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EXTENDED PRIME SPOTS AND QUADRATIC FORMS

RoN BrownN

Some of the local theory of extended prime spots on fields
is developed here, with two applications in mind. In the first,
two analogues to the Hasse-Minkowski theorem on equivalence
of quadratic forms over global fields are developed, based on
the notion of an ultracompletion of a field at an extended
prime spot. They deal, respectively, with equivalence of
quadratic forms over a simple transcendental extension of
a global field, and with the reduced Witt ring of a general
field. Examples illustrate problems involving the further
extension of the global theory of quadratic forms. In the
second application Harrison and Warner’s ultracompletions of
a field at a finite or infinite prime are shown to be essentially
ultracompletions at associated extended prime spots.

Extended prime spots were first introduced to provide a setting
for a generalization of the weak approximation theorem for inde-
pendent absolute values. In §1, we recall from [3] the definitions
of extended absolute values and extended prime spots and we define
and study ultracompletions of fields at extended absolute values.
An alternative approach to ultracompletions of fields at Harrison
primes [7] is sketched in §2. The analogues to the Hasse-Minkowski
theorem are discussed in § 3; this section owes a great debt to work
of Milnor [14] and Pfister [15]. Finally, in an appendix (§4) we
sketch a theory of Henselizations of extended absolute values. The
last three sections of this paper are essentially independent of each
other.

Throughout this paper F will denote a field. F* denotes its
multiplicative group of nonzero elements. Z, @, R, and C denote
the sets of integers, rational numbers, real numbers and complex
numbers, respectively. A\B denotes the set of elements of the set
A which are not in the set B.

1. Ultracompletions. We recall some concepts from [3, especial-
ly §5]. An extended absolute value on F' is a map ®: F— R U {0}
with @(@ + b) < P(a) + P(b), P(ad) = P(a)P(b) (when defined), P(a) = 0,
®1) =1 and ®(0) =0 for all @, bec F. (We do not define 0-« or
c0.0.) The extended absolute values on F are precisely those maps
obtained by composing a place on F with an absolute value on the
residue class field of the place. (We intend that the composite
function map to « those elements of F which the place maps to «.)
For, if ¢ is an extended absolute value on F, then 7 (R) is a valua-
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tion ring and ® induces an absolute value on its residue class field.
The following examples will be used below.

ExaMpPLE 1.1. (A) An absolute value is a fortiori an extended
absolute value.

(B) The valuation rings of F are naturally bijective with the
extended absolute values of F' mapping into {0, 1, =} (assign to each
such extended absolute value ® the valuation ring #7(R)).

(C) A place from F into C has canonically associated with it
an extended absolute value (compose the place with the ordinary
absolute value on C).

(D) An ordering of F gives rise canonically to a place from F
into R [2] and hence to an extended absolute value (cf. (C) above).
(By an “ordering of F” we mean the set of nonnegative elements
in a total order on F making F an ordered field.) Similarly, a
generalized power series field [8, p. 314] with residue class field R or
C has canonically associated with it a complex place, and hence an
extended absolute value. (Indeed, one might argue that the extended
absolute value is an essential part of what is meant by a “generalized
power series field with residue class field R or C”.)

The prime values [3, Definition 1.1] of F are precisely the
extended absolute values associated with either a complex place or
a minimal valuation ring (cf. (C) and (B) above, respectively). The
normalized extended absolute values [3, Definition 5.3] are simply
those associated with a complex place or a valuation ring.

For the remainder or this section, » denotes an extended absolute
value on F. We set

D, ={ac F:p(a) <1} .

DEFINITION 1.2. A ®-topology on F'* is a (not necessarily HausdorfT)
group topology on F'* admitting a neighborhood basis at 1 of the
form {1 + aD,:ac A} where A is a nonempty subset of F’*. (For
group topologies see, for example, [10].)

DEFINITION 1.3. (F, ®) is wultracomplete (or, F is wultracomplete
at @) if and only if F'* is topologically complete in every @-topology.

The word “ultracomplete” was first used, I think, by Fleischer
in a related context [5].

DEFINITION 1.4. A subfield E of F is wltradense in (F, ) if and
only if E* is dense in F'* with respect to some ®-topology.

DEFINITION 1.5. (F, ®) is an ultracompletion of a subfield E of
F if and only if (F, ) is ultracomplete and F is ultradense in (F, ®).
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In which case, we also say both that (F, ®) is an “ultracompletion of
(E, | E)’ and that (F, ®) is an “ultracompletion of E at | E”.
(Here @ | £ denotes the restriction of @ to E.)

The existence, uniqueness, and structure of ultracompletions is
discussed in Remark 1.15.

