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GLOBAL PROPERTIES OF RATIONAL AND
LOGARITHMICO-RATIONAL

MINIMAL SURFACES

E. F. BECKENBACH, F. H. ENG, AND R. E. TAFEL

In this paper, rational and logarithmico-rational minimal
surfaces are defined and some of their properties are inves-
tigated. In particular, it is shown—perhaps somewhat surpris-
ingly—that the fundamental theorem of algebra, suitably
formulated, holds for these surfaces.

1* Introduction* Let f(w) be a rational complex function, of
degree m, of the complex variable w; that is, let f(w) admit a repre-
sentation of the form

f(w) = ψ\ ,
q(w)

where p(w) and q(w) are relatively prime complex polynomial functions:

[p(w), q(w)] = 1

and let

deg f(w) = max [deg p(w), deg q(w)] = m .

It is well known (see, for instance, [1, p. 31]) that, with multiple
values suitably counted, for any such rational function of degree m,
m ^ 1, the equation ζ = f(w) maps the closed single-sheeted w-plane
onto the closed m-sheeted ζ-plane. That is, each ζ-value, including
oo, is taken on exactly m times (counting multiplicities) as w ranges
once over the closed complex plane. This is a rather immediate
consequence of the fundamental theorem of algebra.

Now for n ^ 3, a (two-dimensional) minimal surface S in ^-dimen-
sional Euclidean space En has ^-dimensional measure 0, and accordingly
the foregoing result concerning complex rational functions f(w) could
hardly be expected to extend directly to minimal-surface theory. It
is nevertheless one purpose of this paper to show (see §10) that the
result, when suitably formulated, does indeed extend precisely to
minimal surfaces.

Since, as we shall see in §4, the map ζ = f(w) given by a rational
complex function f(w) is a special rational minimal surface, it therefore
follows in particular that the fundamental theorem of algebra con-
cerning plane maps can be given a formulation relative to the points
of any containing ^-dimensional Euclidean space!

355
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2* Meromorphic minimal surfaces* A surface S in ^-dimen-
sional Euclidean space Enf n ^ 2, is said to be given in terms of
isothermal parameters u, v provided the representation

S: Xj = Xj(u, v) , j = 1, 2, , n ,

or

( 1 ) S: x — x(u, v) ,

for (u, v) e D, where D is some finite domain of definition, is such that

( 2 ) E = G = X(u, v ) , F = 0 ,

where

τi _ dx dx jp _ dx dx „ _ dx dx
du du' du dv' 3v dv

Such an isothermal representation is conformal, or angle-preserving,
except at points where X(u, v) = 0.

According to a theorem of Weierstrass [16, p. 27], a necessary
and sufficient condition that the surface (1), given in terms of isothermal
parameters, be a minimal surface is that the vector function x(u, v)
be harmonic:

(3, Λ ^

Then in any simply connected part of D, the functions x^u, v) are
the real parts of analytic functions of a complex variable,

xd(u, v) = ΪRfj(w) , w = u + iv ,

and (2) is equivalent to

(4) ±
3=1

If an isothermal representation (1) of the minimal surface S is
such that all the coordinate functions except two are identically zero,
say Xj(u, v) = 0, j = 3, 4, , n, then either x^u, v) + ix2{u, v) or x2(u,
v) + i#i(w, v) is an analytic function of the complex variable w — u +
ΐv, and xλ(uf v) and a;2(u, v) are said to be a couple of conjugate
harmonic functions. By analogy, the coordinate functions of any
minimal surface S in En, given in isothermal representation, are called
an n-tuple of conjugate harmonic functions [8].

For a given (u0, v0), let

u — u0 = r cos 0 , v — v0 — r sin θ ,
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and suppose that for some Rl9 R2 the minimal surface S is given in
isothermal representation by (1) in the annulus

( 5 ) Rt<r <R2.

Since the vector function x(u, v) is harmonic in (5), it can be
represented [14, p. 692] there by a series of the form

( 6 ) x(u, v) = c log r + Σ rk(ak cos kθ + bk sin kθ) .

The constant vector b0 is arbitrary; we shall henceforth assume
that

( 7 ) 60 = 0 .

The other coefficients, including the logarithmic coefficient c, are
uniquely determined by x(u, v).

The harmonic vector function x(u, v) given by (6) also satisfies
the condition (2), since S is given in isothermal representation. For
the representation (6), the condition (2) are equivalent [4, 5, 6, 7] to

( 8 )

kbk c + Σ P - Z)α, bk_t = 0, k = 0, ±1, ±2, -,
I —— oo

2kak c+ Σ P - l)(arak^ - bt • bk_,) = 0, k = ± 1, ± 2,
Z = — o o

c c - 2 Σ l\ax α_, - 6,. b_x) - 0 .

If R1 = 0 in (5), we say that S has an isolated singularity at
{u0, v0). We then call

Σ= Σ r":(«A; cos /b6> + bk sin

the principal part (cf. [11, pp. 212, 213]), and

(10) £fo[x(u, v)] = c log r = c log | w - ^ 0 1 , ^ 0 = u0

the logarithmic part, of (6).
Similarly, if i?2 = co in (5) we say that S has an isolated singularity

at w = oo. The transformation

w — w0 (u — u0) + •

__ (u — u0) — i(v — v0) _

then maps (5) conformally onto
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0 < | W | <1/Bιf

and the isolated singularity at w = oo is treated by discussing it as
an isolated singularity at W = 0. The principal part of (6) now becomes

(11) ^oo[x(^, v); w0] = Σ r\ak cos kθ + bk sin kθ) ,

and the logarithmic part becomes

(12) «S^[jφ&, v); w0] = c log r = c log | w — w0 \ .

