of $A(\Omega)$.
- (3) Sups in G are pointwise, i.e., if $g = \bigvee_{i \in I} g_i$ with each $g_i \in G$, then for each $\beta \in \Omega$, βg is the sup in Ω of $\{\beta g_i \mid i \in I\}$.

Moreover, it was shown in [4, Corollary 15] that in the presence of these conditions, we have

(4) G is a completely distributive l-group, i.e., $\bigwedge_{i \in I} \bigvee_{k \in K} g_{ik} = \bigvee_{f \in K^I} \bigwedge_{i \in I} g_{if(i)}$ for any collection $\{g_{ik} \mid i \in I, k \in K\}$ of G for which the indicated sups and infs exist.

THEOREM 6. Let (G, Ω) be an o-primitive l-permutation group. Then Conditions (1), (2), (3), and (4) are all equivalent, and they fail if and only if G is pathologically o-2-transitive.

Proof. The o-2-transitive case is precisely the content of [8, Theorem 1], and the conditions hold automatically in the regular case. In the periodically o-primitive case, the proof parallels the proof in [8] for the nonpathologically o-2-transitive case: Suppose $g = \bigvee_{i \in I} g_i$, with $g \in G$ and each $g_i \in G_\alpha$, but with $\alpha < \alpha g$. By Lemma 5, we can pick $1 > h \in G_\alpha$ such that $h \mid \Delta_0$ (Δ_0 the last negative orbit of A_0) has support contained in A_0 and hence on all of A_0 by periodicity, giving a contradiction. Therefore A_0 is closed, and the other conditions follow.

Now we prove Theorem 2 for complete representations. Theorem 6 states that every $(G, \bar{\omega}G)$ is complete. For the rest, it suffices to show that every proper closed prime subgroup of G is $G_{\bar{\omega}}$ for some $\bar{\omega} \in \bar{\Omega}$; and the proof of Theorem 11 of [5] shows that if this were not the case, G would have a proper o-block, violating o-primitivity.

LEMMA 7. Let (G, Ω) be periodically o-primitive, and let $\Gamma \neq \Omega$ be a (not necessarily convex) block of G. Then $\Gamma \subseteq FxG_{\alpha}$ for every $\alpha \in \Gamma$.

Proof. If $\delta \in \Gamma \backslash FxG_a$, then Γ would contain the segment δG_a , so that $\Gamma = \Omega$ by periodicity.

Theorem 8. Let G be a transitive l-permutation group. Then G is primitive if and only if G is o-2-transitive or G is periodically

o-primitive and has Config (∞).

Proof. If G is primitive, then a fortiori, G is o-primitive. If G is o-2-transitive, it is clearly primitive. If G is periodically o-primitive and has Config (∞) , $FxG_{\alpha} = \{\alpha\}$, so G is primitive by the lemma. However, if G has Config (n) for some finite n, the block FxG_{α} violates primitivity; and if (G, Ω) is regular, it is the regular representation of some subgroup of the reals ([6, Proposition 24]) and thus is not primitive.

We now borrow some terminology from [1, pp. 142-4] and [7], assuming for convenience that Ω is homogeneous and dense in itself (which will necessarily be the case if (G, Ω) is o-primitive, unless Ω is the integers). The point or hole (i.e., proper Dedekind cut) $\bar{\omega}$ of Ω is said to have character $c_{\beta\gamma}$ if ω_{β} is the unique regular ordinal number which is o-isomorphic to a cofinal subset of $\{\sigma \in \Omega \mid \sigma < \bar{\omega}\}$ and dually for ω_{γ} . All elements of any one orbit $\bar{\omega}G$ have the same character. Ω is said to have final character c_{β} if ω_{β} is the unique regular ordinal o-isomorphic to a cofinal subset of Ω ; and dually for initial character. Alternately, any of these characters can be determined by using subsets not of Ω , but of any dense subset of $\bar{\Omega}$.

LEMMA 9. Let (G, Ω) be periodically o-primitive, and suppose that the points of Ω have character $c_{\beta\gamma}$. Then if Δ is any long orbit of $G_{\alpha\gamma}$, $\alpha \in \Omega$, the initial character of Δ is c_{γ} and the final character is $c_{\beta\gamma}$.

