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GENERALIZED HALL PLANES OF EVEN ORDER

ALAN RAHILLY

The theory of generalized Hall planes of odd or zero char-
acteristic has been developed by P. B. Kirkpatrick who has
obtained a characterization of the odd order Hall planes,
within the class of odd order generalized Hall planes, in
terms of their homologies with affine axis. N. L. Johnson
has pointed out that odd order generalized Hall planes are
derivable and has characterized them in terms of their derived
planes. In this paper the results of Kirkpatrick are estab-
lished in the case of generalised Hall planes of characteristic
two and the results of Johnson in the case of generalized
Hall planes of even order. Also, a characterization of the
even order Hall planes, within the class of even order gen-
eralized Hall planes, in terms of their elations with affine
axis, is obtained.

1* Introduction* Let π be a protective plane, ΪTO a line of π

and τr0 a Baer subplane of π such that L is a line of ττ0. We call π
a generalized Hall 'plane with respect to l^, ττ0 if

(1) π is a translation plane with respect to l^, and
(2) π has a group of collineations which is transitive on the

points of L not in 7Γ0, and fixes every point in π0.
We shall denote the point set {P\Peloo and Peπ0} by M.
Kirkpatrick [7] has shown that any generalized Hall plane of

odd order may be coordinatized by a certain type of Veblen-Wed-
derburn system (V — W system from now on) which is a right vector
space of dimension two over a subfield. A consequence of this result
is that an odd order generalized Hall plane is derivable (in the sense
of Ostrom [9]) and Johnson [6] has shown that odd order generalized
Hall planes derive translation planes which are in semi-translation
plane class l-3a of his classification of semi-translation planes (see
[4]). In § 2 we shall extend these results to include the case of even
order generalized Hall planes. We shall also show that the derived
planes of finite generalized Hall planes are semifield planes. Our
proofs shall apply to all finite generalized Hall planes and so we shall
not restrict the statement of our results to the even order case.

Section 3 is devoted to proving a result (Lemma 2) on changing
of coordinate quadrangles in generalized Hall planes which will be
used in §4.

Kirkpatrick [8] has given a characterization of Hall planes of
odd order which may be stated as follows: A generalized Hall plane
of odd order is a Hall plane if and only if each point of M is the
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centre of a nontrivial involutory homology with axis in πQ. In §4
we shall establish the following analogous characterization of even
order Hall planes: A generalized Hall plane of even order is a Hall
plane if and only if each point of M is the centre of a nontrivial
elation, with exis Φ l^, fixing M. We note at this point that all
elations in an even order translation plane are involutory.

2* Properties of generalized Hall planes* The following theorem
was proved by Kirkpatrick ([7], Theorem 1) in the case of planes
of odd or zero characteristic.

THEOREM 1. If π is a generalized Hall plane with respect to
loo, π0 and π is coordinatized over a quadrangle 0, I, X, Y in π0,
such that XY = l^, by a V — W system F possessing a subsystem
FQ which coordinatizes πQ, then Fo is a skew field and F is a right
vector space over Fo.

Proof. It is not difficult to prove that (zρ)σ = z(pσ) + β for all
z e F\F0 and p, σ e Fo, where β depends only on p and σ (Kirkpatrick
[7]).

Now choose z, weF\F0 such that z + we F\F0. This can be
done unless | Fo | = 2. It follows that ((z + w)p)σ = z(ρσ) + w(pσ) +
β = z(ρσ) + β + w{ρσ) + β, so β = 0 and (zρ)σ = z(ρσ) for all z e F\FQ,
P,σe Fo.

A similar argument establishes z(ρ + σ) = zp + zo for all z e F\FQ,
P,σe Fo.

It is easy (see Kirkpatrick [7]) to prove that Fo is a skew field
and that F is a right vector space of dimension two over Fo.

COROLLARY. π0 is desarguesian.