Recall that @ is equivalent to an extended absolute value +» when
D, = Dy. If @ and + are equivalent, then every ¢-topology on F*
is a -topology, and vice versa. Hence the above concepts could
have been defined for equivalence classes of extended absolute values,
and, in particular, for extended prime spots. (An extended prime
spot is an equivalence class of maximal extended absolute wvalues,
where we preorder the extended absolute values on F by the rule
@ <+ if and only if D, & Dy. The prime values are precisely the
normalized elements of the extended prime spots [3, §5].)

ExaMPLE 1.6. Suppose F'is a global field. Then @ is equivalent
to an absolute value. The concepts of ultracompletion, ultracom-
pleteness and ultradensity for (F, #) reduce to those of completion,
completeness and density with respect to the metric topology of any
such absolute value.

Recall that »7'(R) is a valuation ring; ®7'(0) is its maximal ideal.
Let k, and ', denote the residue class field and value group of
@~(R), respectively. Let @ denote the absolute value induced by
® on k..

THEOREM 1.7. The following statements are equivalent:
(1) (F, ) is ultracomplete;

(2) F s ultradense in no proper extemsion of (F, P);
(3) P7Y(R) s mawimal and (k., P) ts ultracomplete.

®7(R) is called maximal if the valuation it induces on F makes
F' a maximal field [16]. (Equivalently: F with the discrete topology
is a linearly compact @ '(R)-module [16, Chapter D, Theorem 4
(Zelinsky)]. Also equivalently: F'* is complete in every group topology
with a neighborhood base at 1 of the form {1 + b97'(0): be B} where
Bg< F* [4, Example 2.2].) An extension of (¥, @) is a pair (K, )
consisting of a field K containing F and an extended absolute value
4 on K restricting to @ on F. If (K, +) is an extension of (F, ®),
then we may regard (ky, ¥) as an extension of (k.,, ) and I, as
a subgroup of I'y.

THEOREM 1.8. F s wltradense in an extension (K, ) of (F, P)
if and only if k, is ultradense in (ky, ¥) and I'y = I'y.
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We will prove Theorems 1.7 and 1.8 in the course of the following
remarks. We call @ Archimedean if ®(1 + 1) >1, and nonarchi-
medean otherwise. (@ is nonarchimedean if and only if ®(a + b) <
max {P(a), P(b)} for all @, be F.) One can check that ® is Archimedean
(nonarchimedean, normalized, a prime value) if and only if @ is Archi-
medean (respectively, nonarchimedean, normalized, a prime value).

REMARK 1.9. We examine the ultracompletions of (k,, #). Our
remarks would hold for any field with an absolute value, of course.

First suppose ® is Archimedean (or normalized!). Then the only
@-topology on k; is the metric topology of @. The ultracompletions
of (k.,, ) are simply the topological completions of %, in the metric
topology. Ultradensity and ultracompleteness similarly reduce to
density and completeness. Recall that every field complete at an
Archimedean absolute value is isomorphic to E or C.

Now suppose @ is nonarchimedean, so @ is a valuation. Then
the ultracompletions of (k,, #) are simply the maximal immediate
extensions of &, (as a field with the valuation @). Ultradensity and
ultracompleteness reduce to immediacy and maximality, respectively.
(See [4, Example 2.2].)

Note that (k,, p) is ultracomplete if @ is normalized and non-
archimedean (since then D; = {0}).

LeEMMA 1.10. Suppose B & F* (possibly B is empty). There is
a unique coarsest P-topology separating 1 from 1+ b for all be B.
The collection of sets of the form

(1) 1+bn"'D,(be BU{l}, neZ with Pn-1)=1)

18 a meighborhood base at 1 for this topology.

Proof. Note 1+ n'D, =1+ br'D, if ¢(b) = 1. Suppose be
BUfl},ne Zand #(b) <1 < @(n-1). If ¢ is Archimedean, pick re Z
with 3n/r € D,. Otherwise, set » = n. Then @(r) =1 and (1 + br'D,)*
and (1 + br~'D,)™" are contained in 1 + bn~'D,. It follows that the
collection of sets (1) forms a neighborhood base a 1 for a ®-topology
on F'*, Clearly this topology separates 1 from 1 + b for all be B.
We will show it is contained in every other such ®-topology.

Let .77 now be any @-topology separating 1 from 1 + b for all
be B. Let be B and ne Z have (b)) <1 < P(n-1). We must show
1+ bn7'D, contains an open (with respect to .77) neighborhood of 1.
We may assume @ is normalized (see the remark after 1.5).

We first claim .7~ has an open set 1 + ¢,D, where @(c,/b) < co.
First of all, .7~ has an open set of the form 1 + aD,. Since .7 is
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a group topology, there exists a’e F with 1 + a’D, open and (1 +
a'D,)" &1+ aD,. But either @ or &’ must have finite value;
otherwise

l-a=(0+d(@edl—a)'ed+aD,)" =1+ aD,,

an impossibility. This takes care of the case b = 1. Now suppose
b+ 1. Then by hypothesis we have an open set 1 + ¢, D, not con-
taining 1 + b, i.e., with ®(¢,/b) < 1. The claim is proved.