The sum of x(u0, v0) and the principal part ^L[x(^, v); w0], and
likewise the logarithmic coefficient c in the logarithmic part Sf^x{uy

v); w0], are independent of (u0, v0).
The equations (8) are more tractable than they might at first

glance appear to be.
For n = 2, the equations (8) reduce simply to

(13) buh = ± a2fk, b2fk = + auh, c, = c2 = 0, k = ± 1, ± 2 , - .

Thus if n = 2 then the series for α?2(w, v) in (6) can be written, to
within sign and the arbitrary additive constant α2,0, directly from the
series for x^u, v); and neither of the two series can contain a loga-
rithmic term.

Let the minimal surface S in En be given in isothermal repre-
sentation by (6) for 0 < r < R, so that S has an isolated singularity
at (uOf v0). We distinguish four cases, (a), (b), (c')> and (c"):

(a) Essential singularity. If for an infinitude of negative indices
I we have

(14) αz at + bt bt Φ 0 ,

then we say that the isolated singularity of S at (u0, v0) is essential;
otherwise, we say that the isolated singularity is nonessential.

(b) Pole. If S has a nonessential isolated singularity at (u0, v0),
and the lowest index I — t for which (14) holds is negative, then we
say that S has a pole of order \t\ at (u0, v0). By definition, then, the
poles of S are isolated.

If S has a pole of order — t > 0 at (u0, v0), then (9) reduces to

.. cos kθ + bk sin

(15) = St - 1
— 1

q(w)

where p(w) is a complex polynomial vector function of w, of degree
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less than | ί | ; q(w) = (w — wo)
ιtι is a complex polynomial scalar function

of w;p(w) and q(w) are relatively prime:

and

deg p)wl = max [deg p(w), deg q(w)] = | ί | .
ff(w)

If (14) does not hold for any I < 0, so that

^ o [ φ , v)] = 0 ,

then it follows from the third equation in (8) that

(16) c c = 0 ,

and therefore that

u9 v)\ = 0 .

Hence a minimal surface given in isothermal representation by
(1) cannot have an isolated singularity that is merely logarithmic.
[But see example (e) in §5.]

(c) Removable singularity. If (14) does not hold for any I < 0,
then we say that S has a removable singularity at (u0, v0). In this
case, we adjoin to S the point a0 corresponding to (u0, v0), if indeed
this correspondence was not already given in the definition of S.
Then the vector function (6) gives an isothermal map of | w | < R onto
the (extended) surface, which we again denote by S. We then say
that S is regular at (uOf v0).

If S is regular at (u0, v0), then either
(c') x(u, v) = a0 and S reduces to a point, or
(c") there is a lowest positive index I = t for which (14) holds.

In the former case (c'), we say that S is a constant minimal surface.
In the latter case (c"), we say that S has an appoint of order t at
(uOf vQ); in particular, if α0 = 0 then we say that S has a zero of order
t a t (u0, vQ).

If S has a pole of order — t > 0 or an α0-point of order t > 0 at
(u>o, vQ), then for k = 2ί the first two equations in (8) reduce respec-
tively to

fat bt = 0 and £2(αf at - bt bt) = 0 ,

whence

(17) αf 6t = 0 and at - at = bt - bt ^ 0 .

If S has a pole of order — t > 0 at (w0, ô)> then from (6) and
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(17) we obtain

(18) χ(u, v) x(u, v) = r2tat at + o(rn)

as r —»0. Similarly, if S has an α0-point of order t > 0 at (u0, v0), then

(19) [x{u, v) - a0] [x(u, v) - α0] = r2tat at + o(r2ί) .

By (18) and (19) we thus see that if S does not reduce to a point,
then not only the poles but also the finite a-points of S are isolated
[6].

Again if S has a pole of order — t > 0 or an α0-point of order
t > 0 at (u0, v0), then from (2), (6), and (17) we obtain

(20) λ(u, v) = t2r2t~2at - at + 0{r2t-χ)

as r —* 0. Therefore, if t < 0 then λ(u, v) has an isolated infinite value
at (uOf v0); if t — 1 then λ(u, v) has a finite nonzero value there; and
if t > 1 then λ(u, v) has an isolated zero at (u0, v0). Thus if S is a
nonconstant minimal surface, and S has no singularities other than
poles, then the zeros and infinities of X(u, v) are isolated.

For the present theory, we extend Euclidean w-space by postu-
lating a single ideal point at c©. In this space, the isothermal
transformation

x* = — —
X X

effects an inversion [10] in the unit hypersphere with center at the
origin. If S has a pole, or oo-point, of order — t > 0 at (u0, v0), then
the surface

S*: x = x*(u, v)
x(u, v) x(u, v)

has a zero of order | ί | at (uθ9 vQ). The surface S* will not ordinarily
be a minimal surface, but since the transformation is isothermal we
say that the measure of the angle between arcs from the origin on
S* is the measure of the angle between corresponding arcs from the
point at oo on S.

If S has a pole of order - t > 0 at (u0, v0), then (17) and (18)
show, through a cosine evaluation, that measures of angles between
arcs from (u0, v0) are multiplied by \t\ in the map onto S* and therefore,
by definition, in the map onto S.

Similarly, if S has an α0-point of order t > 0 at (u0, v0) then again
(17) and (18) show, through a cosine evaluation, that measures of
angles between arcs from (u0, v0) are multiplied by t in the map onto S.

If, except for poles, S is a regular minimal surface given in
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isothermal representation by (1) for (u, v) in a domain D, then we say
that S is a meromorphic minimal surface for (u, v) in D. In parti-
cular, if D is the entire finite plane then we simply say that S is a
meromorphic minimal surface. In the latter case, if S has no poles
in the finite plane then we say that S is an entire minimal surface.