The multiplication operation in F may be described as follows if
F is finite:

F is a right vector space of dimension two over a field Fo em-
bedded in it in the usual way, with multiplication operation

(3) x . a = xa (multiplication by a scalar) for all xeF, ae Fo,
(4) (za + β) z = zA(a, β) + B{a, β) for all z e F\F0, a, βeF0

where A and B are mappings of Fo x Fo onto Fo which have the
properties:

(5) A and B are additive homomorphisms with A(0, 1) = 1 and
B(0, 1) = 0.

(6 ) for any given 7 and δ e Fo, the equation (A(a, β)9 B(a, β)) =
(7, d) has exactly one solution {a, β) and

( 7) the equation (A(a, β), B{a, β)) = (ay, βy + §) has exactly
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one solution {a, β), given 7, δ e Fo; also, for this solution, a = 0 if
and only if δ = 0.

For this see Kirkpatrick [7]. Conversely, it is easy to see that
such a V — W system coordinatizes a generalized Hall plane. We
shall call such a V — W system a generalized Hall system. Prom
now on we shall consider only finite generalized Hall planes.

Because of (5) we can write A(a, β) = f(a) + h(β) and B{a, β) =
g(a) + k(β) for all a, βeF0, where f, g, h, and k are additive endo-
morphisms of Fo which we shall call the defining functions of F.
Now βz = z h{β) + k(β) for all z e F\F0 and β e Fo. So, if h(β) =
h(β') then (β - β')z = k(β - β') which implies β = β'. Thus h is an
additive automorphism of Fo.

THEOREM 2. (i) Finite generalized Hall planes are derivable
and the derived planes are semifield planes in semi-translation class
l-3a of Johnson's classification.

(ii) Finite semifield planes in class l-3a are derivable and the
derived planes are generalized Hall planes.

Proof, (i) Johnson [6] (Theorem 3.1) shows that generalized
Hall planes of odd order are derivable and derive translation planes
in class l-3a. His proof rests on a theorem in Kirkpatrick [7] (Theo-
rem 1) for odd order planes. In virtue of Theorem 1 of this paper
we can say that Johnson's argument applies to the even order case
as well.

It is possible to apply Theorem 11 of [9] to find a coordinate
system F' in the derived plane of a generalized Hall system F defined
by functions /, g, h, and k. F' has multiplication o given by

(ifi + Vd ° (tχi + λ

2) = th

where tz — (λ2 — kiX^ξ^ Because /, g, h, and k are additive endo-
morphisms of Fo the multiplication o is fully distributive and so Ff

is a semifield since it is necessarily a V — W system, the derived
system of a V — W system under Theorem 11 of [9] being always a
V — W system.

(ii) This part is proved in Johnson [6] (Theorem 2.1).
Kirkpatrick [7] gives a class of generalized Hall planes of odd

order which contains the class of Hall planes of odd order and some
other planes. The following two classes (which appear in Johnson
[5] in another form) contain all the finite Hall planes as well as some
others of both odd and even orders. The planes are those coordi-
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natized by the generalized Hall systems:
(i) (za + β)z = z{βθ~ι + μθ~ιa) + vaθ where θ e Aut (Fo) and xθx -

μx — v is irreducible over i^0, and
(ii) {za + /3)z = z(β + μa)θ~ι + yα*"1 where # e Aut (Fo) and xθx —

μx — v is irreducible over i^

NOTE (added November 9, 1973). It has recently come to the
author's attention that Theorems 1 and 2 have been proved by
Vikram Jha in his thesis "On Automorphism Groups of Quasifields",
University of London, 1973.

3. Change of coordinates* Suppose (F, +, °) is a finite V — W
system coordinatizing a translation plane π. Let us write y o x =
(y)σx for all xeF* = F\{0}, i/eί 7 . Then ^ is an automorphism of
(F, + ) and we observe that Γ = {^ | & e i*7*} is sharply transitive on
F* and that σ* — σz is nonsingular if x Φ z, since (F*, °) is a loop.