We are finished if ® is nonarchimedean (since then ®(n) =1 so

1+bn'D, 21+ ¢,D,) .

Hence suppose ¢ is Archimedean. Then D, + D, < 2D,. We can
pick se Z with ¢,D, = 2°bD,. There exists ¢, € F' with 1 + ¢,D, open
and

1+ eD) =1+ eD, .
For each de D,,

ed =271 + ¢d)? — 1 — ed)) e 2%, D, = 2°7°0D,

SO
1+¢D,=1+ 270D, .

Repeating this process we find ¢, F* with 1 + ¢,D, open and
1+e¢D, =1+ 2%D, .

Continuing in this way we find ce F with 1 + ¢D, open and 1 + ¢D, &
1+ n'D,.

REMARK 1.11. It can be shown that the set of ®-topologies on
F* is naturally bijective with the set of proper ideals of the valua-
tion ring

A, = {ae F:9(a) £ P(n-1) for some mneZ}.

(The bijection takes a ®-topology to —1 + () U, where the intersec-
tion ranges over all neighborhoods U of 1.)

The sets 1 + n™'D, (n € Z, P(n) = 1) form a neighborhood base at
1 for a @-topology which is coarser than all other ®-topologies (apply
Lemma 1.10). Clearly, a subfield E of F' is ultradense in (F, ) if
and only if E* is dense in this coarsest @-topology on F'*. To prove
Theorem 1.8 it therefore suffices to prove

LEMMA 1.12. Let (K, ) be an extension of (F, ®). F* is dense
im the coarsest «r-topology on K* if and only if k; is dense in the
coarsest y-topology on ky and I'y = I'y.
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Proof. (=) Let ac K* and let n be an integer, ®(n-1) = 1.
By hypothesis, there exists be F' with 0 < v(a™'0) < «. Again, by
hypothesis there exists ¢ e F with

a”'be + ¥(0) el + Dy
whence
bcea(l + n7'Dy) .

This proves that in the coarsest +-topology every nonempty open
set contains an element of F.

(=) For each ae K* there exists be F* with bea(l + Dy), so
a/be "' (R*). This shows I'y = I'y. Now let ac+(R*) and pick
neZ, p(n-1) = 1. There exists be F* with bea(l + n'Dy) so

b+ 20)e(a@+ v (0)-1+ nDy).

That is, k7 is dense in the coarsest y-topology on k.

REMARK 1.13. Suppose ®# is nonarchimedean. Then D, is the
maximal ideal of the valuation ring A, = {a e F: p(a) £ 1}. (F, ®) is
ultracomplete if and only if A, is maximal [4, Example 2.2]. Also,
F is ultradense in an extension (K, ) of (F, ®) if and only if Ay is
an immediate extension of A,. (Proof. Assume ® is normalized;
now apply Theorem 1.8 and Remark 1.9.)

We prove half of Theorem 1.7 in

PrOPOSITION 1.14. (F, ®) is ultracomplete if and only if P7'(R)
18 maximal and (k,, @) is ultracomplete.

Proof. If ® is nonarchimedean, then A, is the localization of
@ Y(R) at the prime ideal D,. The proposition then follows from
Remark 1.13 and [16, pp. 113-114]. Now suppose @ is Archimedean.
Assume (F, @) is ultracomplete. The completeness of F* at the
coarsest @-topology implies the ultracompleteness of (k,, #) (cf. Remark
1.9). Let B F, say with 1€ B. Give F* the topology with neighbor-
hood base at 1

(2) {1+ b9p7'(0):be B} .

We must show F'* is complete [4, Example 2.2]. If the set (2) has
a smallest element (with respect to inclusion), then F* is clearly
complete. Otherwise, for each be B there exists '€ B with

bp™(0) 2 ¥'D, 2 b'P7(0) .
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Thus the topology on F* is a @-topology (the sets 1 + bD,, be B,
form a neighborhood base at 1). But F'* is by hypothesis complete
at every @-topology.