3* Rational and logarithmicorational minimal surfaces* Let
the meromorphic minimal surface S in En, given in isothermal repre-
sentation by (1), have at most a finite number of poles, at the points
Wi, w2, , wh I ^ 0, in the finite w-plane, w = u + iv; let the orders
of these poles be nlf n2, , nu respectively; and let the corresponding
logarithmic coefficients be cl9 c2, , ct.

Then, by (15), the principal part of x(u, v) at wh j = 1, 2, , I, is

(21) &ά[x(uf v)] 4 4
QAw)

where Pj(w) is a polynomial vector function of degree less than nj9

qά(w) = (w — Wj)ni, and pά(w) and qj(w) are relatively prime. The
logarithmic part of x(u9 v) at w3- is

Now the vector function

(23) y{uf v) = x(u, v) - Σ &*ΛX(U> v)\ ~

is harmonic in the entire finite plane, since each term in the right-hand
member is harmonic except at the points wj9 and since the singularities
at the Wj exactly cancel out. Therefore, y(u, v) can be represented
in the finite plane by a series of the form

y(u, v) = y(r cos θ9 r sin θ)
(24)

= Σ rk(<*k cos kθ + bk sin kθ) .

Thus from (23) and (24) we have

I I

χ(u, V) = Σ ^j[χ{nf V)] + Σ ^3 lx(u> v)\
(25)

+ Σ ^&(βfc cos kθ + bk sin kθ) .

In particular, let the minimal surface S in En, given in isothermal
representation by (1), be meromorphic in the closed w-plane, w =
u + iv.

Then, since poles are isolated, S can have at most a finite num-
ber of poles in all, and accordingly the vector function x(u, v) has
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a representation of the form (25).
But now x(u, v) has at most a pole at w = oo, and therefore, for

some integer nw ^ 0,

I " o o

x(u, v) = α0 + Σ ^j[x(u, v)] + Σ r\ak cos kθ + 6fc sin kθ)
3=1 k=i

(26)

- α0 + Σ ^[ jφ*, v)] + Λ [ Φ , v); 0] +

Since, in (26), έ^oXxiu, v); 0] is the 0 polynomial vector function
if Woo = 0, and is a polynomial vector function of degree n^ if n^ > 0,
it follows from (21) that

(27) α0 + Σ ^ [ φ , v)] + ^ U * K v); 0] -

where p{w) is a polynomial vector function;

I

q(w) = ΐί(w - w, y>m

p(w) and q(w) are relatively prime; and

(28) deg p^w' = max [degp(w), deg g(^)] = w^ +

By (22),

(29) J = 1

= Σ c, log I w - Wj I = log Π I w - Wj \cj -
3=1 3=1

It follows from (27) and (29) that (26) can be written as

x(u, v) = ^[x{u, v)] + £?[x(u, v)]

q(w)

If Cj = 0 for all j , j = 1, 2, , I, then (30) reduces to

(31) x(u, v) = ^[x{n, v)] = jψl
q(w)

and we say that S is a rational minimal surface of degree

(32) m = nM + Σ %
ii
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[or is the zero rational minimal surface if x(u, v) = 0].
If the ch j = 1, 2, , I, are not all 0, then we say that S, given

by (30), is a logarithmico-rational minimal surface of degree m, where
m is given by (32).

In accordance with these definitions, if S is a rational minimal
surface, or a logarithmico-rational minimal surface, of degree m, then
S has exactly m poles, counting multiplicities, in the closed w-plane.

We have thus shown that if a minimal surface S, given in iso-
thermal representation, is meromorphic in the closed plane, then S is
either a rational minimal surface or a logarithmico-rational minimal
surface.

Conversely, if a minimal surface S, given in isothermal repre-
sentation, is either a rational minimal surface or a logarithmico-rational
minimal surface, then S clearly is meromorphic in the closed plane.

We accordingly have the following result.

THEOREM 1. A minimal surface S, given in isothermal represen-
tation, is meromorphic in the closed plane if and only if S is either
a rational minimal surface or a logarithmico-rational minimal surface.

4* Remarks* (a) For a logarithmico-rational minimal surface
S, given in isothermal representation by (1), the vector c3- in (30)
might be called the order of the logarithmic part of x(u, v) at the
singular point w = Wj. Since

lim
W—>oo

by (12) and (30) we have

= 1

\x(v v)' 01 — V c loe* I τy; I
i = i

= -Σcylog|TΓ|, W=±.

We therefore take

(33) C β β = - Σ c y

as the order of the logarithmic part of x(u, v) at w = oo.
Then /or CTOT/ logarithmico-rational minimal surface S, given in

isothermal representation by (1), the sum of the orders of the logarith-
mic part of x(u, v) at all the singular points of S is 0, since

I I I

3 = 1 °° J = l 3 = 1
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(b) By (13), in E2 there are no logarithmico-rational minimal
surfaces. [But see example (e) in §5.]

(c) Let S be a rational or logarithmico-rational minimal surface
in En, given in isothermal representation by (1), for which the function
q(w) in (30) satisfies q(w) = 1. Then (14) does not hold for any I < 0,
and therefore, by the third equation in (8), c satisfies (16). Thus S
must be a rational minimal surface. Since also q(w) = 1, we say that
S is a polynomial, or entire rational, minimal surface. There are
no logarithmico-polynomial minimal surfaces.

(d) If S is a rational (or polynomial) minimal surface of degree
m, given in isothermal representation by (1), and x3 (uf v) = 0, j = 3,
4, , n, then either xx{u, v) + ix2(u, v) or x2(u, v) + ixx(uf v) is a rational
(or polynomial) complex function, of degree m, of the complex variable
w = u + iv. Thus the study of rational (or polynomial) minimal
surfaces of degree m subsumes the study of rational (or polynomial)
complex functions of degree m.

