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TWO CHARACTERIZATIONS OF COMMUTATIVE
BAER RINGS

JOSEPH KIST

A commutative ring A is called a Baer ring if the anni-
hilator of each element in A is the principal ideal generated
by an idempotent. It is shown that the following three con-
ditions on a semiprime commutative ring A with identity are
equivalent: (1) A is a Baer ring, (2) the mapping Q-^>Q Π E
is a homeomorphism of Min Spec A with the Boolean space
of the Boolean algebra E of idempotents in A, (3) Min Spec
A is a retract of Spec A.

Introduction* A commutative ring A is called a Baer ring if
the annihilator of each element in A is the principal ideal generated
by an idempotent. Baer rings have been the subject of several recent
investigations. (See, e.g., [1], [2], [8], [9], [10], [14], [15], [16] and
[17].) The main purpose of this note is to give two new characteri-
zations of these rings.

All rings considered in this paper are assumed to be commutative
with identity; the symbol A will always denote such a ring, and E —
E{A) will denote the Boolean algebra of idempotents in A. Recall
that the operations in E are given by e Π / = ef, ef = 1 — β, and hence
e u / = (e' Π / ' ) ' = e + / - ef.

If jr — jr(A) is any family of prime ideals in A, and if a is an
element of A, then let ^ = {QeT: a$Q}. We have Ψl Π Ύi = 5^&,
and 3*Γ = 3*7 so the family { % : α e i } is a base for a topology on 5^
this topology is called the Stone or Zariski topology. It is to be
understood that any set of prime ideals carries the Stone-Zariski
topology.

The minimal prime spectrum of A, denoted by &*(A), or also
by Min Spec A, is the space of minimal prime ideals of A. As shown
in [6] and [9], & = ^(A) is a Hausdorff space in which each set
^ a is both open and closed.

The set &(Έ) of maximal (= prime) ideals in the Boolean algebra
E is topologized by taking the family {&*9(E): ee E] as a base, where
^*e = {Pe^(E):e$P}. When so topologized, &*(E) is a compact
Hausdorff space in which each set &*β(E) is both open and closed;
moreover, each open and closed subset of &(E) is of the form ^e(E)
for some e in E.

If Q is a prime ideal in A, then Q Π E is a prime ideal in E,
i.e., it is a member of &{E). Our first characterization of Baer rings
is the following one. (Recall that a semiprime ring is one in which
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there are no nonzero nilpotents.)

THEOREM 1. A semiprime commutative ring A with identity is
a Baer ring if and only if the mapping Q—>QΓ)Eisa homeomorphism
of &*(A) upon &>{E).

Section 1 of this paper will be devoted to a proof of the above
result. In the course of proving it, we show that for any ring A,
the mapping Q —• Q f] E is always a continuous surjection of ^{A)
upon ^{E)j and we characterize those rings A for which this mapping
is a bisection.

KEMARKS 1. If X is a nonempty set, and if Z is the ring of
integers, then A — Zx is a Baer ring. In [13], D. Scott showed that
there is a bisection of the set of minimal prime ideals of A upon the
set of ultrafilters on X. The Boolean algebra E(A) is isomorphic to
the Boolean algebra of all subsets of X, and &(E) is in one-to-one
correspondence with the ultrafilters on X. Hence, Theorem 1 is a
generalization of Scott's result.

2* It was stated without proof in [10] that ^(A) and
are homeomorphic when A is a Baer ring. However, my original proof
of that fact was roundabout, and different from the one given here.

As our second characterization, we show that a semiprime com-
mutative ring A with identity is a Baer ring if and only if ^(A) is
a retract of Spec A, the space of all prime ideals in A. This result,
Theorem 2, is proved in §2.

Theorems 1 and 2 are applied in § 3 to obtain a new proof of the
known result that a semiprime commutative ring A with identity is
a regular ring if and only if each prime ideal in A is maximal. In
§4, Theorem 2 is applied to generalize a result of Henriksen and
Jerison.

In his 1972 Tulane thesis [Baer rings and their structure sheaves],
Howard Evans independently established Theorems 1 and 2, and even
for noncommutative Baer rings; his methods of proof are entirely
different from the methods we use here.