Let us now assume, conversely, that »7'(R) is maximal and (k,, )
ultracomplete. Let .7~ be a @-topology on F'*, say with {1 + bD,: b B}
a neighborhood base at 1. If {1 + b»*(0): be B} has no minimum,
then it is also a neighborhood base at 1 so by hypothesis and [4,
Example 2.2], F'* is complete at .. Suppose, on the other hand, that
it has a minimum. Then ¢~ admits a neighborhood base at 1 of
the form {1 + bn~'D,: 0 < n € Z} where be B (use Lemma 1.10). Let
(d:)1c+ be a Cauchy net in F'* (with respect to .77); we show it has
a limit. Note 1 4 27D, is in .7~ (Lemma 1.10). Hence there exists
pe A such that X > ¢ implies

dd;te 1+ bD)N A +27'D,) .
The net
(3) O7(ddit — 1) + P7(0))szs

is Cauchy in the @-topology on the additive group k.. (Subproof.
For all », N > 1, ¢(ddz") < 2 and

(4) bi(dydyt — 1) — b7N(ddit — 1) = b7(dpdit — 1)(didi?) )
The limit of the Cauchy net (8) can be put in the form
b7(ddt — 1) + 7(0)

where de F'*. But then d is the limit of (d)).,. (Subproof. For
x> p, P(ddi") >27". Now substitute d for d, in the identity (4).)

REMARK 1.15. Let (k, ) be an ultracompletion of (k,, @) (see
Remark 1.9 for the existence of (k, )). The valuation ring @7'(R)
extends to a maximal valuation ring B with the same value group
I’y and with residue class field (k,-isomorphic to) % [16, Chapter F,
Theorem 3 (MacLane)]. Let K be the field of fractions of B and let
4r be the extended absolute value obtained by composing the canoni-
cal place from K to k with 6. Then (K, +) is an ultracompletion of
(F, ) (use Proposition 1.14 and Theorem 1.8).

Thus, (¥, ¢) always has an ultracompletion. In general, ultra-
completions are not unique [12, p. 381]. The family of ultracompletions
of (F, ) carries more information about F than a particular ultra-
completion (see Remark 3.5).

Suppose @ is Archimedean. Then between any two ultracom-
pletions of (F, ) there is an F-isomorphism that preserves the ex-
tended absolute value (argue as in the proof of [8, Theorem 7]). We
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denote “the” ultracompletion by (F,, ). (F,, ®) is isomorphic fo a
generalized power series field with residue class field R or C [8,
Theorem 6] (cf. Example 1.1D).

We now complete the proof of Theorem 1.7. First suppose F is
ultradense in no proper extension of (F, ®). Then the extension
(K, ¥) of Remark 1.15 above is not proper. Thus (¥, ®) is ultra-
complete. Conversely, suppose (F, #) is ultracomplete. Suppose F is
ultradense in an extension (E, p) of (F, ). First, k, = k, (use Propo-
sition 1.14 and Theorem 1.8 to apply Remark 1.9). Also I, =TI,
(Theorem 1.8). Since »7'(R) is maximal (Proposition 1.14), we have
F = E. This completes the proof of Theorem 1.7.

The next two lemmas will be used in §3.

LEMMA 1.16. Suppose 7w: F— E U {} s a place and + is an
extended absolute value on E. Then (F, yrom) s ultracomplete if and
only if (E, ) is ultracomplete and the valuation ring w'(E) s
maximal.

The composition o should be understood to map 77'(cc) to oo.
This lemma is an immediate corollary of [16, Chapter D, Propositions
7 and 8] and Theorem 1.7, which are special cases of it. It could
also be proved through a slight modification of the proof of Proposi-
tion 1.14.

LeEmMA 1.17. Situation as in Lemma 1.16. Let L be a subfield
of F. L is ultradense in (F, 4ox) if and only +f L*.-w (E*) = F~*
and (L) N E is ultradense in (H, ).

This lemma follows from, and slightly generalizes, Theorem 1.8.

2. Harrison primes. Warner and Harrison define an “ultra-
completion of a field at a finite or infinite prime” to be a “maximal
immediate extension” of the primed field [7]. This approach is
suggested by Krull’s definition of a maximal field. We show here
that the ultracompletions of a field at a Harrison prime are essentially
just the ultracompletions of the field at the extended absolute values
of the field associated with the prime, in the sense of the following
definition.

DEFINITION 2.1. Let ® be an extended absolute value and P be
a Harrison prime of . We say ® and P are associated if and only
if for all a € P,
Pla +1)=p(@) + 1.

The reader should verify that the usual absolute value on the
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complex numbers C is associated in the above sense with the prime
R? consisting of all nonnegative real numbers. Also, the unique prime
of a finite field (namely {0}) is associated with the unique absolute
value (the value of every nonzero element is 1). One more example.
An ordering of a field (which is a fortiori a Harrison prime) is associ-
ated with the extended absolute value that it canonically gives rise
to (cf. Example (1.1D)).

PROPOSITION 2.2. Let @ and P be as in 2.1. Then ® and P are
associated if and only if one of the following two conditions occurs:

A. @ is the extended absolute value corresponding to a valuation
ring with maximal ideal P (cf. Example 1.1B);

B. @ is the extended absolute corresponding to a complex place
i F'— C U {0} with 77%(R?) = Arch P (cf. Example 1.1C).

Here Arch P denotes the set of all ac F such that for some
integer % and all integers m = —1 we have n-1 + mae P. Harrison
and Warner show Arch P is a prime [7, Theorem 1.1].