Proof. $\Delta = \Delta_j$ for some j. Δ has the same initial character as Δz^{1-j} ; since the latter is dense in $\overline{\Delta}_1$, its initial character is that of Δ_1 , which is c_T . A similar argument works for final characters.

PROPOSITION 10. Suppose that (G, Ω) is periodically o-primitive, and that in its order topology, Ω satisfies the first countability axiom (i.e., the points of Ω have character c_{00}). Then all long orbits of G_{α} , $\alpha \in \Omega$, are o-isomorphic.

Proof. Let Γ and Δ be long orbits of G_{α} . Picking $g \in G$ such that Γg meets Δ , we obtain an o-isomorphism between some interval of Γ and some interval of Δ . Since $G_{\alpha} \mid \Gamma$ and $G_{\alpha} \mid \Delta$ are o-2-transitive, all nondegenerate closed intervals of Γ and of Δ are o-isomorphic to each other. Since the points of Ω have character c_{00} , the lemma guarantees that Γ and Δ both have c_{0} as initial and final characters. The proposition follows.

4. Extracts of periodically o-primitive groups. The results about (G_{α}, Δ) mentioned in the introduction will be needed also for $G_{\bar{\rho}}, \bar{\beta} \in \bar{\Omega}$.

Proposition 11. Let (G, Ω) be periodically o-primitive, and let

 $\overline{\beta} \in \overline{\Omega}$. Then the long orbits in Ω of $G_{\overline{\rho}}$ are the sets $\Delta_j = \{\omega \in \Omega \mid \overline{\beta}z^{j-1} < \omega < \overline{\beta}z^j\}$, j an integer; and $G_{\overline{\rho}}$ is faithful on each Δ_j .

Proof. The statement about the long orbit structure of $G_{\overline{\rho}}$ is equivalent to the statement that the fixed points in $\overline{\varOmega}$ of $G_{\overline{\rho}}$ are precisely those of the form $\overline{\beta}z^j$. Periodicity guarantees that $G_{\overline{\rho}}$ fixes these points and that to show it fixes no others, it suffices to consider $\overline{\beta} < \overline{\gamma} < \overline{\beta}z$. Now pick $\alpha \in \Omega$ such that $\alpha < \overline{\beta} < \overline{\gamma} < \alpha z$. Lemma 5 guarantees that G_{α} is o-2-transitive on its first positive orbit, so there exists $h \in G_{\alpha}$ with $\overline{\beta}h \leq \overline{\beta}$ and $\overline{\gamma}h > \overline{\gamma}$. Now $h \vee 1$ fixes $\overline{\beta}$ and moves $\overline{\gamma}$, as desired. Therefore, the long orbits of $G_{\overline{\rho}}$ are as described, and by periodicity, G is faithful on each of them.

We now define the $\overline{\beta}$ -extract of (G, Ω) , where G is periodically o-primitive and $\overline{\beta} \in \overline{\Omega}$, to be $(G_{\overline{\beta}}, \Delta_1)$. (Warning: $\Delta_1 \nsubseteq \overline{\beta}G$ unless $\overline{\beta} \in \Omega$.) Of course if $\overline{\beta}$ and $\overline{\gamma}$ lie in the same orbit of G, the $\overline{\beta}$ - and $\overline{\gamma}$ -extracts are isomorphic as o-permutation groups.

LEMMA 12. Let $\mathscr P$ be an o-permutation group property which carries over from (H, Σ) to $(H, \bar{\sigma}H)$ when $\bar{\sigma}H$ is dense in $\bar{\Sigma}$ (cf. Theorem 2). Suppose that $\mathscr P$ holds for every α -extract, $\alpha \in \Omega$, of every periodically o-primitive group (G, Ω) . Then for every periodically o-primitive (G, Ω) , $\mathscr P$ holds for every $\bar{\beta}$ -extract, $\bar{\beta} \in \bar{\Omega}$, and hence for $(G_{\bar{\epsilon}}, \Delta)$, where Δ is any long orbit of $G_{\bar{\epsilon}}$.