!• Proof of Theorem 1. Recall that radj, the radical of an
ideal J in a commutative ring A, is the set of all elements a in A
such that some power of a is in /. If / is an ideal in the Boolean
algebra E, then we denote by 7 the ideal in A generated by I. It
is easy to see that I consists of all elements a such that αe' = 0 for
some element e in /.

We shall prove Theorem 1 by a sequence of lemmas.
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LEMMA 1.1. If I is an ideal in E, then radΐ is the intersection
of all minimal prime ideals containing I.

Proof. Let a £ rad 7 so that an £ 7 for each natural number n.
Thus, αV Φ 0 for each nonnegative integer n and each element e of
7. The family S of all such elements is a multiplicative semigroup,
for ame'anf = am+n(e U /) ' , and e U / is in I if both e and / are. Since
OgS, KrulΓs lemma [7, p. 1] guarantees the existence of a minimal
prime ideal Q which does not meet S. It follows that a$Q and that
7 c Q.

COROLLARY 1.2. If P is a prime ideal in E, then there is a mini-
mal prime ideal Q in A such that P = Q Π E.

Proof. By the lemma, there is a minimal prime ideal Q in A
such that PaQ. Thus, Pa Q, and so P = Q Π E.

The previous result asserts that the mapping Q -+Q f] E is a
surjection of ^(A) upon ^(E). lίee E, t h e n {Q e ^(A): e g Q Π E) =

{Qe^(A):egQ}, and the latter set is open (and closed) in
Hence, for any commutative ring A with identity, the mapping
Q Π E is a continuous surjection of ^(A) upon

LEMMA 1.3. Let A be a semiprime commutative ring with identity.
If I is an ideal in E, then the ideal I coincides with its radical.

Proof. Let an e 7, so that αV = 0 for some eel. Then (ae')n = 0,
and so aef — 0, that is, aeϊ.

An ideal J in A is called regular if J = J Π E.

PROPOSITION 1.4. In a semiprime commutative ring A with identity,
the surjection Q—*Qf)E of ^(A) upon ^(E) is a bisection if and
only if each minimal prime ideal in A is regular.

Proof. Suppose that each minimal prime ideal in A is regular.
If Qi and Q2 are minimal primes such that Qt Π E = Q2 Π E, then Qx =
Qi Π E = Q2 Π E = Q2, and thus the mapping Q —> Q Π E is an injection.

Conversely, suppose there is a nonregular minimal prime ideal Q
in A. Choose a in Q such that a<£Q Π E. By Lemmas 1.1 and 1.3,
there is a minimal prime ideal Qi such that a&Qιy and Qft EcQλ.
Thus, Q n E = Q, Π E but Q Φ Qγ.

Let A be a ring in which the mapping Q —»Q Π E is a bijection
of ^ ( A ) upon ^(E). If Pe^(E) then there is exactly one element
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Q 6 &*(A) for which P = Q Π E, and hence rad P = Q. Thus, if A is
semiprime, then P ~ Q, and consequently the inverse of the above
mapping is P—>P.

If a is an element of a commutative ring A, then ann α, the
annihilator of α, is the set of all elements & in A for which ab = 0.
The following characterization of minimal prime ideals can be found in
[9]; see also [7, p. 57].

LEMMA 1.5. A prime ideal Q in a semiprime commutative ring
is a minimal prime ideal if and only if ann a ςt Q whenever aeQ.

LEMMA 1.6. Each minimal prime ideal in a Baer ring is regular.

Proof. Let Q be a minimal prime ideal in the Baer ring A, and
let a be an element of Q. There is an idempotent e such that ann
a = Ae. A Baer ring is semiprime [9], so Lemma 1.5 insures that
e £ Q. Hence, a e Q Π E, and therefore Q = Q ΓΊ E.

The following result can be found in [6] and [9].

LEMMA 1.7. If a is an element of a semiprime commutative ring
A, then ann a = Π {Q- Q e ^ α } .

We now have at hand all the tools with which to prove Theorem 1.