A corollary of the above proposition is that each Harrison prime
of F has associated with it an extended absolute value and any such
extended absolute value is a prime value. (To prove this use [7,
Theorem 1.1] when P is infinite and [6, Proposition 2.5] when P is finite.
This prime value is unique unless P is complex.) In Remark 2.4 below,
there is a computation of the set of Harrison primes associated with
a given prime value; this set is not in general a singleton or even
nonempty.

We now prove 2.2. First note that an infinite Harrison prime P
is associated with the prime value arising from a complex place 7 if
and only if m(P) = 0 (i.e., w(a) € R* U {o} for all a € P). The sufficiency
of conditions A (which implies #(P) = 0) and B (which implies 7(P) = 0
[7, Theorem 1.1]) is easily checked. Now suppose P and @ are
associated.

Case 1. P is finite, i.e., P is the maximal ideal of a minimal
valuation ring [6, p. 18]. Then ® is nonarchimedean (for any positive
integer n with n-1€ P we have (—n-1 + 1) = @(n-1) + 1). Indeed,
P(P) = {0, =} (since (b + 1) < max {p(b), 1} for all be P). By elemen-
tary valuation theory, if P contains ¢7*(0) then it is itself contained
in 7(R) and so

P2 p(R) N 970, ) = 7(0) .

But P and #7(0) are not incomparable since otherwise there exists
[3, Lemma 6.1] be P with ¢(1 + b) = 0, whence

0=pl+b)=1+o0)=1.
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Hence
Pco™(0)= D, .

But none of these containments can be proper (P is a maximal pre-
prime). It follows that ®*(R) is a valuation ring with associated
extended absolute value ¢ and maximal ideal P.

Case 2. P is infinite (i.e., 1€ P). Then ® is Archimedean and
normalized (apply Definition 2.1 to obtain ®(2) = 2). Hence @ arises
canonically from a complex place 7. It suffices to show 77 (R) 2 Arch P
since Arch P is a prime. Recall that J, = {ae F:1 + Za & P} is the
maximal ideal of a valuation ring of F), call it 4, and Arch P=(ANP)U
Jp. From Definition 2.1 and the elementary geometry of complex
numbers we deduce that @(J,) = {0, «} and 7(P) = 0. The former
fact implies that the units of the valuation ring ®*(R) are contained
in the units of A (ae F is not a unit in A if and only if a or a7 is
in Jp, i.e., a has value 0 or «). Thus by elementary valuation theory,
#7%0) = J,. Suppose ac Arch P\~ (R). Then a¢c Arch P\J, so for
some positive integer » we have a™' — #™' in

(Arch P\J,) N w (—n"") .

But this set must be empty since Arch P\J, & P and #(P) = 0. This
shows Arch P = ¢ (R). Hence

ArchP=(ANP)UJ, S 27'(0) U(PN P Y(R)) S 7 Y(RY .

The proposition is proved.

THEOREM 2.3. Let P be a Harrison prime of F. Let (K, T) be a
primed field extending (F, P). Let + be a prime value associated with
T. Then (K, T) is an ultracompletion of (F, P) if and only if (K, +)
18 an ultracompletion of (F, | F).

The second sentence of the above theorem means that K/F is
a field extension and 7T is a prime of K containing P.

It suffices to show that (K, T) is ultracomplete (in the sense of
[7]) if and only if (K, +) is ultracomplete, and that the extension
(K, T) of (F', P) is immediate if and only if F' is ultradense in (K, +).
Proposition 2.2 and Remark 1.9 provide the machinery for deducing
the first of these facts from Theorem 1.7 and [7, Theorem 3.1], and
the second from Theorem 1.8 and [7, § 8, first paragraph].

REMARK 2.4. If ® is a nonarchimedean prime value, then D, is
the unique Harrison prime associated with ®. Now suppose ® is an
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Archimedean prime value, say canonically arising from the complex
place 7. No primes are associated with ® unless 7(F') N R*is a prime
of 7(F)N C [7, Theorem 1.1], so suppose this is the case. Note that
if P is associated with @ then PN (—P) is a prime ideal of ¢7'(R).
Now let { be any prime ideal of @ %(R). Let A denote the localiza-
tion of @ '(R) at {. Then the set of primes P of F associated with
@ and with PN (—P) = { is bijective (by the map P — P\{) with
the set of subgroups G of the group of units of A maximal with
respect to having

GNai(C¥) =T (R .

