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ITERATIVE TECHNIQUES FOR APPROXIMATION OF
FIXED POINTS OF CERTAIN NONLINEAR
MAPPINGS IN BANACH SPACES

R. L. THELE

Let D be a closed convex subset of a Banach space X,
let T: D— D be nonexpansive (thatis, || Tx — Ty || = lle—y |
for every x,y<€ D), and let F, = 2T + (1 — 2)I, where 2€(0, 1)
and 7 denotes the identity on [D. Several authors have
found conditions under which the sequences of iterates {T"x},
or the sequences {F';z}, converge strongly or weakly to fixed
points of 7 for all x€ D. In this paper we establish conditions
under which the sequences {F7,x} converge strongly to fixed
points of T for all z in a neighborhood of the fixed point
set of 7T; furthermore, our theorems hold for classes of
mappings 7 more general than the class of nonexpansive
mappings.

We complement these results by proving theorems under which
local convergence of iterates entails global convergence; thus by
combining our results in these two areas we obtain new theorems
regarding the global convergence of iterates. Finally, we give an
example of a class of mappings satisfying the various conditions of
our theorems.

1. Local and global convergence of iterates. Let D be a convex
subset of the Banach space X, and let T: D— D. Adopting the
terminology of Furi and Vignoli [6] we say that the sequence {7T"x}
of iterates of x,€ D is stable if for every & > 0 there exists 6 > 0
such that ||T"x — T"x,|| < & for every # = 1,2, --- whenever x€ D
and ||z — z,]] < 0. We say that T has stable iterates if the sequence
{T"x} of iterates of x is stable for every x€ D. Finally, if x€ X and
Bc X we define d(x, B) = inf {||z — y||: € B}.

THEOREM 1. Let D be a convex subset of a Banach space X and
suppose that T:D— D has stable iterates. Let A be a nonempty
subset of D.

(i) If there exists p > 0 such that {T"x} has a cluster point
in A whenever x€ D and d(x, A) < p, then {T"x} has a cluster point
wn A for every xe D.

(ii) If there exists p > 0 such that {T"x} has its limit in A
whenever x€ D and d(x, A) < o, then {T"x} converges to some point
of A for every xe€ D.

Proof. To prove the first statement, let € D and x,¢ A. For
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each r €0, 1] let v, = M + (1 — M)z, and set A, = sup {\€ [0, 1]: {T™y}}
has a cluster point in A}. Let 6 correspond to ¢ = p/3 in the defini-
tion of the stability of {T"y,}, and choose €0, \] such that
192, — ¥3, /] < 6 and {T"y;} has a cluster point in 4. If X, =1, let
Ny = Ny if A < 1, let N, € (A, 1] be such that ||y;, — v, || <d. Since
there exists a cluster point w in A of {T"y,} and a positive integer
N such that || T"y, — w]| <p/3, we have that

TV, — wl] S | Ty — T | + || T, — TV 1] + 1| T, — wl|
<pB+pB+p8=p.

Thus d(T"y,, A) < || T"y,, — w|| < p, entailing that {7T"*"y,}—and
hence {T"y;,}—has a cluster point in A. If A\, <1, this contradicts
the definition of X\,; thus X\, =1, and since in this case y,, =, we
have that {T"x} has a cluster point in A.

To prove the second statement, we let x € D and note that by
our proof of the first statement {7"z} has a cluster point we A.
Thus there exists a positive integer N such that [|T%2 — w | < p,
implying that 7%+"x — w, whence T"x — w.

We remark that in the case of the second statement of the
theorem above, A must contain a fixed point of T, since if T is
continuous the limit of a sequence {T™x} is necessarily a fixed point.
In our applications of this theorem we will assume either that 4 is
the fixed point set of T or that A is a singleton.

COROLLARY 1. Let D be a convex subset of a Banach space X,
and let T: D— D possess stable iterates. Let x, be a fived point of
T for which there exists an open neighborhood U of w, UC D, such
that T is continuwously Fréchet differentiable in U and || T'x,|| < 1.
Then Tz — x, for every wxe€ D.

Proof. Since T is continuously Fréchet differentiable in U and
[| T'x%, || < 1, there exists a constant ke (0, 1) and an open ball S(z, p)
about z, with radius p, S(, o) C U, such that if zeS(xz, 0) then
| T2]]| < k. Let yeS(®, p). Then there exists a point z in the
segment from «, to y such that (see Fréchet [5])

[ Two — Tyll = 1 T2 1w — wl -
But ze S(w, 0) so that ||T"z|] < k. Thus for every y < S(w, 0)
| Two — Ty || S ko, — vl

By induction, [[@, — T"y|| < k" ||@, — y|| for every n=1,2,3, ---.
Since k*— 0, Ty — x, for every y € S(x,, p). By part (ii) of Theorem
1, T*x —x, for every we D.
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2. Conditions implying local convergence of iterates. The
modulus of convexity of a Banach space X is the function é: [0, 2] —
[0, 1] defined by

09 =it {L— o+ ylkllel SLllul <L end o -yl 2 ¢f -

It is well-known (cf. [9]) that ¢ is nondecreasing and continuous
except possibly at 2. Furthermore, letting &, = sup {e € [0, 2]: d(¢) = 0},
X is uniformly convex if and only if ¢ = 0, X is uniformly non-
square if and only if & < 2, and X is strictly convex if and only if
8(2) = 1.