Proof of necessity. If A is a Baer ring, then by Lemma 1.6 and
Proposition 1.4, the mapping Q—>Q(Ί E is a bisection of &*(A) upon
^(E). By the remark following that proposition, the inverse of this
bisection is P—> P. The space ^(E) is compact, and the space &*(A)
is Hausdorff, so to complete the proof, we need only show that the
mapping P —> P is continuous.

Hence, let a be an element of A. We must show that {Pe &(E)\
a£ P) is open in ^{E). Let e be the idempotent for which ann a —
Ae. By Lemma 1.5, a$P if and only if ann α c P , and so α g P if
and only if eeP, i.e., if and only if eeP. We have shown that
{P: a g P} = {P: e e P). The latter set is both open and closed in ^(E),
and so the mapping P—>P is continuous.

Proof of sufficiency. For ae A, the set &>a is both open and closed
in &*(A). Since the mapping Q —> Q Π E is a homeomorphism, the set
{QΠS αίQ} is both open and closed in &{E). Hence, there is an
idempotent e in E such that {Q Π # : α g Q} = {Q Π E: e £ Q Π E). The
latter set is the same as {Q Π E:egQ}, and consequently, { Q G ^ ( A ) :

£ Q}. This equality and Lemma 1.7 imply that
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ann a — ann e. But ann e = Aer, and hence A is a Baer ring.
As the following discussion will show, there are rings A for which

the mapping Q —> Q f] E is a bijection of ^(A) upon ^(E), but which
are not Baer rings.

A semiprime ring A is called complementedly normal [2, p. 196]
if whenever α, b are elements of A such that ab = 0 then there is an
idempotent e in A such that ae = 0 = be'.

Now the ring C(X) of real-valued continuous functions on a com-
pletely regular Hausdorff space X is complementedly normal if and
only if X is a Z7-space [2, p. 218], and it is a Baer ring if and only if
X is basically disconnected, i.e., if and only if the lattice C(X) is
conditionally σ-complete [9, p. 45]. There are [/-spaces which are not
basically disconnected spaces [4, p. 390], so in virtue of Proposition
1.4 and the following result, there are semiprime rings A which are
not Baer rings, but for which the mapping Q —> Q Π E is a bijection
of &*(A) upon

LEMMA 1.8. If the semiprime ring A is complementedly normal,
then each minimal prime ideal in A is regular.

Proof. Let Q be a minimal prime ideal in the complementedly
normal ring A. If a is an element of Q, then by Lemma 1.5, there is an
element b & Q such that ab = 0. Hence, there is an idempotent e such
that aer = 0 = be. We must have e in Q, and so a is in Q. Thus,
each minimal prime ideal is regular.

2* Retracts* Recall that Spec A, the prime spectrum of a commu-
tative ring A, is the space of all prime ideals of A. This section will
be devoted to a proof of the following result.

THEOREM 2. A semiprime commutative ring A with identity is
a Baer ring if and only if the minimal prime spectrum of A is a
retract of the prime spectrum of A.

The above result was suggested by a paper of DeMarco and Orsatti
[3], and some of the arguments used in its proof are similar to
arguments used by those authors.

For P in Spec A, let OP be the intersection of all minimal prime
ideals contained in P. A proof of the following result can be found
in [2, p. 105] and [3, p. 460].

LEMMA 2.1. In a semiprime commutative ring A, OP = {aeA:
ann a ςt P} for each prime ideal P.
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For a subset S of A, let h(S) be the set of all prime ideals which
contain S, and for a subset S of Spec A, let k(S) be the intersection
of all members of S. It is well-known and easy to prove that closed
subsets of Spec A are exactly those of the form h(S) for some subset
S of A, and that the closure of a subset S of Spec A is h(k(S)). In
particular then, the closure of a point P of Spec A consists of all
prime ideals which contain P.

The next result is essentially Lemma 9.2 of [9].

LEMMA 2.2. An ideal I in a commutative ring A with identity
is a direct summand of A if and only if h(I) is an open—as well as
closed—subset of Spec A.

