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INVERSION OF CONDITIONAL EXPECTATIONS

J. Y E H

By its definition a conditional expectation is the Radon-
Nikodym derivative of a finite signed measure. In this paper
an inversion formula is given for recapturing E{Y\X) as an
inverse Fourier transform of the function E(eiCu'x)Y), ueRn,
where X is an random vector and Y is a random variable
satisfying some regularity conditions.

1* Introduction. Let (Ω, 33, P) be a probability space and let X

be a A -dimensional random vector on (Ω, 33, P), i.e., a measurable
transformation of (Ω, 33) into (R\ 33fc) where 33* is the σ-algebra of
Borel sets in the /b-dimensional Euclidean space Rk. Assume that the
probability distribution X is absolutely continuous with respect to
the Lebesgue measure mL on (Rk, 33fc). For a real valued random
variable Y on (Ω, 33, P) with E(\Y\) < ^ let E{Y\X) be the condi-
tional expectation of Y given X which is given as a function on the
value space Rk of X. For ueRk let (u, X) = ΣjU%-Xy- In this
paper we show that if E[ei{uX)Y] is a m^-integrable function of u
on Rk then a version of E(Y\X) is given by

(1.1) E(Y\X)(ζ) = \ e E l e Y ^ i d u )

for ζ e Rk assuming that (dPx/dmL)(ξ) > 0 for a.e. ζ in (Rk, S3&, mL).
(Our conditional expectation E(Y\X) given as a function on Rk rather
than one on Ω is the "conditional expectation in the wide sense" in
the terminology of [2].)

In preparation for (1.1) which is given in Theorem 2 in §3 we
show in Theorem 1 in §3 that if the characteristic function (i.e.,
the Fourier transform) φ of a finite measure Φ on (Rk, 33&) is mL-
integrable on Rk then Φ is absolutely continuous with respect to mL

on {Rk, 33*) and a version of the Radon-Nikodym derivative of Φ with
respect to mL is given by the inverse Fourier transform of φ. We
base this result on the Levy-Haviland Theorem for the inversion of
Fourier transforms of finite measures on (Rk, 33*).

The substance of Propositions 1, 2, and 3 in §2 concerning condi-
tional probabilities, conditional expectations and regular conditional
distributions given as functions on the value space of X is well-
known. We included them here in order to state them in a con-
venient form.

This research is an attempt at justifying a calculus of Wiener
integral originated by M. D. Donsker. Its applications to conditional
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function space integrals will appear in a subsequent paper.

2* Integration of conditional expectations* Throughout §2
we write (Ω, 33, P) for a probability space and X and Y for two
measurable transformations of (Ω, 23) into two arbitrary measurable
spaces (S, g) and (T, ©) respectively unless further specified. We
write Px and Pγ for the probability measures on (S, S) and (ϊ7, ©)
determined by X and Y respectively, i.e.,

(2.1) PX{F) = P{X-\F)) for Fe%

and similarly for PF.

DEFINITION 1. For Ge@ fixed, the conditional probability of Y
being in G given X, written P(YeG\X), is defined to be any real
valued g-measurable and Px-integrable function ψ on S such that

n X~W)) = \ Ψ&PAdξ) for Fe

From the Radon-Nikodym Theorem follows that such a function
τ/τ always exists and is determined uniquely up to a null set of (S,
% Pχ) We shall use P(Ye G\X) to mean either the class of all such
functions ψ or a particular member in it depending on the context.
Thus

(2.2) P{Y~\G) n X"1^)) - ( P(YeG\X)(ξ)PAdO for Fe g .

DEFINITION 2. Let Z be a real valued random variable on (42,
23, P) with Ufl Z I) < °o. The conditional expectation of Z given X,
written E(Z\X), is defined to be any real valued g-measurable and
Px-integrable function ψ on S such that

Z(ω)P(dω) = \ ir(ξ)Px(dξ) for Fe% .
~1{F) JF

The same remark as the one following Definition 1 holds here
too and we have

(2.3) ( Z(ω)P(dω)= \ E(Z\X)(ξ)Px(dξ) for Fe% .