LEMMA 1. If the finite V — W system Fx — (F9 +, °) coordinatiz-
ing the plane π over the quadrangle Q\O, I, X, Y has multiplication
given by y o x = (y)σx for all X G F * and y o 0 = 0 /or αtt 2/Gί7,
7Γ mα|/ be coordinatized over the quadrangle Qf | 0, J, X, Yr = (r) (r
0, 1) 6?/ α V — W system F2 = (F, +, *) sucft ίλαί

((2 ° r - y)(σr - σ^)'1 o v(a?) /or αM & e F*\{1 - r}
y *x = ]

[y — y ° r if x = 1 — r

for all y e F, where (x + r — l)o7L o 'y(χ) = α? /or αiί a; e .P*\{1 — r}.

Proof. Leave the coordinates of points on the line 01 unchanged.
It is not difficult to show that addition is unchanged. Note that we
shall use primes to distinguish point coordinates over Q' from point
coordinates over Q.

Consider the line OY. The point 2\ = (0, 1 - r) lies on OY.
The line Y'2\ has equation y — χoγ + 1 — r and since Y'Tt f) 01 =
(1, 1) = (1, 1)' we have Γx = (1, 1 — r) ', whence OY has equation y =
x * (1 — r). (The multiplication makes clear which coordinatization
we are referring to.) The point T2 = (0, y) lies on OF for arbitrary
yeF. Y'T2 has equation y = χoT + y. Y'T2f)OI= ((y){σ1 - σr)~\
{y){σ1 ~ σry

ι). Hence, T2 = {{y){σ1 - σr)~\ y)'. So (y, y - y o r ) lies
on O F for all p F and t h u s y * (1 — r ) = ^ — y o r for all ^ e JP.

Next, consider t h e line £ whose equation is y — x*t where
t e J F * \ { 1 — r} . The line £ has equation y = χo m(t) for some m{t) e F.
Now JBX = (1, ty lies on I, and Y'i?! h a s equation y — x°r + 1 — r,
since I and F ' = (r) lie on it. The point JSX is clearly ((t + r — l)σ~\ t),
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whence m(t) ~ v{t). Now R2 = (y, y * t)f lies on I and Y'R2 is the
line y — χor-\~y — y ° r, since (r) and {y, y) lie on it. Thus YfR2 Π
I has abscissa x such that x © ^(ί) = x or + y — y °r, that is x —
( ? ° r - ϊ/)(σr - σ t r ( i ))-1, whence i£2 = ((2/ o r - y){σr - o^*,)"1, (y ° r - y)
(0V ~ ^ m Γ 1 ° *>(*)) = (y,V* t)' and so y*t = (yor - y)(σr - α^))" 1 ° v(ί)
for all £ 6 F .

Lemma 1 appears in [10] along with a number of analogous re-
sults for some other shifts of coordinates in a finite translation plane.

LEMMA 2. Let π be a generalized Hall plane with respect to ?TO,
τr0. Suppose F± = (F, +, °) is a generalized Hall system (with sub field
Fo coordinating π0) coordinatizing π over Q\0, I, X, Y in πQ, y o x =
(y)σx for all x e ί 1 * and y e F and f, g, h, and k are the defining
functions of Fλ. π may be coordinatized over Qr \ 0, I, X, Yf = (λ)
(λei^0\{0, 1}) by a generalized Hall system F2 ivith defining function
hλ such that

hλ(V) = Λfrx((l ~ *)V)(Mτι(l ~ λ))-1 for all yeF0,

and where Mλ(η) = g(η) + kh~ι(\η) ~ kh~lf(rj) - Xh^iXη) + ^h~ιf(j])
for all η e Fo.

Proof. From Lemma 1, π may be coordinatized over Qf by F2 =
(F, +, *), where

l(y(X - l))(σλ - σ^y1 ° v(x) for all x e F*\{1 - λ}
y *x = \

[y(l — λ) for x — 1 — λ

and

((x + X- l)λ"1) o v(χ) = x for all x e F*\{1 - X) .