Proof. \mathscr{T} holds for the $\overline{\beta}$ -extract of (G, Ω) because it carries over from the $\overline{\beta}$ -extract of $(G, \overline{\beta}G)$. $((G, \overline{\beta}G)$ is periodically o-primitive by Theorem 3.) $(G_{\overline{\rho}}, \Delta)$ is merely the $\overline{\gamma}$ -extract of G, where $\overline{\gamma} = \inf \Delta$.

THEOREM 13. Every extract of a periodically o-primitive l-permutation group is a nonpathologically o-2-transitive l-permutation group.

Proof. Use Lemmas 5 and 12.

LEMMA 14. Let (G,Ω) be periodically o-primitive, let $\overline{\beta} \in \overline{\Omega}$, and let $g \in G$ be such that $\overline{\beta}g \notin \overline{F}xG_{\overline{\beta}}$ (i.e., $\{\overline{\omega} \in \overline{\Omega} \mid \overline{\omega}G_{\overline{\beta}} = \overline{\omega}\}$). Then G is generated as a group by $G_{\overline{\beta}}$ and g.

Proof. We may assume that $\overline{\beta} \in \Omega$. (If not, replace (G, Ω) by $(G, \overline{\beta}G)$.) Now let C be the subgroup of G generated by $G_{\overline{\beta}}$ and g. Then $\overline{\beta}C$ is a block of G (by [9, Theorem 7.5]), contradicting Lemma 7.

LEMMA 15. Let (G,Ω) be full and let H and K be periodically o-primitive l-subgroups of G having the same period z as G. If there exists $\overline{\beta} \in \overline{\Omega}$ such that $H_{\overline{\beta}} = K_{\overline{\beta}}$ and $\overline{\beta} g \notin \overline{F} x G_{\overline{\beta}}$ for some $g \in H \cap K$, then H = K.

Proof. $\bar{F}xG_{\bar{\rho}}=\bar{F}xH_{\bar{\rho}}=\bar{F}xK_{\bar{\rho}}$, so that this lemma follows from the previous one.

LEMMA 16. Let (G, Ω) be full and let $H \neq G$ be a periodically o-primitive l-subgroup of G. Then $H_{\bar{\beta}} \neq G_{\bar{\beta}}$ for every $\bar{\beta} \in \bar{\Omega}$.

Proof. If H has the same period z as G, the previous lemma suffices. But if z is not the period of H, $\bar{F}xH_{\bar{\beta}}\neq \bar{F}xG_{\bar{\beta}}$, so $H_{\bar{\beta}}\neq G_{\bar{\beta}}$.

THEOREM 17. Let $(G_{\overline{\beta}}, \Delta)$ be any extract of a periodically o-primitive group (G, Ω) . Then $G_{\overline{\beta}}$ preserves the subsets $\overline{\Delta} \cap \Omega_k (k \in I_n)$ of $\overline{\Delta}$. Moreover, G is full if and only if $G_{\overline{\beta}}$ consists of all o-permutations of Δ which preserve these sets.

Proof. $G_{\bar{\rho}}$ preserves \bar{D} and Ω_k , and thus preserves $\bar{D} \cap \Omega_k$. Suppose G is full. If $h \in A(D)$ preserves the sets $\bar{D} \cap \Omega_k$, the unique o-permutation of \bar{D} which extends h and commutes with z will preserve Ω , so that $G_{\bar{\rho}}$ will be as described. Conversely, if $G_{\bar{\rho}}$ fits the description, and if K is the full periodically o-primitive group containing G and having the same period z as G ([6, Proposition 53]), then $G_{\bar{\rho}} = K_{\bar{\rho}}$, so that G = K (Lemma 16) and G is full.

THEOREM 18. Let (G, Ω) be periodically o-primitive. If one of its extracts is entire, so are they all; and similarly for the splice property. If the extracts are entire, G is full (and conversely if G has Config (1)). If G is full, the extracts have the splice property.