(e) We note that the expression fΛ[p(w)/q(w)] in (27) can be
written as a rational harmonic vector function of the real variables
u, v, since

(34) ςfti>(w) = ^ p(w)q(w) = 3{p(w)q(w) =

q(w)q(w) q(w)q(w) Q(u, v)

and P(w, v) and Q(^, ^ ) are polynomial functions of u, v, as desired.
Although P(u, v)/Q(u, v) is a harmonic vector function of u, v, the

functions P(u, v) and Q(tt, v) themselves ordinarily are not harmonic.
By (28), (32), and (34), the degree m of S is given by

m = max [deg P(u, v\ deg Q(u, v)] — — deg Q(u, v) .

(f) We note also, conversely, that if x(u, v) is a rational harmonic
vector function,

, v)

where P(u, v) and Q(u9 v) are polynomial functions of u, v, and we let

x(w, v) = ίRf(w) , w = u + iv ,

where f(w) is an analytic vector function of w, then f(w) is a rational
vector function of w, since, in a neighborhood of any point (u0, v0), or
w0 = u0 + iv09 at which Q(u, v) Φ 0, f(w) is given (see, for instance,
[9, p. 127]), to within an arbitrary additive pure imaginary constant
vector, by
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f(w) — 2x\ w\ w ~~ WΛ — x(Mθ9 VQ)

' + Wo W — Wo

= 2- Qy v0) _ p(w)
w + w0 w - wΛ Q{uQ, v0) q(w)

and p(w) and q(w) are polynomial functions of w. By analytic con-
tinuation, f(w) is therefore a rational vector function of w throughout
its domain of analyticity.

5* Examples* (a) The minimal surface S of Enneper [13, p.
221] is given in isothermal representation by

xλ{u, v) = Zu — v? + Zuv2 = 3i(3w — w3) = 3r cos θ — r3 cos 30 ,

^2(^, v) = — 3^ + vz — 3u2v = SR(3w + ύ(;3) = — Srsinθ — r3 sin

x3(u, v) = Su2 - Sv2 = 3ΐ(3^2) = 3r2 cos 2^ .

This surface is a polynomial, or entire rational, minimal surface of
degree 3. In the closed w-plane, S has just one zero; this is at w = 0
and is of order 1. The surface has a pole of order 3 at w = oo,

(b) The functions

Xl(u> υ) = (1 + «' + ; > =

X2(U> V) = 0- + ̂  + ̂  = K(± _ i w ) = ( λ + Λ s ί n θ ,

ίc3(%, v) = log (%2 + Ϊ;2) = 31(2 log w) = 2 log r

are the coordinate functions of a logarithmico-rational minimal surface
(actually a catenoid) in isothermal representation. The surface is of
degree 2, with poles of order 1 at w = 0 and at w = oo; it has no zero,

(c) The rational minimal surfaces of Eng, given in isothermal
Weierstrass-formula [16, pp. 28, 29] representation by

Xl(u, v) = Rfάw) = 3t Γ(l - ζ2)Γ + + —~\dζ ,
J L ( l - ζ)4 (i - ζ)4 ζ4J

+ +
— ςj (t — ς) ς

— λdζ ,

where α, 6, and c are arbitrary nonzero real constants, are of degree
9, with poles of order 3 at w = 0, w — 1, and w = i. Although the
standard representation (30) of each of these surfaces is



366 E. F. BECKENBACH, F. H. ENG, AND R. H. TAFEL

q(w)

q(w)

where q(w) — (1 — wf(i — wfw3 is of degree 9, each of the functions
fj(w) actually is of degree only 8:

f (w) = V^ = Pi( w)
Q(w) (1 wf(i wfw% '

f (w) -JAW) ςrr. π — r >

— w)(ι — w)w

flw) ,

qz{w) (1 — wy(ι — wyw2

with

[Pi(V>)9 qs{w)\ - 1, deg pά{w) ^ 7, deg qά{w) = 8, j = 1, 2, 3 .

(d) Generalizations [3] of the Weierstrass formulas for the coor-
dinate functions of a minimal surface in isothermal representation can
be applied to obtain examples of rational and logarithmico-rational
minimal surfaces in En, n > 3. Thus, with

(u, v) = w = (r cos θ9 r sin θ) ,

the formulas

%1(uj v) = 12r cos θ — 3r4 cos Aθ ,

x2(u, v) = — 12r sin 0 — 3r4 sin 4Θ ,

x3(u, v) = 6r2 cos 20 + 4r3 cos 30 ,

Xi(u, v) = - 6r2 sin 20 + 4r3 sin 30

represent an entire rational minimal surface, of degree 4, in Euclidean
4-space. This surface is not contained in any 3-dimensional Euclidean
subspace. The surface has a pole of order 4 at w = °o; it single zero
is at w = 0 and is of order 1.

(e) The relations

xL = 9ΐNog w — —w2) — log r — —r 2 cos 20 ,

(35) x2 = 3l(i log w + — wΛ = - θ - —r 2 sin 2^ ,

) = 2r cos 0 , w = r(cos 0 + i sin 0) ,
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give an isothermal representation of a minimal surface with a singu-
larity of a different sort at the origin. The second of the relations
(35) is not a (single-valued) function of w = u + ivf however, so that
this surface is not included in the class of surfaces (1) presently under
consideration.

The same remark might be made, of course, concerning the
familiar relations

xι = log r ,

which give an isothermal representation of a minimal surface in E2,
and for which x1 + ix2 = log w.