This result sets a theorem of Harrison and Warner into the language
of extended absolute values. (Sketch of proof. The maximality con-
dition on the group G above guarantees that the image of G in I,
generates the isolated subgroup associated with { [16, Chapter C,
Theorem 1]. The remark now follows from [8, Theorem 2.2] by
Noether’s isomorphism theorems and elementary valuation theory
[16, Chapter CJ.) .

Suppose the prime P of F is associated with the prime value ®.
Let (K, +) be an ultracompletion of (F, #). There exists a prime
T of K associated with + and containing P (take T = Dy if « is
nonarchimedean and apply the above result otherwise). That is,
(K, T) is an ultracompletion of (F, P) in the sense of [7].

3. Quadratic forms. Throughout this section we assume F does
not have characteristic two. Two quadratic forms over F are said
to be equivalent as quadratic forms over F when they have the
same number of variables and each can be obtained from the other
by an (F—) linear change of variables. (See [17] for equivalent
concepts and definitions.)

Let Q(x) be a simple transcendental extension of the rational
numbers Q.

THEOREM 3.1. Two quadratic forms over Q(x) are equivalent as
quadratic forms over Q(x) if and only if they are equivalent as
quadratic forms over K for every ultracompletion (K, +r) of Q(x) at a
prime value of Q(x).

In the above theorem we understand K to range over all ultra-
completions at all prime values. Recall that the prime values of F
are exactly the normalized members of the extended prime spots of
F [3, §5].

Let us temporarily call F special if the above theorem is valid
with Q(x) replaced by F. Not all fields are special (see the examples
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below). Pythagorean fields are special (see [17, Lemma 2.2.4] and
Theorem 3.3). The Hasse-Minkowski theorem says that global fields
not of characteristic two are special [17].

Let W(F') denote the Witt ring of equivalence classes of anisotro-
pic quadratic forms over F' [17, Proposition 1.6.5]. Each field exten-
sion K/F induces a ring homomorphism W(F') — W(K). For fe W(F),
let f&® K denote the image of f in W(K). Let

(5) W(F) — I W(K)

be the product of all such maps as K ranges over all ultracompletions
of F at all prime values of F. Now, two quadratic forms over F
with the same number of variables are equivalent if and only if their
radicals have the same dimension and the difference (in W(F')) of
their anisotropic parts is zero [17, Corollaries 1.3.10 and 1.5.5]. Hence
F is special if and only if the map (5) above is injective.

The Hasse-Minkowski theorem and the next proposition together
imply that every simple extension of a global field, and hence in
particular Q(x), is special.

PROPOSITION 3.2. F(x) is special if every simple algebraic ex-
tension of F is special.

Proof. Let 0 %= fe W(F(x)). We must show 0 %= fQ K for some
ultracompletion (K, 4) of F(x) with 4 a prime value. First suppose
there exists he W(F) with o ® F(x) = f. Since F is special, there
exists an ultracompletion (K, +r) of F' with + a prime value and with
h@ K 0. Let § be the prime value obtained by composing + with
the canonical place from the field of formal series K((x)) to K. Then
(K((x)), 0) is an ultracompletion of F(x) by Lemmas 1.16 and 1.17.
Also f® K((x)) = 0, since the canonical map W(K)— W(K((z))) is
injective [14, Theorem of Springer, p. 334].

Now suppose there does not exist he W(F) with f = h & F(x).
Then there exists a monic irreducible polynomial 7 e F[x] such that

0= 3 u, + (7)) e W(F[z]/(m))

where
DI XA W TR

is an anisotropic form representing f with each u; and w, a polynomial
in F[x] not divisible by 7 [14, Theorem 5.3]. (The x; and y, above
are independent indeterminants. For ae F[x]/(n), {«) denotes the
image in W(F[x]/(w)) of the quadratic form ay®.) By hypothesis
F[x]/(7) has an ultracompletion (K, +,) where «, is a prime value and



EXTENDED PRIME SPOTS AND QUADRATIC FORMS 391

(6) Sl + @) @Ky # 0.

Give F(x) the m-adic valuation; it then admits a maximal extension
K with residue class field F-isomorphic to K, and with the same
value group as F(x). Let + be the composition of 4, and the canonical
place K — K,. Then (X, ) is an ultracompletion of F(x) (cf. Lemmas
1.16 and 1.17). f® K is nonzero since its canonical image in W(K)) is
the element (6) above [14, Corollary 5.1]. This proves the proposition.

Let W,..(F) denote the reduced Witt ring of F, i.e., the Witt
ring modulo its nil radical. For any field extension K of F we have
a natural map W, (F)— W,..(K). Recall that for each Archimedean
prime value ® on F, we denote by F', the (unique up to F-isomorphism)
ultracompletion of (¥, @) (cf. 1.15).

THEOREM 3.3. The natural map
( 7 ) Wred(F) i HSO Wred(Fsﬁ)
(product over all Archimedean prime values P) is injective.