Proof. Suppose that the extract $(G_{\overline{\rho}}, \Pi)$ has the splice property. In the extract $(G_{\overline{r}}, \Lambda)$, let $\mathscr{D}_i = \{\Delta_{i,j} \mid i \in I\}$, f, and $\{g_i \mid i \in I\}$ satisfy the conditions of the splice property. With no loss of generality, we may suppose first (since $\overline{\beta}G$ is dense in $\overline{\Omega}$) that $\overline{\beta} \in \overline{\Lambda}$, and next (by multiplying by an appropriate element of $G_{\overline{r}}$) that $\overline{\beta}$ is fixed by the permutation of $\overline{\Lambda}$ obtained by splicing the g_i 's. Now since $(G_{\overline{\rho}}, \Pi)$ has the splice property, when we splice together the g_i 's for which $\Delta_{i,1} \subseteq \Pi \cap \Lambda$ and \widehat{g} (the identity on $\Pi \setminus \Lambda$), we obtain an element h_1 of $G_{\overline{\rho}}$ which acts as desired on $\Pi \cap \Lambda$ and (by periodicity) is the identity on $\Lambda \setminus \Pi$. Similarly, for an appropriate $\overline{\eta}$ $(\overline{\beta}z^{-1} < \overline{\eta} < \overline{\gamma})$, there exists $h_2 \in G_{\overline{\gamma}}$ which acts as desired on $\Lambda \setminus \Pi$ and is the identity on $\Pi \cap \Lambda$. The product h_1h_2 satisfies the conclusion of the splice property.

For entirety of extracts, we proceed similarly, letting $g \in A(\Lambda)$. We may not assume that $\overline{\beta}$ is fixed, but we do obtain an h_1 which agrees with g on $\Pi \cap \Lambda$ and an h_2 which agrees with g on $\Lambda \setminus \Pi$. Splicing these together, we find that $g \in G_{\overline{7}}$. (Since one extract is entire, it, and hence every extract, satisfies the splice property.)

If the extracts are entire, then by Theorem 17, G is certainly full; and if G has Config (1), there is only one $\overline{\Delta} \cap \Omega_k$, namely Δ , so the converse holds. If G is full, Theorem 17 guarantees that its extracts have the splice property.

THEOREM 19. Let (G, Ω) be periodically o-primitive, and let $\overline{\beta} \in \overline{\Omega}$. Then $G_{\overline{\beta}}$ is laterally complete if and only if G is laterally complete; and these conditions obtain for all full groups.

Proof. For the "iff" statement, we can assume that $\overline{\beta} = \beta \in \Omega$. (If not, consider $(G, \overline{\beta}G)$.) Certainly if G is laterally complete, so is G_{β} , for G_{β} is closed under arbitrary sups in G (Theorem 6). Now suppose that G_{β} is laterally complete, and let $\{h_i \mid i \in I\}$ be a set of pairwise disjoint elements of G. At most one of the h_i 's moves β , so we may suppose with no loss of generality that $\{h_i \mid i \in I\} \subseteq G_{\beta}$. Let h be the sup in G_{β} of $\{h_i\}$. If this sup is pointwise, h will also be the sup in G of $\{h_i\}$, and we shall be finished. Thus let Δ be a long orbit of G_{β} . G_{β} is faithful on Δ , so in $G_{\beta} \mid \Delta$, $h \mid \Delta = \sup\{h_i \mid \Delta\}$. Since $G_{\beta} \mid \Delta$ is nonpathologically o-2-transitive, this sup is pointwise on Δ (Theorem 6); by periodicity, the sup is then pointwise on Ω , as required. If G is full, the $\overline{\beta}$ -extract has the splice property by Theorem 18, so $G_{\overline{\beta}}$ is laterally complete.