6. The first fundamental theorem for meromorphic minimal
surfaces* Nevanlinna's first fundamental theorem concerning mero-
morphic functions of a complex variable [15; 12, p. 212] can be
generalized [7] to give an analogous result concerning meromorphic
minimal surfaces. The concepts involved in the generalization are
central to the discussion in the rest of the present paper.

In this section, some definitions are given and the first fundamental
theorem and its generalization are stated without proof; but see §8
for the formulas from which these theorems result.

Let f(w) be a nonconstant meromorphic function, and let S be
a nonconstant meromorphic minimal surface given in isothermal repre-
sentation by (1) in the entire finite w-plane, w = u + iv, \w\ < oo.

In the classical Nevanlinna theory, for 0 < r < oo and for a in
the closed complex plane, the proximity function m(r, a; f) is defined
by

ra(r, a; f) = — I log+ -—-—— -dθ , a Φ oo ,
2π Jo |/(rβ ' ) - o |

Mr, oo; /) = .A. Γlog+ \f(rea)\dθ .
2π Jo

By analogy, for a in the closed π-dimensional space, the proximity
function m(rf a; S) is defined by

1 f2π 1m{r, a; S) = — I log+ dθ , a Φ oo ,
2π Jo \x{reιθ) — a

m(r, co; S) = — \ log+ i x(reiβ) | dθ ,
2π Jo

where, for simplicity, we have introduced the notation
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and

x(reiθ) = x(r cos θ, r sin θ) .

In the Ahlfors-Shimizu version [2, 17; 12, p. 216] of the Nevanlinna
theory, the closed complex ζ = f(w) plane is projected stereographically
onto the sphere of radius 1/2 having center at

fa, »«, X*) = (0, 0, 1/2) .

Distances between points in the ζ-plane are replaced with the chordal
distances between corresponding points on the sphere, and the spherical
proximity function m°(r9 a; f) is accordingly defined by

m'(r, α; /) = f Γ log
2π Jo

+
\f{re%θ) — a\

= J - J'Ίog [1

For S, similarly, the closed ^-dimensional space is projected ste-
reographically onto the (n + l)-dimensional hypersphere £f of radius
1/2 having center at

( » i , a ? 2 , •• , a ? , α ? H + 1 ) = ( 0 , 0 , . . - , 0 , 1 / 2 ) .

Distances between points in the ^-dimensional space are replaced with
the chordal distances between corresponding points on the hypersphere,
and the hyperspherical proximity function m°(r, a; S) is accordingly
defined by

( 3 7 ) i f-
m°(r, oo; S) = — I log [1 + I jφ e**)!8]1'2^

2τr Jo

For 0 ^ p < co and for a in the closed complex plane, let n(p, a; f)
denote the number of α-points of f(w) in \w\ ^ p. Then the enu-
merative function N(r, a; f) is defined, for 0 < r < co, by

N{r, a; f) = r*( f t« ;/ )-*(0 ,α;/)^ + ^ α ; / } l o g r f
JO ^

for a finite or infinite.
Similarly, for a in the closed ^-dimensional space, and with an

analogous definition of n(pf a; S) as the number of α-points of S in
\w\ ^ p, the enumerative function N(r, a; S) is defined, for 0 < r <
oo, by
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(38) N(r, a; S) = [ «<P, « S) - φ, a; S) d + n(Q β . g ) l o g r f

Jo p

for α finite or infinite.
For the extended theory, a function that does not occur in the

classical theory is needed.
For any finite α, we have

Δlog\f(w) - a\ = 0

except at the isolated α-points and poles of f{w), since

log \f(w) - α| = Stlog [f(w) - a] .

By contrast, for any finite α, a computation [8] using the fact
that the Xj{u, v) form an %-tuple of conjugate harmonic functions
shows that

Δ log I x - a I

( 3 9 )

 = 2X{\x-a\2- [(x - a) (dx/du)/^'2]2 - [(x - a) - (dx/dy)^'2]2}
| x - α | 4

except at the isolated α-points and poles of S and the isolated zeros
and infinities of λ.

Since \x(u, v) — a\2 is the square of the length of the geometric
vector x(u, v) — a, and

is the square of the length of the projection of x{u, v) — a on the
plane tangent to S at (u, v), it follows from (39) that

(40) Δ log I x(u, v) - a \ ̂  0

at the nonexceptional points, ordinarily with the strict inequality for
n > 2.

The function

(41) Δ log I x{reiθ) — a

is continuous except at the isolated α-points and poles of S. A com-
putation shows that, as r—»0, (41) is 0(1) at the α-points and poles
except at poles of order 1 with nonvanishing logarithmic part, where
it is O[(logr)2]. Thus (41) can become infinite, but not rapidly enough
to render it nonintegrable.

For 0 ^ p < oo and for any finite α, the function h(ρ, a; S) is
defined by

(42) h{p, α; S) = - M ( Δ log |x(w) - a\dAw .
2π JJitvi^p
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In particular, we have

(43) MO, a; S) = 0 .

The function h(p, a; S) given by (42) might be considered to furnish
a measure of the visibility of the map of \w\ S P on S, as viewed
from α.

Since

lim h(p, a; S) = 0 ,

α-κ»

we define h(ρ, °°; S) by

(44) h(p, oo;S) = 0 .

To the proximity function m(rf a; S) or m°(r, a; S) and the enu-
merative function N(r, a; S), we now adjoin a visibility function H{r,
a; S), defined, for 0 < r < oo, by

(45) H(r, a; S) =

for a finite or infinite. In particular, then, by (44), we have

(46) H(r, oo S) = 0 .

By (43) and (44), the definition (45) of H(r, a; S) is quite analogous
to the definition (38) of N(r, a; S)f with k(p, a; S) in place of n(p, a; S).

