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ITERATIVE TECHNIQUES FOR APPROXIMATION OF
FIXED POINTS OF CERTAIN NONLINEAR

MAPPINGS IN BANACH SPACES

R. L. THELE

Let D be a closed convex subset of a Banach space X,
let T: D->Dbe nonexpansive (that is, | | Tx — Ty | | ^ || x - y \\
for every x, y e D), and let Fλ = λT + (1 - λ)I, where λ e (0,1)
and I denotes the identity on D. Several authors have
found conditions under which the sequences of iterates {Tnx},
or the sequences {Fix}, converge strongly or weakly to fixed
points of T for all xeD. In this paper we establish conditions
under which the sequences {F?/2x} converge strongly to fixed
points of T for all x in a neighborhood of the fixed point
set of T; furthermore, our theorems hold for classes of
mappings T more general than the class of nonexpansive
mappings.

We complement these results by proving theorems under which
local convergence of iterates entails global convergence; thus by
combining our results in these two areas we obtain new theorems
regarding the global convergence of iterates. Finally, we give an
example of a class of mappings satisfying the various conditions of
our theorems.

1* Local and global convergence of iterates* Let D be a convex
subset of the Banach space X, and let T: D—*D. Adopting the
terminology of Furi and Vignoli [6] we say that the sequence {TnxQ}
of iterates of xoe D is stable if for every ε > 0 there exists δ > 0
such that || Tnx — Tnx0 \\ < ε for every n = 1, 2, whenever x e D
and \\x — xo\\ < δ. We say that T has stable iterates if the sequence
{Tnx} of iterates of x is stable for every xeD. Finally, if a eXand
5 c X we define d(x, B) = inf {|| x - y ||: y e B}.

THEOREM 1. Let D be a convex subset of a Banach space X and
suppose that T\D~-*D has stable iterates. Let A be a nonempty
subset of D.

( i ) If there exists p > 0 such that {Tnx} has a cluster point
in A whenever xeD and d(x, A) < p, then {Tnx) has a cluster point
in A for every xeD.

(ii) If there exists p > 0 such that {Tnx} has its limit in A
whenever xeD and d(x, A) < p, then {Tnx] converges to some point
of A for every xeD.

Proof. T o p r o v e t h e first s t a t e m e n t , l e t xeD a n d x0eA. F o r
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each λ e [0, 1] let yλ = Xx + (1 - \)xQ and set λ0 = sup {λ e [0, 1]: {Tny}}
has a cluster point in A). Let δ correspond to e = p/Z in the defini-
tion of the stability of {Tnyλo}, and choose λLG[0, λ0] such that
II2/̂  — VXQW < δ and {Tnyλl} has a cluster point in A. If λ0 = 1, let
λ2 = λo; if λ0 < 1, let λ 2 e (λ0, 1] be such that \\yχ2 — yλo \\ <δ. Since
there exists a cluster point w in A of {Tnyλl} and a positive integer
N such that || TNyh - w \\ <ρβ, we have that

II T»yh -w\\^\\ T»yh - T«yh || + || T»yh - TNyk \\ + || T»yh - w \\

< pβ + pβ + pβ = p .

Thus d{TNyh, A)^\\ TNyh - w | | < p, entailing that {T^ ; - 2}
hence {Tnyh}—has a cluster point in A. If λ0 < 1, this contradicts
the definition of λo; thus λ0 = 1, and since in this case yh = x, we
have that {Tnx} has a cluster point in A.

To prove the second statement, we let xe D and note that by
our proof of the first statement {Tnx} has a cluster point we A.
Thus there exists a positive integer N such that |[ TNx — w \\ < p,
implying that TN+nx-+w, whence Tnx-+w.

We remark that in the case of the second statement of the
theorem above, A must contain a fixed point of Γ, since if T is
continuous the limit of a sequence {Tnx) is necessarily a fixed point.
In our applications of this theorem we will assume either that A is
the fixed point set of T or that A is a singleton.