5. Periodically o-primitive groups constructed from α -sets. Let ω_{α} be a regular ordinal number. An α -set is a chain Ω of cardinality \aleph_{α} in which for any two (possibly empty) subsets $\Gamma < \Delta$ of cardinality less than \aleph_{α} , there exists $\omega \in \Omega$ such that $\Gamma < \omega < \Delta$. If we consider only nonempty Γ and Δ (though still requiring that Ω has neither a first nor a last point), so that the terminal characters need not be c_{α} , we obtain a generalization which we shall call a truncated α -set. We shall need some information from [7] about truncated α -sets Ω . For any regular ω_{α} , and any regular ω_{β} , ω_{γ} less than or equal to ω_{α} , there exists (assuming the generalized continuum hypothesis) a truncated α -set Ω having initial character ω_{β} and final character ω_{γ} ; and it is unique up to o-isomorphism. The points of Ω have character $c_{\alpha\alpha}$, and the holes have character $c_{\alpha\alpha}$, $c_{\alpha\beta}$, or $c_{\beta\alpha}$ (with ω_{β} regular and $\omega_{\beta} < \omega_{\alpha}$), with all of these characters actually occurring. Conversely, these conditions on characters (including the terminal characters), together with the requirement that card $(\Omega) \leq \aleph_{\alpha}$, force Ω to be the truncated α -set above. Hence any segment (without end points) of an α -set is a truncated α -set, and every truncated α -set arises in this way. If both terminal characters are c_0 , the set will be called *countably* truncated. The set of all holes in a truncated α -set Ω of a given character $c_{\gamma\delta}$ form an orbit $\Omega_{\gamma\delta}$ of $(A(\Omega), \bar{\Omega})$, and these orbits are dense

in $\bar{\Omega}$. All have cardinality \aleph_{α} except for $\Omega_{\alpha\alpha}$, which has cardinality $2^{\aleph_{\alpha}}$.

LEMMA 20. Suppose that (G, Ω) is a periodically o-primitive group having an α -set Δ as the first positive orbit of a stabilizer subgroup G_{ε} . Then all long orbits of G_{ε} are o-isomorphic to the α -set Δ , and Ω is o-isomorphic to the countably truncated α -set.

Proof. Use characters. The terminal characters of any long orbit are c_{α} by Lemma 9; and those of Ω are c_0 because of the configuration of G.

LEMMA 21. Let Φ_j , j=1,2, be truncated α -sets having the same initial character and same final character. Let $\{\Psi_{j,i} \mid i \in I\}$, I the positive integers, be a collection of dense pairwise disjoint subsets of $\overline{\Phi}_j$ for which $\Psi_{j,1} = \Phi_j$ and each $\Psi_{j,i}$ is o-isomorphic to Φ_j . Then there exists an o-isomorphism g from Φ_1 onto Φ_2 such that $\Psi_{1,i}g = \Psi_{2,i}$ for each i.

Proof. First, the lemma holds for nontruncated α -sets; for we may apply the standard proof of the uniqueness of α -sets [1, p. 182], noting that if $\Gamma < \Delta$ in an α -set Ω , and if both sets have cardinality less than \Re_{α} , then $\{\omega \in \Omega \mid \Gamma < \omega < \Delta\}$ contains more than one point of Ω . Now for truncated α -sets, we may proceed exactly as in the proof of [7, Theorem 5].

Theorem 22. Let $n=1, 2, \cdots$, or ∞ , let ω_{α} be a regular ordinal number, and let Δ be an α -set. Then there exists a unique (up to o-isomorphism) full periodically o-primitive group (G, Ω) having Δ as the first positive orbit of a stabilizer subgroup G_{ε} and having Config (n). Its extracts are entire if and only if n=1. Let $\widehat{\Omega}_{\alpha\alpha} = \Omega_{\alpha\alpha} \setminus \bigcup \{\Omega_k \mid k \in I_n\}$, which is o-isomorphic to $\Omega_{\alpha\alpha}$. (G, Ω) itself, $(G, \widehat{\Omega}_{\alpha\alpha})$, and the $(G, \Omega_{\alpha\beta})$'s and $(G, \Omega_{\beta\alpha})$'s constitute (up to o-isomorphism) all weakly o-primitive (alternately, all complete transitive) representations of the l-group G, and distinct representations in the list are non-o-isomorphic. All except (G, Ω) have Config (1). The $(G, \Omega_{\alpha\beta})$'s and $(G, \Omega_{\beta\alpha})$'s are never full; and $(G, \widehat{\Omega}_{\alpha\alpha})$ is full if and only if n=1.