Proof. If F is not formally real, the nil radical of W(F') consists
of the forms of even dimension-index [17, Corollary 2.3.3]. Our
result follows immediately in this case.

Now suppose F is formally real and fe W(F) is not nilpotent.
Then there exists an ordering P of F' with respect to which f has
nonzero signature [15, Theorem 2.2]. Let w and ® denote the real
place and prime value associated with this ordering (cf. Example 1.1D).
Let 7' denote the canonical extension of = to F,. P has a unique
extension to F, (a € F is positive if and only if 7'(a/b) is positive for
every be P with 7'(a/b) finite and nonzero. The existence of such b
follows from Theorem 1.8.) Since f® F, has the same (nonzero!)
signature as f, it must be nonnilpotent. The theorem is proved.

REMARK 3.4. Theorem 3.3 is little more than a setting of Pfister’s
[15, Theorem 2.2] into the language of extended absolute values.
Pfister’s theorem says that if F is formally real, then the natural
map

(8) W, F) — I, W(F'p)

is injective (the product is over all orderings P of F. F, denotes
the real closure of F at the ordering P. Note that W(F}) = Z,
the isomorphism assigning to each element of W(F5) its signature.)
Our hope is that the image of the map (7) will be easier to compute
than the image of the map (8). Either computation would give a
fairly detailed picture of W, (F). (Note that the structure of W(F,)
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is known for real ®; see formula (9) below.) The computation of
the image of (8) is discussed in [3, §4; 11].

We now indicate briefly how to recover Pfister’s result from
Theorem 3.3. Let ® be any real prime value on F, i.e., one arising
from a place into R. Kach ordering of F' associated with ¢ has a
unique extension to F, and all orderings of F, are obtained in this
way. (The “unique extension” wag described in the proof of 3.3.
The second assertion follows from the last paragraph of §4.) That
is, any fe W(F') has zero signature at all orderings associated with
@ if and only if f® F, has zero signature at all orderings of F,.
Hence (and here we use Theorem 3.3), it is enough to show the map
(8) is injective whenever F' is ultracomplete at a real prime value.
So now suppose F' = F,. Fix an ordering P associated with @. For
each ae F'*, let ¢ denote the canonical image of o in I'y/I and let
op(a) denote 1 or —1 according as ac P or a¢ P. By mapping ax®
to the element o,(a)-a of the integral group ring of I',/I"; we induce
an isomorphism

(9) W(F) — Z[I,/T7] .

If we map 7I',/I to its second dual, we induce [12, p. 104] a ring
injection [1, Theorem 1.2]

(10) Z| I/ I'%] — Map (Hom (I7y/17¢, £1), Z) .
Finally, the isomorphism of [2, Proposition] induces an isomorphism
(11) v: Map (Hom (I",/I%, £ 1), Z) — I, W(F?,)

(product over all orderings T of F. If we identify W(F,) with Z
and {#1} with Z, then v is given by Y(f)(T) = fKT, P)).) One can
now check that the map (8) is the composition of the injections (9),
(10), and (11). (Use here that (P, T')(a) = op(a)o(a).)

We now set into the language of prime values a result of Harrison
and Warner [7, Theorem 3.2]. It says, roughly, that the existence
of an “approximate” (as measured by @) solution to a quadratic equa-
tion over F is equivalent to the existence of exact solutions in the
family of ultracompletions of (F, ). This result generalizes and
strengthens the local squares theorem.

REMARK 3.5. Let @ be a prime value on F. There exists a
@-topology on F'* with respect to which the closure of F** is precisely
the set of elements of F'* which are squares in every ultracompletion
of (F, ). This topology may be taken to be the coarsest @-topology
separating 1 from 5, unless k, has characteristic 2 and admits no
quadratic extensions. In this latter case we may take the topology
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to be the coarsest @-topology separating 1 from 1+ b for every
be D,\4D, whose image in I, is odd (i.e., does not have a square
root in I, writing 1", multiplicatively).

Proof (sketch). Suppose k, has characteristic 2 and admits no
quadratic extensions. Give F'* the ¢-topology indicated above. Let
(K, 4) be an ultracompletion of (¥, ). Let w be the unique (addi-
tively written) valuation on K with w(Dy) > 0. First suppose a € F'*
is in the closure of F**. Since F'** meets a(l + D,), w'%aK**) =0
(we use the notation of [4] or [7, §3]). w(4) and 0 cannot equal
w*(aK*?) [4, Theorem 1.1]. Also, for any be D,\4D, with w(b) odd,
we have w*(aK**) > w(b) since by hypothesis F'** meets a(l + bD,).
Hence w*(a K*?) = oo, i.e., a € K*2. Now suppose conversely that g ¢ F*
is a square in every ultracompletion of (F, ). Clearly then, w(a)
has even value in /", and hence (since k, is perfect) a(l + D,) meets
F>**, Now suppose be D, 4D, has w(b) odd (in I',). By [7, Theorem
3.2], aF"** meets 1 + bD, so a(l + bD,) meets F** That is, ¢ is in
the closure of F'*%,

The other cases are similar, but easier. (For Archimedean @, use
the proof of [7, Theorem 3.2].) The remark above generalizes (same
proof) to any extended absolute value ¢ such that if 1 + 1e D, (so
@ is nonarchimedean), then the residue class field of {a € F: 9(a) < 1}
is perfect.