In the classical Nevanlinna theory, the total affinity %(ry a; f) of
f(w) to α, or the affinity function of f(w), is defined by

2t(r, a; f) - m{r, α; /) + N(r, a; f)

for a finite or infinite. In particular, 2t(r, °° /) is called the Nevan-
linna characteristic function of f(w) and is denoted by T(r; /) , so that

Γ(r; /) = St(r, - /) = m ( r , oo; /) + ΛΓ(r> co; /) .

The first fundamental theorem of Nevanlinna is the statement that,
for each finite a, T(r; f) differs from 2t(r, α; /) by a bounded function
of r:

(47) T(r; f) = %(r, a; f) + C{r, α; /) .

In the extended theory, the total affinity 2t(r, α; S) of S to α, or
the affinity function of S, is defined by

(48) St(r, α; S) = m(r, α; S) + iSΓ(r, α; S) + H(r, a; S)

for a finite or infinite. In particular, Sί(r, oo; S) is called the Nevanlinna
characteristic function of S and is denoted by T(r; S), so that
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T(r; S) = %(r, °°; S) = m(r, oo; S) + ΛΓ(r, oo; S) + H(r, oo; S)

The extended first fundamental theorem is then the statement that,
for each finite α, T(r; S) differs from 2C(r, a; S) by a bounded function
of r:

(50) T(r; S) = St(r, a; S) + C{r, α; S) .

In the Ahlfors-Shimizu version of the classical theory, the proximity
function is replaced by the spherical proximity function. The correc-
tion term then reduces to a constant for each finite α. It is customary
in this case to add a constant to both sides of the equation so that
each approaches 0 as r -+ 0. Thus the spherical affinity function
2C(r, a; f) is defined by

2t°(r, α; /) = m°(r, a; f) + N{r, α; /) + C(a; f) ,

for a finite or infinite, with the constant C(a; f) chosen so that

lim 2Γ(r, α;/) = 0
r->0

the spherical characteristic functions T°(r; f) is defined by

T°(r; f) = 2t°(r, oo;/)

- m°(r, oo; /) + N(r, oo; /) + C(oo; /)

and the spherical form of the first fundamental theorem is the state-
ment that, for each finite a,

(51) TQ(r; f) = 3Γ(r, a; f) .

Similarly, in the extension of the Ahlfors-Shimizu version, the
hyper spherical affinity function 2t°(r, α; S) is defined by

(52) 2t°(r, a; S) = m°(r, a; S) + N(r, a; S) + H{r, α; S) + C{a; S) ,

for a finite or infinite, with the constant C(a; S) chosen so that

(53) Iim2t°(r, a; S) = 0
r->0

the hyper spherical characteristic function T°(r; S) is defined by

T°(r;S) = a°(r, oo; S)

(54) = m°(r, oo; S) + N(r, oo; S) + H(r, oo; S) + C(oo; S)

= m°(r, oo; S) + N(r, oo; S) + C(oo; S);

and the hyper spherical form of the first fundamental theorem is the
statement that, for each finite a,
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(55) T°(r; S) = 31°(r, a; S) .

7* Basic growth properties* Proofs of the following convexity
properties can be found in [4, 7].

Like the function N(r, a; f) in the complex-variable case, the
function N(rf a; S) for a meromorphic minimal surface S is a non-
decreasing, piecewise linear, convex function of log r.

The function H(ry a; S) vanishes identically if a is infinite or if
S is a plane surface and a lies in the plane. Otherwise, for r > 0,
H(r, a; S) is a positive, increasing, strictly convex function of log r.

The function T°(r; S) can be given a quasi-geometric represen-
tation by integrating both members of (55) over the hyperspherical
surface Sf and dividing by the content T of Sf. After a simplification,
this yields

(56) T°(r; S) =

where

(57) ^fψ, S) = -L ί - [ h(p, a; S)d Ψl.

From (40), (42), (56), and (57), it follows that the function T°(r; S)
is positive for r > 0 and is an increasing, strictly convex function
of logr.

From (56), we therefore obtain

(58) T°(r;S)> ^(l S)logr

for r > 1, and accordingly

(59) liminf Γ ° ( r ; g ) > 0 .
r-+co l o g r

In §§9 and 10 of this paper, we shall be concerned with mero-
morphic minimal surfaces S for which the left-hand member of (59)
has a finite value.

We mention in passing, however, that just as the order ρ(f) of
a meromorphic function f(w) is defined by

log r

so is the order of a meromorphic minimal surface S, given in iso-
thermal representation by (1), defined by

(60)
log r
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Since for any two nonnegative numbers a and 6, we have

(61) log+ (a + b) ^ log+ a + log+ b + log 2 ,

it follows from (36) and (37) that

(62) 0 ^ m(r, oo; S) ^ m°(r, oo; S) ^ m(r, -* S) + log 21'2 .

Therefore, by (48) and (54), the difference T°(r; S) - T(r; S) is a
bounded function of r. For this reason, by (59), T°(r; S) and T(r; S)
are interchangeable in the study of growth properties as r—> oo.

Actually, it can be shown that, like T°(r; S), the function T(r; S)
is an increasing, strictly convex function of log r.

8* The Poisson-Jensen-Nevanlinna formula* The first funda-
mental theorem of Nevanlinna, (47) or (51), results from the following
Jensen-Nevanlinna formula [15].

Let f(w) be meromorphic in \w\ ^ R, and in the neighborhood
of the origin let

f(w) = atw
ϋ + at+1w

t+ί + ,

with at Φ 0, so that at the origin f(w) has a zero of order t if t > 0
or a pole of order — t if t < 0, and /(0) Φ 0 or oo if t = 0. Further,
let the zeros and poles of f(w) in 0 < | w | ^ R be at

S i , z 2 , ••-, z μ a n d ^ , p 2 , • • • , # „ ,

respectively, with repetitions for multiple values and with

0 < I zγ I ̂  ^ I zμ I < j? and 0 < | p1 \ ̂  ^ | p J < i? .