We now prove the necessity of Theorem 2. If a is an element of
any commutative ring A, then ann a Γ) ann ann a is contained in each
prime ideal of A. This remark and Lemma 2.1 imply that 0Pa{ae
A: ann ann a c P} for each prime ideal P in a semiprime ring A. A
Baer ring A is semiprime, and ann a + ann ann a = A for each element
a in such a ring, so OP = {a e A: ann ann a c P}. In a semiprime ring,
ann ann ab — ann ann a Π ann ann b for each pair a, b. Therefore, OP

is a prime ideal for each prime ideal P in a Baer ring.
Now {Pe Spec A: a£ OP) = h(ann α), and, by Lemma 2.2, in a

Baer ring A, the latter set is open in Spec A, so P—>OP is a con-
tinuous mapping of Spec A into Min Spec A.

In any ring, obviously a e ann ann a, and thus OP c P. Hence,
in a Baer ring, OP — P for each minimal prime ideal P.

We have shown that the mapping P —» OP is a retraction of Spec A
upon Min Spec A when A is a Baer ring.

The sufficiency of the condition in Theorem 2 for a ring to be a
Baer ring is included in the following result. In proving this result,
we use the easily verified fact that a semiprime commutative ring A
with identity is a Baer ring if ann ann a direct summand of A for
each element a.

PROPOSITION 2.3. Let A be a semiprime commutative ring with
identity. If τ is a retraction of Spec A upon Min Spec A, then τ(P) =
Op for each P in Spec A, and A is a Baer ring.

Proof. If Q e ^ ( A ) , then Q = τ(Q), i.e., Qeτr(Q). Since τ is a
continuous mapping, and since ^ ( A ) is a Hausdorff space, τ*~(Q) is
closed in Spec A, so cl {Q} £ τ^(Q). Thus, if P is in Spec A, and
PIDQ, then τ(P) = Q. Consequently, each prime ideal in A contains
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a unique minimal prime ideal, and so τ(P) = OP for each P in Spec A.
Since A is semiprime, Lemma 2.1 insures that {Pe Spec A: a g OP) =

h(anna) for each element a in A. Since the mapping P—>OP is
continuous, h(ann a) is open as well as closed for each a. By Lemma
2.2, ann a is a direct summand of A for each a, and thus A is a
Baer ring.

3. von Neumann regular rings. In this section, we shall apply
Theorems 1 and 2 to obtain a new proof of the following result.

THEOREM 3.1. Let A be a semiprime commutative ring with
identity. If each prime ideal in A is maximal, then A is a von
Neumann regular ring.

REMARK. AS is well-known, the above theorem has a valid con-
verse: if A is a commutative von Neumann regular ring, then A is
semiprime—in fact, even semisimple—and each prime ideal in A is
maximal.

Proofs of Theorem 3.1 have been given by Cornish [2] and Peercy
[11]. In his book on commutative rings [7], Kaplansky leaves the
proof as an exercise, but with hints for doing it; Cornish's proof is
essentially the one outlined by Kaplansky. Peercy's proof is a sheaf-
theoretic one, while the other two are not. Although we also use
some results from sheaf theory to prove Theorem 3.1, our proof is
different from Peercy's.

We begin with a summary of Pierce's [12] representation of a
commutative ring with identity.

Recall that a sheaf ( ^ , Y) of commutative rings is reduced if
(i) Y is a Boolean space, i.e., a compact Hausdorff space with a base
of open-and-closed sets, and (ii) for each yeY the only idempotents
in the stalk &y are 0̂ , and ly.

THEOREM 3.2. (Pierce) Let A be a commutative ring with identity,
and for each P e &*(E), let s^P = (A/P, P). Then szf = (J {s*?P: P e
&(E)} is the sheaf space of a sheaf of reduced commutative rings
with base space &(E), and the mapping α—>α, where d(P) = a/P is
an isomorphism of A upon the ring Γ(^(E), j^f) of global sections
of the sheaf

For the remainder of this section, ( j< &(E)) will denote the sheaf
of reduced commutative rings defined above.

The following result is contained in Pierce's memoir [12]; it should
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be noted that the proof of its necessity is essentially a proof of the
assertion that every prime ideal in a commutative von Neumann regular
ring is maximal.

THEOREM 3.3. A commutative ring A with identity is a von
Neumann regular ring if and only if each stalk (A/P, P) of the sheaf

is a field.