DEFINITION 3. By the regular conditional distribution of Y given
X, written P(YΊX), we mean a real valued function f on © x S
such that

1° for every Ge@, f(G, •) is a version of P(7eG|X)

2° for every ί e S , ψ( , f) is a probability measure on (T, ©).
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Thus when we need to indicate the arguments of P(Y\X), we
write P{Y\X){G, ξ) for (G, ζ)e® x S. It is known that a function
ψ satisfying the conditions 1° and 2° of Definition 3 always exists
whenever the value space (T, ©) of 7 is a Borel space and in par-
ticular when (T, ®) = (Rk, 33fc). For a proof of this statement see
[1]. The proof of Proposition 1 below which relates the regular
conditional distribution to the conditional expectation is parallel to
the proof of the corresponding theorem in which these two are
given as functions on Ω rather than as functions on the value space
S of X. (See for instance Proposition 4.28 in [1].) We give the
proof here for the sake of completeness.

PROPOSITION 1. Let f be a measurable transformation of (T, ©)
into (R\ S31) and f e L^T, ©, PF). // P(Y\X) exists then

(2.4) E(f o Y\ X){ζ) = \ f{rj)P{ Y\ X)(dV, ξ) for a.e. ξ e (S, & Px) .

Proof. Consider the case where / = χG for some G e ©. Then
for every Fe% we have by (2.3)

(2.5)

On the other hand, by 2° and then 1° of Definition 3,

ί f(π)P(Y\X)(dy, ξ) = \ χβ{η)P(Y\X)(dη, ξ)
JT JT

so that by (2.2) we have

(2.6) \{\τf(η)P(Y\X)(dy, ξ)}PΛdξ) = P(Y^G) Π

Thus the left side of (2.5) is equal to that of (2.6) for every Fe%
so that (2.4) holds in this case.

Now that (2.4) holds when / is the characteristic function of a
member of © we can follow the usual procedure in integration theory
to show that (2.4) holds for nonnegative simple functions on T, non-
negative ©-measurable function on T and finally real valued im-
measurable functions on T. Since fe L^T, ®, PF), both sides of (2.4)
always exist and are finite. In passing from nonnegative simple
functions on T to nonnegative ©-measurable function on T we use the
Monotone Convergence Theorem for the conditional expectation which
states that if {Zn, n = 1, 2, •} c L^Ω, S3, P) and Zn{ώ) \ Z0(ω) for a.e.
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α)6(fl, 33, P) then E(Zn\X)(ξ) | #(Z0|X)(f) for a.e. £e (S, & P x) and
which can be proved readily.

PROPOSITION 2. Let σ(% x ©) 6β ίfcβ σ-algebra of subsets ofSxT
generated by the semialgebra % x © ami ϊe£ P[χ,r] &β ̂ e probability
measure on (S x T, σ(% x ©)) determined by the measurable trans-
formation [X, Y] of (Ω, S3) into (S x Γ, σ(g x ©)). -Z>βί f be a meas-
urable transformation of (S x T, σ(% x ©)) mίo (JB1, S31)- //P(Γ|-3Γ)
exists then

E(fo[X, Y]) =
(2-7)

= Jg\\/(ξ, y)P(Y\X)(dy,

in the sense that the existence of any member in (2.7) implies that
of the other and the equality of all.

Proof. The first equality in (2.7) is standard. Let us prove the
second. Consider the case where

/ ( £ , y) = X**&, V) = lΛξ)UV) f o r (ξ,η)eSxT

where Fe% and Ge®. Then by 2° and 1° of Definition 3 and by
(2.2)

\s{\/(?>

= \ P(YeG\X)(ξ)Px(dξ)

- P{Y-\G) n X~\F))

while

, y))

= \ XFXG& y)Pu.rΛd(ξ, y))
JSXT

= Pu,π(F x G)

= P{o) e Ω; X(ω) e F and Y(ω) e G)

= P(Γ-ι(G) Π X-\F))

so that the second equality in (2.7) holds for this particular case.
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We then proceed as in the proof of the Fubini Theorem to an arbi-
trary real valued σ(% x (S)-measurable function / on S x T to com-
plete the proof.

PROPOSITION 3. Let Z be a real valued random variable on (Ω,
33, P) with E(\Z\) < °o and let g be a measurable transformation of
(S, g) into (R\ S31). Then

(2.8) E[(g o X)Z] = \s9{ζ)E{Z | X){ξ)Pz(dξ)

in the sense that the existence of one side implies that of the other
and the equality of the two.