Then the Jensen-Nevanlinna formula is

1 f2τ

log I α* I = — \ log I f(Rexθ) I dθ
2π Jo

<63) ,
- ί log i e .

\pk

The extension, (50) or (55), of the first fundamental theorem to
meromorphic minimal surfaces results similarly from an extension [7]
of the Jensen-Nevanlinna formula.

Namely, for a meromorphic minimal surface S, given in isothermal
representation by (1) for \w\ ^ R, w — u + iv, let the zά and pk have
the same meaning as above but this time relative to S, and in the
neighborhood of the origin let

oo

(64) x(u, v) = c log r + Σ rk(ak cos Jcθ + bk sin
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w i t h | α t | 2 + \bt\*Φθ.
Then the extension of the Jensen-Nevanlinna formula is

log IatI = -±-[Ίog\x(Reiθ)\dθ
2π Jo

(65) +

- 4- \ T-
2τr Jo L p

- tlogR

i

An important tool in the further investigation of meromorphic
functions f(w) is obtained by mapping the circular disc \w\ tί R con-
formally onto itself, with a given point

(66) wQ = u0 + iv0 = reiφ , r <R ,

mapped onto the origin. If f(w0) Φ 0 or °o, and if the symbols z5

and pk now represent all the zeros and poles in the disc \w\ ^ R, not
merely those in the punctured disc 0 < \w\ ^ R, then an application
of the Jensen-Nevanlinna formula (63) in the transformed disc yields
the Poisson-Jensen-Nevanlinna formula,

(67)

R2 - r 2

B2 - 2Rr cos (^ - Ψ) + r2

R(w0 —

In the same way, an application of the extension (65) of the
Jensen-Nevanlinna formula in the transformed disc yields an extension
of the Poisson-Jensen-Nevanlinna formula to meromorphic minimal
surfaces S. Namely, with the same notation as above, but now relative
to S, the extension of the Poisson-Jensen-Nevanlinna formula is

log Ix(w0) I = -A- P log Iχ(Re»)\——
2π Jo R2 —

R2

2Rr cos (θ - φ) + r2
-dθ

(68) R2 —

R(w0 -

4
2ττ

B(P,WG)

where

(69) B(ρ, wQ) =
— WnW

[Like the Jensen-Nevanlinna formula (63) and its extension (65),
the Poisson-Jensen-Nevanlinna formula (67) and its extension (68) can
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readily be adjusted to include the case in which there is a zero or
pole at w0.]

Notice in (68) that

(70) R2 —
R{wozό)

and that also, by (40),

^ 0 and
(Wo - Pk)

(71) A . ( T l ί ( A log I x{w) I dAw~\dp ^ 0 .

Substituting from (71) and the first inequality in (70) into (68),
we obtain the useful inequality

(72)

log I x(w0) I ̂  J - Γ log [ χ(Reiθ) \ ——
2π Jo R2 —

R2 - r2

2Rr cos (θ - φ) + r2
-dθ

+ Σ log R2 -

A fortiori, we therefore have

log+ I x(w0) I ̂  - L Γ lOg+ I χ(ReiΘ) | _ —
2π Jo R2 —

+ Σlog

R2 - r 2

(73)
2Rr cos (θ - φ) + r2

and accordingly, by (36),

(74) log+ I x(w0) I ̂  | i ^ m ( Λ , oo S) +

R — r fc=i

In particular, letting

(75) ikf(r; |x |) = sup |jc(re^)| ,

and choosing w* = re*9* so that

(76) \x(wΐ)\ = M(r;\x\),

from (74) we obtain

(77) log+ M(r; \x\)^ ^ + r m(R, oc S) + Σ log

- pkwQ

R2 —

R(w* - pk)

9* An alternative characterization of rational and logarithm
mico-rational minimal surfaces* We shall now apply (77) in the study
of meromorphic minimal surfaces for which the left-hand member of
(59) has a finite value.
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THEOREM 2. For a nonconstant meromorphic minimal surface S
given in isothermal representation by (1), T°(r; S) satisfies

(78) liminf ' 1''°' = c < <*,
log r

if and only if c is a positive integer and S is a rational or logarithmico-
rational minimal surface of degree c.

Proof. Suppose first that (78) is satisfied. It follows then from
(54) that

(79) l i m i n f ^ °°]S) ^c,
log r

since C(oo S) is a constant and since, by (37), m°(r, oo S) is positive
for r > 0.

Therefore, by (38) and (79), S can have at most a finite number
of poles, and accordingly the vector function x(u, v) in (1) has a
representation of the form (25).

We shall see now that (78) implies further that the representation
(25) reduces to (26).

Let r0 be great enough that all the poles of S in the finite plane
are in \w\ < r0. Then for r > r0 and R — δr, with δ > 1 fixed, and
with the notation of (25), (77) gives

log + |M(r; |x | ) | ^ A±-Lm(δr, oo S) + Σ log
O — 1 i=i

(80)
δr(w* —

as r —• oo, since the logarithmic sum is a bounded function of r.
From (80), we obtain

liminf + 1 U m i n f Γ
— 1 r^oo L

m(δr, QQ S) # logg + logr
g U m i n f

log r δ — 1 r^oo L log δr log r

i i m i n f

<? — 1 r-co l o g

Letting δ —> co now yields(82) lim inf ^S+M(r;\x\) £ H m ω m(r, oo
r-*~ log r < -~ log r

Therefore, by (54), (62), and (78),

(83) l i m i n f l°S+M(r; \ χ \ )
log r
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since C(oo; S) is a constant and since, by (38), N(r, oc; S) is nonnegative
for r ̂  1.