We observe that if x, y € X satisfy the conditions

el <d, l|lyll<d, and ||z —yl||=¢, then
] -

Finally, we denote by I the identity mapping on any convex subset
of X.

THEOREM 2. Let D be a convex subset of a untiformly nonsquare
Banach space X. Suppose that T: D — D has a nonempty fized point
set A and that T satisfies the following conditions: There exist
p>0,¢>0, and s =1 with (1 — d(¢/s))s < 1 such that if x€ D and
d(z, A) < p then

(1) [ Te — || = cd(z, A), and

(i) ||Te —u|| Esllae — ul| for every ue A.

Then setting F = 1/2(1 + T), d(F"x, A)— 0 for every x€ D for which
d(z, A) < p.

Proof. We observe that if x¢ A then
cd@, A) S |Te —z||S || To —w]| + le —ul| = A +9)|Je—u]|

for every we A. Thus cd(z, A) < (1 + s)d(z, A), so that if T is not
the identity then ¢ <1 + s. Therefore ¢/s <1 + 1/s < 2, and more-
over if ¢/s = 2, then s =1 and ¢ = 2.

Let e D satisfy 0 <d(x, A) < p, and for arbitrary » > 1 let
Uy, € A satisfy ||o—u,,,|| < minimum {o, rd(z, A)}. Thus ||Tz—u,,.|| <
slle — ug,. ||

Let d =s||le — u,,.|| and e =||Tw — x||. Since ||z — u,,.|| = d,
| Te —u,,, || =d, and ||(x — %,,,) — (Tx — %,,,)|] = ¢ we obtain

I'Fx—ux,r” =_;'”(x_uz,r) +(Tx_u’z,r ”
= @A —d(e/d)a .
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Now

To — o]l - cd(@, 4) _ ¢
sy, — || ~ srd(x, A) sr

1

€
d
and thus since 6 is nondecreasing

1—5(e/d)§1—5< )

£
sr
Therefore,

d(Fr, 4) < |[Fo — w,,.|| < (1 — d(c/d)d = (1 - a(ﬁ))d

= (1= a(L))slo = wanll = (1 = 8(2))ora, 4).,

for every r > 1.

Let 7 = lim,.,; (1 — d(¢/sr))sr. Then d(Fux, A) < nd(x, A) when-
ever d(x, A) < p. If ¢/s <2 then 0 is continuous at ¢/s and 7 =
(1 —d(e/s))s<1. If e¢/s=2 then ¢ =2 and s =1, and since X is
uniformly nonsquare, »=1-—1lim,,,_d(¢)<1. By induction, d(F"z, A) <
7"d(x, A) whenever d(x, A) < p, implying that d(F ™z, A) — 0 whenever
d(x, 4) < p.

COROLLARY 2. If the hypotheses of Theorem 2 are satisfied and
if in addition A is compact, then the sequence {F"x} has a cluster
point in A whenever d(z, A) < p.

Proof. Since whenever d(x, A) < p we have d(F"x, A)— 0, we
can select a sequence f{a,}C A such that ||F"z —a,||—0. The
sequence {a,} has a cluster point a € A which is then a cluster point

of {F™x}.
We note two important consequences of Theorem 2:

REMARK 1. If the mapping of Theorem 2 (or Corollary 2) has
a unique fixed point % then one may conclude that F"x—u for
every ¢ €D for which ||z —u] < p.

REMARK 2. If condition (ii) of Theorem 2 holds for s =1 and
if X is uniformly nonsquare then one need only verify that condition
(i) holds for some ce (s, 2].

By applying Theorem 1 to Corollary 2 we obtain:

COROLLARY 3. If the hypotheses of Theorem 2 are satisfied, and
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if in addition A is compact and F has stable iterates, them the
sequence {F"x} has a cluster point in A for every x¢€ D.

REMARK 3. In a uniformly nonsquare space, for each ce (s, 2]
there always exists s > 1 such that (1 — d(¢/s))s < 1.

Proof. Since ¢ > ¢, lim,,_d(¢) > 0. Thus lim,.,. (1 — d(¢/s))s =
1 — lim,.,_0(¢) < 1. Therefore, there exists s> 1 such that (I —
d(e/s))s < 1.