COROLLARY 1. Let D be a convex subset of a Banach space X,
and let T:D-^D possess stable iterates. Let x0 be a fixed point of
T for which there exists an open neighborhood U of x09 UczD, such
that T is continuously Frechet differentiate in U and \\ T'xo\\ < 1.
Then Tnx—>x0, for every xeD.

Proof. Since T is continuously Frechet differentiate in U and
|| T'xQ || < 1, there exists a constant k e (0, 1) and an open ball S(xQ, p)
about x0 with radius p, S(x0, p) c U, such that if x e S(x09 p) then
\\Tz\\<k. Let yeS(xQ,p). Then there exists a point z in the
segment from x0 to y such that (see Frechet [5])

But zeS(x0, p) so that || T'z\\ < k. Thus for every yeS(x0, p)

\\Txo~ Ty\\£k\\xo-y\\.

By induction, || x0 - Tny || ^ kn \\ x0 - y \\ for every n = 1, 2, 3,
Since kn -> 0, Tny —> x0 for every y e S(xOf p). By part (ii) of Theorem
1, Tnx —*x0 for every xe D.
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2* Conditions implying local convergence of iterates* The
modulus of convexity of a Banach space X is the function δ: [0, 2] —•
[0, 1] defined by

δ(ε) = i n f { l - ± \ \ x + y\\:\\x\\ £ l , \ \ y \ \ £ 1 , a n d \\x - y \\ ̂  ε } .

It is well-known (cf. [9]) that δ is nondecreasing and continuous
except possibly at 2. Furthermore, letting ε0 = sup {ε e [0, 2]: δ(ε) = 0},
X is uniformly convex if and only if ε0 = 0, X is uniformly non-
square if and only if ε0 < 2, and X is strictly convex if and only if
δ(2) - 1.

We observe that if x, y e X satisfy the conditions

\\x\\£d,\\y\\£d, a n d \\x-y\\^ε, t h e n

Finally, we denote by I the identity mapping on any convex subset
of X.

THEOREM 2. Let D be a convex subset of a uniformly nonsquare
Banach space X. Suppose that T: D —> D has a nonempty fixed point
set A and that T satisfies the following conditions: There exist
p > 0, c > 0, and s Ξ> 1 with (1 — δ(c/s))s < 1 such that if xe D and
d(x, A) < p then

( i ) \\Tx -x\\^ cd{x, A), and
(ii) || Tx — u\\ ^ 8 || x — u \\ for every ue A.

Then setting F = 1/2(7 + Γ), d(Fnx, A) —> 0 for every x^D for which
d(x9 A) < p.

Proof. We observe that if x $ A then

cd(x, A ) £ \ \ T x - x \ \ ^ \ \ T x - u \ \ + \ \ x - u \ \ ^ ( 1 + s ) \ \ x - u \ \

for every ueA. Thus cd(x, A) ^ (1 + s)d(x, A), so that if T is not
the identity then c ^ 1 + s. Therefore c/s ^ 1 + 1/s ^ 2, and more-
over if c/s = 2, then s = 1 and c = 2.

Let a; 6 Z) satisfy 0 < d(α;, A) < ô, and for arbitrary r > 1 let
ux,reA satisfy ||& —%x,r|| ^ minimum {p, rd(x, A)}. Thus HTαj-^rll ^
s \ \ x - u x > r \ \ .

Let d = 8 | | a? — ^ , r | | and ε = || Tx — x | | . Since || x - ux,r \\ ^ d,

| | Γα; - uXyr | | ^ d, and | | (x — %β,r) — (Tx — ux,r) \\ = ε we obtain

II *fc - u,,r || = i . || (α? - u.,r) + (Tx- ux>r) \\
Δ

^ (1 - δ
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Now

±_ = \\Tx-x\\ ^ cd(%, A) __ c
d s | | Ma.,r — a? | | ~~ srd{x, A) sr f

and thus since 3 is nondecreasing

1 - δ(e/d) ^ 1 - δ(-ϊ-) .
\sr/

Therefore,

d(Fα, A) ^ ||Fα - wβ>r || ^ (1 - δ(e/d))d rg ( l - δ ( — )

- (l - ί(JL))8 || x - Uχ,r || ^ (l - δ(£j)8rd(x, A) ,

for every r > 1.