Proof. Let us define a set function Φ on 33 by

Φ{B) = \ Z(ω)P(dω) for Be 33 .
JB

Since E(\Z\) < oofφ is a finite signed measure on (Ω, 33) which is
absolutely continuous with respect to P and has Z as its Radon-
Nikodym derivative with respect to P. Thus for the real valued
random variables go X and Z on (Ω, 33, P) we have

E[(goX)Z] = \ g(X(ω))Z(ω)P(dω) = \ g(X(ω))Φ(dω)
JΩ JΩ

in the sense that the existence of one member implies that of the
others and the equality of all. Then, to prove (2.8) it suffices to
show that

(2.9) \Qg(X(ω))Φ(d)ω = \Q(!£)E{Z \ X)(ξ)Px{dξ)

in the sense that the existence of one side implies that of the other
and the equality of the two.

Let us consider the case where g = χF for some Fe%. Then

( g(X{ω))Φ(dω) = \ χF(X(ω))Φ(dω) = \ Φ(dω)
JΩ JΩ JX-MF)

= \ Z(ω)P(dω) = \ E(Z\X)(ξ)Px(dξ)
JX-HF) JF

= \sg(S)E(Z\Xχξ)Pz(dξ)

by (2.3) so that (2.9) holds. Following the standard procedure in
integration theory we proceed from this particular case to nonnega-
tive simple functions on S, nonnegative g-measurable functions on
S and finally real valued ^-measurable functions on S to complete
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the proof.

3* Inversion of conditional expectations* It is well-known
that if the characteristic function ψ of a distribution function F on
Rι is m^-integrable on R1, then F is absolutely continuous and

for a.e. ζ e (R\ S31, mL) .

Let Φ be a finite measure on (Rk, S5A) and let φ be its charac-
teristic function, i.e.,

(3.1) <P(V) = [ eiiζrί)Φ(dξ) for 7}eRk

where (f, η) = ΣjU £*%•• According to the Levy-Haviland Inversion
Theorem (see [3] and [4])

(3.2)

= l i m - J - Π e .e

*-~ (2πχ JσAi=i — i ^

for any ah 63 e i?1, a3- < δ3-, i = 1, 2, ••, k, w h e r e

(3.3) Ch = (-h, h)x ••• x {-h, h)czRk wi th Λ > 0 ,

and the modified characteristic function %ajΛ3 is defined by

1 for η, e (αΛ 6, )

(3.4) 2.^(7/) = ]° f 0 Γ ^ e I α " W
— for %• = % and for % = bj .
Δ

From (3.2) we derive the following:

THEOREM 1. // the characteristic function φ of a finite measure
Φ on (Rk, 35fe) is τnL-integrable on Rk, then Φ is absolutely continuous
with respect to mL on (Rk, S5fe) and a version of the Radon-Nikodym
derivative of Φ with respect to mL is given by

(3.5) M iξ) = - i - f e-«'-*φ(η)mL{dη) for ξ e Rk .
dmL {2π)k }χk

Proof. Since the jth factor of the product in the integrand
on the right side of (3.2) is a bounded continuous function of η5e
R\ if we assume the m^-integrability of φ on Rk then the inte-
grand on the right side of (3.2) is mL-integrable on Rk so that (3.2)
reduces to



INVERSION OF CONDITIONAL EXPECTATIONS 637

1 Γ

^ \ Π

To show that Φ is absolutely continuous with respect to m z on
(22*, 35") let A e 33* and mx(A) = 0. We proceed to show that Φ(A) =
0. Let §1 be the algebra of subsets of Rk which are unions of
finitely many disjoint half open and half closed intervals (alf 6J x
x fe, bk] in Rk. Then the α-algebra of subsets of Rk generated by
SI is precisely our %$k. Let ε > 0 be arbitrarily given. Since Φ is
a finite measure on 35fc and since mL{A) is finite (in fact equal to
zero), (Φ + mL)(A) is finite so that there exists some B e % such that

(3.7) (Φ + mL){AAB) < ε

where AΔB is the symmetric difference between A and B. Now
(3.7) implies that Φ{AAB) < ε so that

(3.8) Φ(A) ^ Φ(B) + Φ(AJB) < Φ(B) + e .

It also implies that mL(AAB) < ε so that in view of mL(A) = 0 we
have

mL{B) < e .

Since B is the union of finitely many, say m, disjoint half open half
closed intervals, there exist m open intervals B{n), n = 1, 2, •••, m,
such t h a t

(3.9) 5 c U £ ( M ) and mL(5) < Σ mL(B^) < e .