Firstly, we consider the action of v(x) for each x. This is easy
to discover if x e F*\{1 — λ} because then v(x) e Fo. (In fact, it fol-
lows that y *x = y o x in this case.) Suppose x e F\F0; then v(x) e
F\FQ, for if v(x) e Fo then ((x + X — l)λ~1) o v(x) = a; implies λ = 1, a
contradiction. Now suppose v(x) = xα, + ^^ where aa, βx e FQ. The
equation ((x + λ — l)λ~1) o t?(^) = x implies

((xa
x
 + β^a-'X'

1
 + (λ - l)λ-

χ
 - /S.α-^-

1
) o (̂ ^ + β

x
) = x

and so

(8) f(p) + Hτ) = p\,

and

(9) g(ρ) + Λ(r) = τX + (1 - λ) ,
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where p = α^λ" 1 and τ = (λ — l)λ~x — βxa~ιX~\
The solution of (8) and (9) for p is p = ΛfΓ^l - λ) where Mλ(η) =

flr<37) + khrι(Xή) - kh-'fiV) ~ λfc" 1^) + Xh~ιf(η). Note that ikfr1 ex-
ists since (8) and (9) are uniquely solvable for ô, τ by (7) and also
that ax and β x are independent of x so we may drop the subscripts.

Next we consider the action of (σλ — συ{x))~ι: (xj + δ)(σλ — σv{x)) =
X7X + δX - (xy + δ) o (xa + β). It follows that

(xζ + η)(σλ - σv{x))~ι = xy + δ ,

where

/(α-'Ύ) + A(* - iδα-'T) - a-'jX - ξa'1

and

^(α"^) + k(δ - βa-'Ί) = (δ - βa^ijx + βa~ιζ - η .

So,

y * x = (y(χ - i))(σλ - σv{x)γ
ι o v(a?)

= (a?f (λ - 1) + 37(λ - l))(σλ - σ,,^)'1 ° Φ )

putting y — xξ + Ύ). Hence,

where 7 and δ satisfy

(10) /(a-1!) + h(δ - βorιi) - a-'jX - ζa^X - 1)

and

g{a~ιΊ) + fc(δ - βorxi)

= (δ - βa-^X + βa-'ζ(X - 1) - η(X - 1) .

Thus y*x = x(ΎX — ζ(X — 1)) + δX — )y(λ — 1), where 7 and δ satisfy
(10) and (11). Putting ξ = 0 in (10) and (11), we see that hλ(η) =
7λ - aXMγ\v(l - X)) = ΛΓrι(7(l - λ))(MΓ

1(l - λ))"1.

4* Characterization of Hall planes of even order• The purpose
of this section is to prove the following theorem.

THEOREM 3. A generalized Hall plane π with respect to l^, π0

of even order is a Hall plane if and only if each point of M is the
centre of a nontrivial elation (with axis I Φ l^) fixing M.

Proof. If π is an even order Hall plane, Hughes [3] has shown
that each point of M is the centre of a nontrivial elation (with axis
I Φ L) fixing M.
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Suppose π is a generalized Hall plane of even order such that
each point of M is the centre of a nontrivial elation (with axis I Φ IJ)
fixing M. Let us coordinatize π over the quadrangle 0, /, X, Y in
π0 (where XY = IJ) by a generalized Hall system F with subfield JP0

coordinatizing π0 and defining functions /, g, h, and k. There is a
nontrivial (Y, OF)-elation φ which fixes M because there is a non-
trivial elation with centre Y and axis I Φ l^ fixing M, and π is a
translation plane with respect to fc.

Suppose φ takes X to (d) where de Fo. Now d belongs to the
distributor of F. Thus,

(12) x(d + y) = xd + xy for all x,yeF.

Putting x — za -\- β and y = zf where z e i^V^ in (12) we have

(za + β)(d + z) = (zα

= > ((s + d)α + β + (to)(« + d) = («α + β)d + ( ^ + β)z

==> (z + d)(f(a) + h(β + da)) + g(a) + k(β + (to)

= zad + βd + z(f(a) + h(β)) + flr(α)

It follows readily that h(ξ) = f for all ξ e Fo. We note here that
this is true whatever our original choice of quadrangle 0, I, X, Y in
τr0 might be (provided XY —l^, of course).