We are now ready to prove Theorem 3.1. To do so, let each
prime ideal in the semiprime ring A be maximal. Thus, ^(A) =
Spec A, and so, trivially, the first of these spaces is a retract of the
second. By Theorem 2, A is a Baer ring. Theorem 1 can obviously
be recast as follows: A semiprime commutative ring A with identity
is a Baer ring if and only if the mapping P —> P is a homeomorphism
of &*(E) with ^(A). Therefore, P is a prime ideal in A for each
Pe^(E), and thus it is maximal. By Theorem 3.3, the ring A is
von Neumann regular.

4* Another application of Theorem 2* It is known [5] that
every prime ideal in the ring C(X) of all real-valued continuous
functions on a completely regular space X is contained in a unique
maximal ideal. For each prime ideal P in C(X), let μ(P) be the
unique maximal ideal containing it, and let c be the restriction of μ
to &{C(X))j the space of minimal prime ideals in C(X). The following
result was obtained by Henriksen and Jerison [6].

THEOREM 4.1. (a) t is a continuous mapping of ^(C{X)) onto
βX, the Stone-Cech compactification of X.

(b) c maps no proper closed subset of >ζ^ onto βX.
(c) c is one-to-one if and only if each prime ideal contains a uni-

que minimal prime ideal, i.e., X is an F-space.
(d) ε is a homeomorphism if and only if X is basically discon-

nected.
(e) If X is an F-space, then ^{C{X)) is compact if and only if

X is basically connected.

Now let A be a commutative ring with identity in which each
prime ideal is contained in a unique maximal ideal. For P in Spec A,
let μ{P) be the unique maximal ideal containing P, and let c be the
restriction of μ to ^(A). Let ^£{A) be the space of maximal ideals
of A. In case A — C(X), ^f(A) is homeomorphic with βX, so the
following theorem is a generalization of the above result of Henriksen
and Jerison.
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THEOREM 4.2. (a) c is a continuous mapping of ^(A) upon

(b) If A is semisimple, that is, if 0 is the only element common
to all maximal ideals in A, then c maps no proper closed subset
of & upon ^ .

(c) c is injective if and only if each prime ideal in A contains
a unique minimal prime ideal.

(d) If A is semiprime, then c is a homeomorphism if and only
if A is a Baer ring.

(e) If each prime ideal in the semiprime ring A contains a
unique minimal prime ideal, then £^{A) is compact if and only if
A is a Baer ring.

Proof, (a) This is a consequence of the fact, established by
DeMarco and Orsatti [3], that μ is a continuous mapping of Spec A
upon ^€(A).

(b) This can be proved in the same way that Henriksen and
Jerison proved (b) of Theorem 4.1. We repeat their argument. Every
proper closed set in & is contained in a set of the form h(a) for some
nonzero element a in A, because such sets form a base for the closed
sets. If M is a maximal ideal such that αgilί, then M$ c(h(a)).

(c) It is easy to see that the following three statements are
equivalent:

( i ) c is one-to-one;
(ii) each maximal ideal contains a unique minimal prime ideal;
(iii) OM is a minimal prime ideal for each maximal ideal M.
For each prime ideal P in A, we have OμίP) c Paμ(P). Thus, if

(iii) holds, then each prime ideal contains a unique minimal prime ideal.
Conversely, if each prime ideal contains a unique minimal prime ideal,
then, in particular, OMe^(A) for each M in ^£{A), so t is one-to-one
with inverse M-+OM.

(d) If A is a Baer ring, then by Theorem 2, the mapping P-+OP

is a retraction of Spec A upon ^(A). In particular then, the con-
tinuous mapping M—>OM of ^/£{A) upon &(A) is the inverse of t,
so the latter mapping is a homeomorphism. Conversely, if c is a homeo-

morphism, then the composition P —> μ(P) > Oμ{P) = OP is a retraction
of Spec A upon &*(A), so by Theorem 2, the semiprime ring A is a
Baer ring.

(e) is a consequence of (c), (d), and the fact, again established
by DeMarco and Orsatti [loc. cit.], that ^f(A) is a Hausdorίϊ space.
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