Let each JS(%) be given as

(3.10) 5 ( w ) = ζln) + C(w)

where

(3.11) Qn) G 22* and C(ίι) - (-M" }, ^ίw)) x x (-Λ^, Kn))cRk .

In view of the openness of C{n) and the definition of %aj)bj by (3.4)
we have from (3.6)

π
W.TΓV .1 RK

(3.12)
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Since \fah?))-1smr]sh
lf)\ ^ 1 for η^R1 and since mL{C{n)) = mL{B{n))

we have

(3.13) Φ(B^) = Φ(ζ w + C{n)) ^ ^ ^ ί
(2TΓ) J

From (3.9) and (3.13) we obtain

(3.14) Φ(B) £ Σ Φ(B^) £ -φγ \j φ(V) I mL(dy) .

Using (3.14) in (3.8) we have

Φ(A) < ε j - J ^ j J ^ ) I mL{dη)

From the arbitrariness of ε > 0 we have Φ(A) ~ 0. This proves the
absolute continuity of Φ with respect to mL on (Rk, S5fc).

To obtain the Radon-Nikodym derivative of Φ with respect to
mL on (Rk, S5&), let us observe first that the absolute continuity of
Φ with respect to mL implies that the Φ measure of the boundary
of the open interval C{n) in (3.11) is equal to zero. Thus in (3.12)
the strict equality actually holds. If we apply this improved (3.12)
to ζ + Ch where ζ is an arbitrary point in Rk and Ch is an open
interval in Rk as given by (3.3) then we have

(3.15)

dΦ (ζ)mL(dζ) = Φ(ζ + Ch)

Let h —»• 0 on both sides of (3.15). On the one hand we have

M m ί ί ^

p ( ζ ) for a e ζe (Bk
), for a.e. ζe (Bk, W,

dmL

and on the other hand by the Dominated Convergence Theorem

lim _ i _ ί Π ^ψLe-^
1 ' 1

Using (3.16) and (3.17) in (3.15) we have

f o r a e



INVERSION OF CONDITIONAL EXPECTATIONS 639

This completes the proof of the theorem.
By means of Proposition 2 and Theorem 1 our inversion theorem

for conditional expectation can be derived now.

THEOREM 2. Let Y be a real valued random variable on a pro-
bability space {Ω, 33, P) with E(\Y\) < oo and let Xbe a k-dimensional
random vector i.e., a measurable transformation of (Ω, 33) into (Rk,
33*), Assume that the probability distribution Px of X is absolutely
continuous with respect to mL on (Rk, 33*). If E[ei{uX)Y] is a mL-
integrable function of u on Rk then a version of the conditional
expectation of Y given Xy E(Y\X), is given by

(2π)k

Proof. Since Y is a measurable transformation of (42, S3) into
(R\ 331) which is a Borel space, the regular conditional distribution
of Y given X, P(Y\X), exists. With fixed ue Rk consider a complex
valued function / on Rk x R1 defined by

f(ζf η) = ei{u'ξ)r] for ξ e Rk and ηe R1 .

Applying (2.7) of Proposition 2 and (2.4) of Proposition 1 to the real
and the imaginary parts of / we obtain

E[e*^Y] = \ e^M\ yP(Y\X)(dy,ξ)\PAdξ)
(3.19) Uk UR1 ]

Consider a set function Φ defined on 33* by

(3.20) Φ(F) = [ E(Y\X)(ζ)Pχ(dζ) for
JF

Since E(Y\X) is Px integrable on Rk, Φ is a finite signed measure
on (Rk, 33*) which is absolutely continuous with respect to Px on
(Rk, S3fe) and has E(Y\X) as its Radon-Nikodym derivative with respect
to Px. According to (3.19), E[ei{v-X) Y], u e Rk, is the characteristic
function of Φ. Under the hypothesis of the theorem, this charac-
teristic function is m^-integrable over Rk. Applying Theorem 1 to
the positive and the negative part of Φ we obtain
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(3.21)

(2π)

Since by (3.20)

= — ^ ( e-
u* S)E[eUu X) Y]mL(du) for a.e. ξe(Rk, S3*, mL) ..

(2JΓΓ JB*

dΦ (ί) = £;(Γ|X)(f)4^(ί) for a.e. f e (β», S3*, mL)

we have (3.18).
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