We now give two examples of fields which are not special. F is
special only if every element in F' which is a square in every ultra-
completion of F' is itself a square in F' (since for each ¢ F, the
quadratic forms ax® and 2* are equivalent if and only if a€ F*%). OQur
first example is of an algebraic extension of @ not admitting such
a “global squares theorem”.

EXAMPLE 3.6. Let F' = Q[{V'@p): p is a prime number}]. Then
2¢ F*®. For otherwise there exist distinct odd primes p,, ---, p, with
V2 in the field Q[V'2p), -+, V/(2p,)]. But then this field equals
QI 2,V p, -+, V'p,], which is impossible since these two fields clearly
have different dimensions as vector spaces over Q. (I gratefully
acknowledge the help of the several people who made this clear to
me.) On the other hand, 2 is clearly a square in every ultracomple-
tion of F' at an Archimedean prime value. Further, suppose @ is
a nonarchimedean prime value, say with &k, of characteristic p. By
the Dirichlet theorem on arithmetic progressions there exists a prime
number q¢ of the form 1 + 4pn with ne Z. By the local squares
theorem 2 = (2¢)/q is a square in every ultracompletion of (F, ).

This example is essentially unchanged if one replaces “ultracom-
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pletions at prime values” by, for example, “topological completions at
nontrivial absolute values” or “Henselizations at prime values” (cf. §4).

We thank D. K. Harrison for the idea for our next example of
a finitely generated field which is not special. It is based on the
observation that if F' is special and not formally real, then W(F') has
characteristic at most 8. For, W(F') is then by definition a subdirect
product of rings each of which has characteristic at most 8. (Every
field ultracomplete at a nonreal prime value contains a copy of either
C or some p-adic field.)

ExampPLE 3.7. Let

F =Q@, x, + -, sV (—ai—a — -+« —ad)]

where the z; are independent indeterminants. Then F is a finitely
generated nonreal field with W(F') of characteristic 16 [17, Theorem
2.5.4] and hence, by the above remarks, is not special.

J. Schneider constructed the first example of a nonspecial field
that I know of (unpublished).

4. Henselizations. We sketch without proofs some results on
“Henselizations” of fields at extended absolute values. Let ® be an
extended absolute value on F'.

It is easy to show that if K is a field extension of F, then @
has an extension to an extended absolute value on K. We call
Henselian when it has exactly one extension to F'**?, the separable
closure of F. Then ® is Henselian if and only if A, is a Henselian
valuation ring and either @ is nonarchimedean (cf. 1.9) or k,[V/(—1)]
is algebraically closed. Consequently, ultracomplete fields are Henselian.
Also, suppose ® is a real prime value. Then F is real closed if and
only if @ is Henselian and I, is divisible.

Many basic facts about Henselian extended absolute values are
easy consequences of the corresponding facts about Henselian valua-
tions. E.g., from [16, Chapter F, Corollary 2 (Ostrowski)] we have:
If # is Henselian, then F' is separably closed in the topological com-
pletion of F' at the topology induced by ® (cf. [3, §6]). Krasner’s
lemma [16, Chapter F, Corollary 1] also generalizes easily.

By a Henselization of (F, ) we mean a minimal Henselian ex-
tension of (F, ). Let ¢’ be any extension of ¢ to F*?. Let K
denote the subfield of F** of elements fixed under the group of
F-automorphisms of F“°* preserving ¢’ (i.e., with ¢'o0 = ¢@’). Then
(K, #'| K) is a Henselization of (F, #). In fact it is the “only one”.
Uniqueness follows from the strong universal property (compare with
[16, p. 175]): Let L be a (possibly transcendental) extension of F.
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Let o be a Henselian extension of ¢ to L. Then there is a unique
F-isomorphism ¢ of K into L with po = ¢’ | K.

Now suppose ® and 4 are incomparable normalized extended
absolute values on F, with @ Henselian. Then the Henselization of
(ky, ¥) is algebraically closed. (Corollary: A field with a real
Henselian prime value admits exactly one place into B.) The isolated
subgroup of 7'y associated with the valuation ring A,- Ay is divisible.
(See [9] and [16, Chapter H, Corollary 1 (Schmidt)] for related
results.)
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