By (21), (22), and (23), we have

M(r; \y\) ^ M(r; \x\) + O(logr)

as r —» CXD , and therefore

liminf ^ r ? l ^ l ) £ lim inf log W r ; [x|) + O(logr)]
logr r-oo logr

logr

Hence for every ε > 0 there is a sequence {rk}, with rk —» oo, for
which

(84)
A;—»oo

But from (24) we obtain

(85) -f- Γ| if(reίtf) |W = Σ (I ak |
2 + 16,

2π JO A0

Now (84) and (85) imply that there is a k0 < oo such that for all
k > k0 we have

Thus y(u, v) is a polynomial and therefore (25) reduces to the form
(26); that is, the nonconstant meromorphic minimal surface S is a
rational or logarithmico-rational minimal surface of degree m > 0.

We shall now show that the constant c in (78) is a positive integer
by showing that c — m, and shall at the same time prove the second
part of the theorem. We shall in fact prove more:

If S is a rational or logarithmico-rational minimal surface of
degree m > 0, then

lim
logr

exists, and

(86) lim 1 ( r " ^ = m .
r-oo log r

With S in the representation (26), and with m given by (32), by
(38) we have

(87) lim
r-oo log
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We now need an improvement of (82). Since, by (36) and (75),
we have

(88) l o g + M(r; \x\)^ m(r, oo S) ,

it follows that (82) holds also with the inequality sign reversed, and
therefore that

(89) Jiminf ^+M(r;\x\) = H m i n f m(r, QQ; S) >

r-oo logr r-oo logr

In the same way, with

limsup in place of liminf
r—»oo r—K3o

in (81) and (82), from (88) we obtain

(90) limsup l°S+M(r;\x\) = H m g u p m(r QQ; S) _
r-+°o log r *•-<» log r

By (26), however, we have

(91) l i m ^ M f o ! * ! > = » , .

»•-<» log r

Therefore, by (89), (90), and (91),

(92) l i m m ( r , oc g) = ^
r-oo log r

Thus, from (49), (87), (92), and a remark near the end of §7, we
have

I i m

logr r-»«» logr

+ l i m

log r r-oo log r

X % = m ,

as desired.

1O* The fundamental theorem of algebra* If S is a rational
or logarithmico-rational minimal surface of degree m > 0, given in
the representation (26), then the vector function x(u, v) maps every
point of the closed w, or u + iv, plane onto a unique point α, finite
or infinite.

Let na ;> 0 be the order of the α-point of S at w = oo (of course,
%α = 0 for all points α except one), and let

(93) n(a; S) = na + lim n(r, a; S) ,
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(94) h(a; S) = lim h(r, a; S) .
r—*co

Then n(a; S) is the total number of α-points, counting multiplicities,
of S in the closed w-plane, and h(a; S) is a measure of the visibility
of the entire surface S when viewed from α.

In particular, for a — oc, by (26) and (32) we have

I

n(oc; S) = nM + Σ % = m f

and by (44) we have

Moc;S) = 0 ,

so that

(95) n(cc S) + h(oc S) = m.

We shall show now that (95) holds not only for oo but also for
every finite α; that is, we shall show that

(96) n(a; S) + h(a; S) = m .

Let a be any finite point. By (37):

( i ) If na = 0 and S has a pole at oo, then

m°(rf a; S) = log (1 + |α|2) + 0(1) .

(ii) If na — 0 and S has a 6-point, 6 Φ α, at oo, then

mw

\h-a\

(iii) If na > 0, then

m°(r, a S) = logr%° + 0(1) .

In each of the three cases, we have

(97)
log r

since na — 0 in the first two cases.
By (52), (55), (86), and (97), we therefore have

(98)
m n

log r

We shall now show that

(99) lim [n(r, a; S) + h(r, a; S)] = m - na
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Since n(r, a; S) and h(r, a; S) are nondecreasing functions of r,
if (99) did not hold then either there would be an ε > 0 such that

n(r, a; S) + h(r, a; S) ^ m — na — e

for all r, or there would be an ε > 0 and an r0 such that

n(r, a; S) + h{r, a; S) ^ m — na + ε

for all r 7> r0. In the former case, by (38) and (45), we would have

log r

and similarly in the latter case we would have

logr

Hence (99) follows from (98).
From (93), (94), and (99), we obtain

n(a; S) + h(a; S) = na + lim [n(r, a; S)+ h(r, a; S)]
r-+oo

= na + (m - na) = m .

We have thus proved the following result:

THEOREM 3. If S is a rational or logarithmico-rational minimal
surface of degree m > 0 in the extended En-spacef then for each a,
including a — oo, in this space,

(100) n(a; S) + h(a; S) = m .

Since m is a positive integer, since n(a; S) is a nonnegative integer
and A(α; S) is nonnegative, and since h(a; S) = 0 if and only if either
α = oo or S is a plane surface with α on S, it follows from (100) that:

( i ) For each α, both n(a; S) and h(a; S) are nonnegative integers.
(ii) n(a; S) ^ m, with equality if and only if either a = oo or

S is a plane with α on S.
(iii) fe(α; S) ^ m, with equality for almost all points of En if

n > 2.
(iv) Theorem 3 includes the fundamental theorem of algebra as

a special case.
Since many proofs of the fundamental theorem of algebra are

known, alternative proofs of Theorem 3 might also be desirable. In
particular, h(a; s) will shortly be interpreted, at least for n — 3, in
terms of areas on a sphere with center at α, and this well might
lead to a topological proof of the theorem.
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