Let Ύ] = limr_1+ (1 — δ(c/sr))sr. Then d ( ^ , A) ^ d̂(a?, A) when-
ever d(x, A) < p. If c/s < 2 then δ is continuous at cfs and 77 =
(1 — δ(cjs))s < 1. If c/s = 2 then c = 2 and s = 1, and since X is
uniformly nonsquare, η — 1 — limβ_2_ δ(ε)<l. By induction, d(Fnx, A) ^
^cZ(#, A) whenever ώ(α;, A) < p, implying that d(Fnx, A) —• 0 whenever
d(α?, A) < ^.

COROLLARY 2. 7/ ίΛβ hypotheses of Theorem 2 are satisfied and
if in addition A is compact, then the sequence {Fnx} has a cluster
point in A whenever d(x, A) < p.

Proof. Since whenever d(x, A) < p we have d(Fnx, A) —> 0, we
can select a sequence {an}czA such that || Fnx — an\\ —»0. The
sequence {an} has a cluster point ae A which is then a cluster point
of {Fnx}.

We note two important consequences of Theorem 2:

REMARK 1. If the mapping of Theorem 2 (or Corollary 2) has
a unique fixed point u then one may conclude that Fnx—+u for
every xeD for which \\x — u\\ < p.

REMARK 2. If condition (ii) of Theorem 2 holds for s = 1 and
if X is uniformly nonsquare then one need only verify that condition
(i) holds for some ce(ε0, 2].

By applying Theorem 1 to Corollary 2 we obtain:

COROLLARY 3. If the hypotheses of Theorem 2 are satisfied, and
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if in addition A is compact and F has stable iterates, then the
sequence {Fnx} has a cluster point in A for every x e D.

REMARK 3. In a uniformly nonsquare space, for each c e (ε0, 2]
there always exists s > 1 such that (1 — δ(c/s))s < 1.

Proof. Since c > ε0, limβ_β_ δ(ε) > 0. Thus lims^1+ (1 — δ(c/s))s =
I — limε^c_ δ(ε) < 1. Therefore, there exists s > 1 such that (1 —
δ(c/s))s < 1.

THEOREM 3. Let D be a convex subset of a uniformly convex
Banach space X. Let T: D—+ D possess a nonempty compact fixed
point set A. Suppose that there exists a neighborhood U in D of
A such that if xe U then \\ Tx — x\\ ^ cd(x, A) for some constant
ce(0, 2], and such that T is continuously Frechet differentiable in
U with || Tfx\\ ^ 1 if xe A. Then theree exists p > 0 such that if
xeD and d(x, A) < p then d(Fnx, A) —>0.

Proof. By the remark above there exists s > 1 such that
(1 — δ(c/s))s < 1. Let ue A. Since T has a continuous Frechet
derivative in a neighborhood of u and | | T " u | | ^ l , there exists a
neighborhood Uu in D of u such that if xe Uu then || Tx — u\\ =
II Tx - Tu\\Ss\\x-u ||. Letting V = U Π U ^ U% and choosing
p > 0 such that if d{x, A) < p then a e F , the hypotheses of Theorem 2
are satisfied. Therefore d(Fnx, A) —• 0, for each xe D with d(x, A) </?.