Proof. First we show that Δ satisfies Conditions (a), (b), and (c) of [6, Theorem 54]. Let $\Sigma_1 = \Delta$. $\Delta_{\alpha\alpha}$ is dense in $\overline{\Delta}$. From each open interval of Δ , pick an element of $\Delta_{\alpha\alpha}$; and let Σ_2 be the ordered set of holes thus obtained. Now Δ is a dense subset of $\overline{\Sigma}_2 = \overline{\Delta}$, so we may use subsets of Δ to determine characters for Σ_2 . Hence each point in Σ_2 has character $c_{\alpha\alpha}$; each hole in Σ_2 has character $c_{\alpha\alpha}$, $c_{\alpha\beta}$, or

 $c_{\beta\alpha}$; the initial and final characters of Σ_2 are c_{α} ; and card $(\Sigma_2) \leq \mathbf{X}_{\alpha}$. Therefore Σ_2 is an α -set, and of course $\Sigma_2 \subseteq \overline{A}$ and $\Sigma_2 \cap \Sigma_1 = \square$. $\Sigma_1 \cup \Sigma_2$ is also an α -set, so we may continue this process, obtaining a collection $\{\Sigma_i \mid i \in I_n\}$ of dense pairwise disjoint subsets of $\overline{\Omega}$, all of them α -sets. Thus Condition (a) is satisfied. If $\overline{\eta} \in \overline{A}$ has character $c_{\alpha\alpha}$, then for any Σ_i , $\{\lambda \in \Omega \mid \lambda < \overline{\eta}\}$ and $\{\lambda \in \Omega \mid \lambda > \overline{\eta}\}$ are α -sets, so by applying Lemma 21 we get Conditions (b) and (c). This proves the existence of (G,Ω) ; and by the proof of [6, Theorem 54], $\Sigma_k = \overline{A} \cap \Omega_k$ for each $k \in I_n$. But Lemmas 20 and 21 show that for a given n, there is (up to o-isomorphism) only one signature with Σ_1 an α -set, so that the uniqueness of (G,Ω) follows from Theorem 4. That the extracts of G are entire if and only if n=1 follows from Theorem 17 and that fact that $\Delta_{\alpha\alpha}$ is an orbit of $A(\Delta)$.

By Theorem 2, every weakly o-primitive or complete transitive representation of G is o-isomorphic to some $(G, \bar{\omega}G), \bar{\omega} \in \bar{\Omega}$, and hence to some $(G, \bar{\delta}G), \bar{\delta} \in \bar{\Delta} \cup \{\bar{\xi}\}$. These representations (all periodically o-primitive by Theorem 3) are of three kinds:

- (1) $\bar{\delta} \in \bigcup \Sigma_k$, so that $G_{\bar{\delta}} = G_{\omega}$ for some $\omega \in \Omega$ and thus $(G, \bar{\delta}G)$ is o-isomorphic to (G, Ω) .
- (2) $\bar{\delta}$ has character $c_{\alpha\alpha}$, but $\bar{\delta} \in \bigcup \Sigma_k$. $G_{\varepsilon} \mid \Delta$ is the set of all o-permutations of Δ which preserve the Σ_k 's (by Theorem 17), so by Lemma 21, $\bar{\delta}G_{\varepsilon} = \Delta_{\alpha\alpha} \bigcup \Sigma_k = (\Omega_{\alpha\alpha} \setminus \Pi) \cap \bar{\Delta}$, where $\Pi = \bigcup \Omega_k$. Hence $\bar{\delta}G \supseteq (\Delta_{\alpha\alpha}G) \setminus (\Pi G) = \Omega_{\alpha\alpha} \setminus \Pi$. Since $\bar{\delta} \in \Pi$ and $\Pi G = \Pi$, $\bar{\delta}G = \Omega_{\alpha\alpha} \setminus \Pi = \widehat{\Omega}_{\alpha\alpha}$. Π is a countably truncated α -set, and $\widehat{\Omega}_{\alpha\alpha} = \Pi_{\alpha\alpha}$, which is o-isomorphic to $\Omega_{\alpha\alpha}$. Now card $(\widehat{\Omega}_{\alpha\alpha}) = 2^{\aleph_{\alpha}}$, whereas $\widehat{\Omega}_{\alpha\alpha} = \Pi_{\alpha\alpha}$ and card $(\overline{\Pi}_{\alpha\alpha} \setminus \Pi_{\alpha\alpha}) = \bigstar_{\alpha}$, forcing $(G, \widehat{\Omega}_{\alpha\alpha})$ to have Config (1), for otherwise $\widehat{\Omega}_{\alpha\alpha}$ would be disjoint from $\widehat{\Omega}_{\alpha\alpha}$. Next, $(G, \widehat{\Omega}_{\alpha\alpha})$ is full if and only if $G_{\varepsilon} \mid (\overline{\Delta} \cap \widehat{\Omega}_{\alpha\alpha})$ is entire (by Theorem 17); and since $\overline{\Delta} \cap \widehat{\Omega}_{\alpha\alpha} = (\overline{\Delta} \cap \Pi)_{\alpha\alpha}$, entirety holds if and only if $G_{\varepsilon} \mid (\overline{\Delta} \cap \Pi)$ is entire (by [7, Theorem 15]); which is the case if and only if n = 1.
- (3) $\bar{\delta}$ has character $c_{\alpha\beta}$, $\beta < \alpha$. The argument used in (2) shows that $\bar{\delta}G = \Omega_{\alpha\beta}$. $(G, \Omega_{\alpha\beta})$ has Config (1), for $\Omega_{\alpha\beta}$ has no holes of character $c_{\alpha\beta}$; and the argument in (2) then shows that $(G, \Omega_{\alpha\beta})$ is not full.
 - (4) $\bar{\delta}$ has character $c_{\beta\alpha}$, $\beta < \alpha$. This case is dual to (3).

Finally, the chains for any two distinct representations in our list differ either in cardinality or in point character, and hence are not o-isomorphic.

PROPOSITION 23. Let Δ be an α -set and let $\Lambda = \Delta_{\alpha\alpha}$ or $\Lambda = \Delta \cup \Delta_{\alpha\alpha}$. (When $\alpha = 0$, Λ is the irrationals or the reals.) Then there is a full periodically o-primitive group of Config (1) having Λ as the first positive orbit of a stabilizer subgroup.

Proof. Λ is homogeneous ([7, Corollary 16]) and for any $\lambda \in \Lambda$,

 $\{\beta \in A \mid \beta < \lambda\}$ and $\{\beta \in A \mid \beta > \lambda\}$ are both o-isomorphic to A. [6, Theorem 54] guarantees the existence of the desired group of Config (1). The proof of (2) in the previous theorem shows that any group having A as the first positive orbit of a stabilizer subgroup must necessarily have Config (1).

REFERENCES

- 1. F. Hausdorff, Grundzüge der Mengenlehre, Veit and Co., Leipzig, Germany, 1914.
- 2. C. Holland, A class of simple lattice-ordered groups, Proc. Amer. Math. Soc., 16 (1965), 326-329.
- 3. ——, Transitive lattice-ordered permutation groups, Math. Zeit., 87 (1965), 420-433.
- 4. S. H. McCleary, Pointwise suprema of order-preserving permutations, Illinois J. Math., 16 (1972), 69-75.
- 5. ———, The closed prime subgroups of certain ordered permutation groups, Pacific J. Math., **31** (1969), 745-753.
- 6. ——, O-primitive ordered permutation groups, Pacific J. Math., 40 (1972), 349-372.
- 7. ——, The lattice-ordered group of automorphisms of an α -set, Pacific J. Math., **49** (1973), 417-424.
- 8. ——, O-2-transitive ordered permutation groups, Pacific J. Math., 49 (1973), 425-429.
- 9. H. Wielandt, Finite Permutation Groups, Academic Press, New York, N.Y., 1964.

Received July 19, 1973.

UNIVERSITY OF GEORGIA