Consider a nontrivial elation ψ fixing ifeί with centre PeM and
axis l( Φ L) e ττ0. Suppose Q e M\{P) and Q^ = R. If we choose
coordinate quadrangle such that Q = Y, R = X, P = (1), and OelΓ)
π0, then (x, yψ = (T/, α?). Suppose ( ^ = (w) where z G F\FQ. Then
w 6 i^\F0 and (w)+ = (z). So (x, xόf = (a?f, »'w), since 0^ = 0. Hence
x' = cĉ  and we have

(13) (a?2)tt; = a? f or all x e F .

Now there is an automorphism p of F fixing Fo pointwise and taking
z to w and w to (say) v. Thus, (βw)?; = x for all # e F. But (w)^ =
(z), so (gw)3 = cc for all xe F and so we have v = z.

Suppose w = zXz + ^ 2 where Xz and ^^ e -Fo- The automorphism
p taking z to w takes w to z. So (̂  λ̂  + / ẑ)λz + μz = z, whence Xz =
1 for all z e JP\-F0 Thus w = z + μ,. Substituting for w in (13)
gives (xz)(z + μz) = x for all xe F. So, a fortiori, (xz)(z + μt) = a?
for all cc G JP0 and it follows that (z + μ*)(f(x) + Aβ«« + k(x)) + g{x) +
k(μzx + k(x)) = x for all xe FQ. Hence, f(x) + μzx + fc(cc) = 0 for all
x e Fo and we see that μz is independent of z. Writing μz — μ we
have

(14) f(x) + μx + k(x) = 0 for all x e Fo,
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and

(15) g(x) + kf(x) + x = 0 f or all x e Fo.

From Lemma 2 we see that hλ(x) = Mj\{l - X)x){Mjι{l - λ))"1,
where Mλ{x) = g(x) + k(Xx) + &/(#) + X2x + λ/(a?) for all xeFQ and
XeF0 = F0\{0, 1}. But / (̂x) = a? for all λ G JP0 as we have seen. This
means that Mλ(x) = λ# where λ = (1 — λ)(ikff'(1 - λ))"1 for all x e Fo,
X e JP0. So we have

(16) 0(aO + k(Xx) + kf(x) + X2x + Xf(x) = λ^ for all α e Fo, λ 6 Fo .

Now (14), (15), and (16) imply k(Xx) + Xk(x) = λ'α; where λ' = λ +
1 + λ2 + Xμ. We can state this as

(17) kmλ + mλk — mv for all λ e JP0

(In (17) ma stands for the endomorphism of (Fo, +) given by mjx) —
ax.)

But k may be uniquely written

(18) k = maQ + maιT + + m β n - ι Γ - 1 ,

where the a/s lie in Fo = GF(2n) and Γ is the automorphism of Fo

given by T(x) = a;2.
Substituting (18) in (17) gives

m,, + mβa>λ)T+ + mβ{n_1}λ)T
n-χ - 0

where /3(i, λ) = ^(T^λ) + λ) for all i = 1, , n - 1 and λ e Fo. So
λ' = β(i, X) = 0 for all i = 1, , n - 1 and λ e Fo. But T\X) + XΦ
0 for some Xe Fo for each i = 1, , ^ — 1 and thus fc = mao. But
&(1) = 0 and so a0 — 0 and & = 0 (the zero map). From (14) and (15)
we have f{x) = μx and #(#) = x. It follows that F is a Hall system
([2]) and π is a Hall plane.

Theorem 3 of this paper and the characterization of the odd
order Hall planes given in [8] allow us to assert the following result:

THEOREM 4. A finite generalized Hall plane with respect to L>
7Γ0 is a Hall plane if and only if each point of M =looC\π<> is the
centre of a nontrivial involutory central collineation which has axis
Φ l^ in π0 and which fixes M.

There are other characterizations of the finite Hall planes amongst
the finite generalized Hall planes. Of these we mention: A general-
ized Hall plane π of order q2 Φ 4 is a Hall plane if and only if the
kernel of π is of order q.
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