3* Some examples* Let D be a closed convex subset of a
Banach space X. We consider first mappings T: D—+D satisfying the
condition

( 1 ) \\Tx- 2 V I | ^ α | | s - y | | + δ [ | | B - Tx\\ + \\y - Ty\\]

+ c[\\x- Ty\\ + \\y~ Tx\\]

where a, b, and c are nonnegative constants such that a + 2δ + 2c = 1.
In particular if b — c = 0, T is a nonexpansive mapping, while if
δ = 1/2, Γ is of a class of mappings investigated by Kannan [10]. A
general fixed point theorem in uniformly convex spaces for mappings
satisfying condition (1) has recently been proved by Goebel, Kirk,
and Shimi in [8]. We now obtain the following application of
Theorem 2 to mappings of this type:

THEOREM 4. Let D be a nonempty, closed, bounded, and convex
subset of a uniformly convex Banach space X and let T: D~+D be
a continuous mapping satisfying condition (1) above with 6 ^ 0 .
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Then T has a unique fixed point u, and Fnx —• u, for every xe D.

Proof. By the fixed point theorem of [9] T has at least one
fixed point. If Tu = u and Tv — v and u Φ V, then by (1) || u — v || g
(a + 2c) ||% — v ||, which implies that b — 0, a contradiction. Thus
T has a unique fixed point which we denote u.

If xe D, then since Tu — u

( 2) || Tx - u || ^ α || x - u || + b \\ x - Tx || + c[|| α> - w || + || w - Γα ||

^ (a + δ + c) || x - % || + (b + c) \\ u - Tx \\ .

B y c o m b i n i n g t e r m s w e o b t a i n f o r e v e r y x e D

\\Tx-u\\^\\x-u\\.

If x e D we have by inequality (2) above that

(1 - c) || Tx - u || S (a + c) \\ x - u \\ + b || x - Tx || .

Thus

( 1 - c)[\\ x - u\\ - \\x - Tx\\] ^ (1 - c)\\Tx - u ||

£ (a + c) \\x - u\\ + b\\x - Tx\\ .

Collecting terms we obtain

(1 + b - c) || x - Tx || ^ (1 - a - 2c) || x - u \\ .

Since 1 + b — c > 0 and 1 — a — 2c > 0 we have for every xe D

1 + 6 — c

The conditions of Theorem 2 are now satisfied (for s = 1 and for
every p > 0), and thus in view of Remarks 1 and 2 above Fnx —> u
for every xeD.

As another example we consider strongly pseudo-contractive
mappings. If D is a convex subset of a Banach space X and CaD,
a mapping T: D—+D is said to be strongly pseudo-contractive relative
to C [7] if for each a e l and r > 0 there exists a number αr(#) < 1
such t h a t \\x - y\\^ ar(x) \\ (1 + r)(x - y) - r(Tx - Ty) ||, for every

yeC. It is easily seen that if T has a fixed point u e C, then % is
the only fixed point of T. Conditions for the existence of fixed
points for such mappings are given in [7]. The following theorem
gives conditions under which strongly pseudo-contractive mappings
satisfy condition (i) of Theorem 2.

THEOREM 5. Let D be a convex subset of a Banach space X
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and let T: D—+D be strongly pseudo-contractive relative to C. If T
has a fixed point ueC, and if for some r > 0 lim s u p ^ ar(x) < 1,
then there exists c > 0 and an open ball S(u, ε) of radius ε about u
such that if xeD Π S(u, ε) then \\x — Tx || ^ c \\x — u||.

Proof. Since lim s u p ^ ar(x) < 1, there exists an open ball S(u, ε)
of radius ε about u and a constant k e (0, 1) such that if x e D Π S(u, ε)
then ar{x) ^ k. Let c = (1 - &)/(&r). Then (1 - αr(α0)/(αr(Φ0 ^ c
for each α?eDΠ S(^, ε). Since Tu = ^, for each a e f l n S(u, ε)

r)(α? - u) - r(Tx - u)\\

= ar(x)\\r(x- Tx) + (x-u)\\

^ ar(x)r | |x - Tx\\ + ar(x) \\x-u

yielding

1 a { ) j [j < [[ nrr M

\x u , \ \ ^ \ \ x ± x \ \ .ar{x)r

Thus

c\\x-u\\ ^ ||a; - Γa?||

for every xeD Γ) S(u, ε).
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