THEOREM 3. Let D be a convexr subset of a wuniformly convex
Banach space X. Let T: D- D possess a monempty compact fixed
potnt set A. Suppose that there exists a meighborhood U in D of
A such that if xe U then ||Tx — x|l = cd(x, A) for some constant
ce(0, 2], and such that T is continuously Fréchet differentiable in
U with ||T'x|| <1 if x€ A. Then theree exists p > 0 such that if
zeD and d(z, A) < p then d(F"z, A)— 0.

Proof. By the remark above there exists s > 1 such that
(1 —d(e/s))s <1. Let ueA. Since T has a continuous Fréchet
derivative in a neighborhood of % and ||T'w|| <1, there exists a
neighborhood U, in D of w such that if xe U, then ||[Tx — u]|| =
| Te — Tu||<sl|le —ul|l. Letting V=UN ..U, and choosing
© > 0 such that if d(x, A) < p then z € V, the hypotheses of Theorem 2
are satisfied. Therefore d(F"z, A)— 0, for each x € D with d(z, 4) < p.

3. Some examples. Let D be a closed convex subset of a
Banach space X. We consider first mappings T: D — D satisfying the
condition

(1) (T -Tyllsalle—yll +0llle— Tell +lly — Tylll
+oellle — Tyll + [ly — Tell]

where a, b, and ¢ are nonnegative constants such that a + 2b + 2¢=1.
In particular if b =¢ =0, T is a nonexpansive mapping, while if
b=1/2, T is of a class of mappings investigated by Kannan [10]. A
general fixed point theorem in uniformly convex spaces for mappings
satisfying condition (1) has recently been proved by Goebel, Kirk,
and Shimi in [8]. We now obtain the following application of
Theorem 2 to mappings of this type:

THEOREM 4. Let D be a nonempty, closed, bounded, and convex
subset of a uniformly convex Banach space X and let T: D— D be
a continuous mapping satisfying condition (1) above with b+ 0.



264 R. L. THELE
Then T has a unique fixed point u, and F"x— u, for every xe D.

Proof. By the fixed point theorem of [9] T has at least one
fixed point. If Tu =wand Tw = vand == v, then by (1) [ — v|| <
(@ + 2¢) ||w — v||, which implies that b = 0, a contradiction. Thus
T has a unique fixed point which we denote .

If xe D, then since Tu = u

(2) 1Tz —ullsalle—ull +blla — Te|l + cllle —w|l + |u — Tz
s(e+b+olle—ull+ 0+ llu— Tell.

By combining terms we obtain for every ze D
1Te —wll = llz —ull.
If e D we have by inequality (2) above that
A=-9lTe —ull=(@+o)lle —ull+blla— Tl
Thus

A-=ollle—ull-lle - Tell=Q - )| To — ull
S@+o)lle—ull+dlle— Tx|.

Collecting terms we obtain
A+db—0lle—Tellz—a—2¢)]|z—ul .
Sincel1+b—¢>0and 1—a — 2¢>0 we have for every x€D

1—a—2¢c
o= Toll 2 22— 215 — u.
The conditions of Theorem 2 are now satisfied (for s =1 and for
every o > 0), and thus in view of Remarks 1 and 2 above F"z—u
for every x € D.

As another example we consider strongly pseudo-contractive
mappings. If D is a convex subset of a Banach space X and Cc D,
a mapping 7: D— D is said to be strongly pseudo-contractive relative
to C[7] if for each € X and r > 0 there exists a number a.(x) <1
such that ||z —y || £ a. (@) |1 + )& — y) — r(Tx — Ty)||, for every
yeC. It is easily seen that if T has a fixed point € C, then % is
the only fixed point of 7. Conditions for the existence of fixed
points for such mappings are given in [7]. The following theorem
gives conditions under which strongly pseudo-contractive mappings
satisfy condition (i) of Theorem 2.

THEOREM 5. Let D be a conver subset of a Banach space X
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and let T: D— D be strongly pseudo-contractive relative to C. If T
has a fized point we C, and if for some r > 0 limsup,., a.(z) <1,
then there exists ¢ > 0 and an open ball S(u, €) of radius € about u
such that if x€ DN S(u, ) then ||a — Tzl =clle — ull.

Proof. Since lim sup,_, @,(x) < 1, there exists an open ball S(u, ¢)
of radius ¢ about % and a constant %€ (0, 1) such that if 2€ DN S(x, ¢)
then a,(x) < k. Let ¢= @1 — k)/(kr). Then (1 — a,(x))/(a(z)r)=c
for each x€ DN S(u, ¢). Since Tw = u, for each xe DN S(u, ¢)

e —ull = a@) |1+ r)(@—u)—r(Te — w)]|
= a,@)||r@ — Tw) + (@ — w)||
sa@)rlle— Te|| + a @) |le —ull,

yielding

1=a@ iy oy < jo— Tall .

Thus
clle —ull = |le — Tx||

for every x€ DN S(u, €).
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