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INTEGRAL REPRESENTATIONS OF WEAKLY
COMPACT OPERATORS

A. KATsaras anD D. B. Liu

Let X be a completely regular space and E, F locally convex
spaces. Denote by C.. = C..(X, E) the space of all continuous
functions f from X into E for which f(X) is relatively
compact. Uniformly continuous weakly compact operators
from C.. into F are repreesented by integrals with respect to
Z(E, F) valued measures on the algebra generated by the zero
sets. Necessary and sufficient conditions for an operator to be
continuous, with respect to certain topologies, are obtained. A
sufficient condition for extending a measure to all Baire sets is
given.

Introduction. In [5] D. Lewis represented weakly compact
operators from the space C(S) of all scalar-valued continuous functions
on a compact space into a locally convex space. The representation
was given by means of integrals with respect to vector-valued measures
on the Borel field. In [1] Bartle, Dunford, and Schwartz gave a similar
representation for operators from C(S) into a Banach space. Also
Grothendieck [2] noted that the family of all weakly compact operators
fron C(S) into a locally convex space E corresponds exactly to the
family of E-valued measures on the Baire algebra. In this paper we
will give integral representations for weakly compact operators from C,
into F by means of integrals with respect to £(E, F) valued measures
on the algebra generated by the zero sets. Necessary and sufficient
conditions for an operator to be continuous with respect to certain
locally convex topologies are given. Also a result is obtained on the
extension of measures to all Baire sets.

1. Definitions and preliminaries. Let X be a completely
regular Hausdorff space and let B = B(X) denote the algebra of subsets
of X generated by the zero sets. By Ba = Ba(X) and Bo = Bo(X) we
will denote the o-algebras of Baire and Borel sets respectively. Let
M(X) denote the space of all bounded finitely-additive regular (with
respect to the zero sets) measures on B (see Varadarajan [8]). The
spaces of all o-additive and all 7-additive members of M(X) will be
denoted by M,(X) and M.(X) respectively. The set M,(Ba) is the
space of all real-valued Baire measures while M, (Bo) denotes the space
of all bounded real-valued regular Borel measures m with the property
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that m(Ga)— 0 for every net {G, } of closed sets which decreases to the
empty set.

Let E be a real locally convex Hausdorff space. For p a continu-
ous seminorm on E, we define M, (B, E’) as the set of all E'-valued (E’
is the dual of E) finitely-additive measures m on B with the following
two properties:

(1) For every s € E, the function ms, from B into the reals
R,G —->m(G)s, is in M(X).

(2) |lm|, = m,(X) <, where for G in B the m,(G) is defined to
be the supremum of all |=m (G,)s; | for all finite B-partitions {G;} of G,
i.e., G; € B, and all finite collections s, €EB, ={s €E:p(s)=1}. The
set M, , (B, E') consists of those m in M, (B, E') for which ms € M, (X)
for all s in E. The spaces M,,(B,E’), M,,(Ba,E’), and M,,(Bo,E")
are defined similarly. As shown in [3] if m is in any one of the spaces
M,(B,E'), M, ,(B,E"'), M.,(B,E'), M, ,(Ba,E"), M.,(Bo, E'), then m,
belongs to M(X), M,(X), M,(X), M,(Ba), M.(Bo)
respectively. Every m €M, ,(B,E’)[m €M,,(B,E’)] has a unique
extension u to a member of M,,(Ba,E’) [to a member of
M. ,(Bo,E')]. Moreover, the restriction of u, to B coincides with
m,. Let{p:p € I} be a generating family of continuous seminorms on
E which is directed, i.e., given p,,p, in I there exists p €1 with
p=p,p,. Let M(B,E')= U{M,(B,E’)-p € I} with analogous de-
finitions for M,(B,E'), M.(B,E'), M,(Ba,E') and M,(Bo, E’).

Denote by C.. = C,.(X, E) the space of all continuous functions f
from X into E for which f(X) is relatively compact. Every f in C,. has
a unique continuous extension f to all of the Stone Céch compactifica-
tion BX. By C’(X) we denote the space of all bounded continuous
real-valued functions on X. Let ) and Q, be, respectively, the class of
all compact and all zero sets in BX disjoint from X. Let Q €. We
define B, to be the locally convex topology generated by the family of
seminorms f—|fg |, = sup{p (f(x)g(x)): x € X} where p €I and g €
B, ={h =C":h(x)=0for x in Q}. The topologies 8 and 3, on C,. are
defined to be the inductive limits of the topologies B, as Q ranges over
Q and Q, respectively. For a fixed p,B,, is the locally convex
topology on C, generated by the seminorms f—|gf|,, g € Bo. As
shown in [3], B, is the finest locally convex topology on C, which
agrees with B,, on p-bounded sets. Let B, and B,, denote the
inductive limits of the topologies B,, as Q ranges over () and Q,
respectively. The topologies B’ and B are the projective limits of the
topologies B, and B,,, respectively, as p ranges over I. If u is the
uniform topology, then B’ =B =B,=u and B =pB..

For G in B and m €M, (B,E') we define ffdm=
G

lim = m (G;)f(x;) where the limit is taken over the directed set of all
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finite B-partitions {G;} of G and x; € G. The map f— T,(f) = f fdm
X

is a uniformly continuous linear functional on C,.. Moreover, |m ||, =
sup{| T.(N|: |f|l, =1}. The mapping m — T, is a one-to-one linear
map from M(B,E’) into (C.,u)'. The space M,(B,E’) is the dual
space of each of the topologies B, and B} while M,(B, E’) is the dual
space of each of the topologies B and B'. Given any m € M,(B, E’)

there exists a unique m in M,,(Bo(BX), E’) such that f fdm =
X

f fdri for all f in C... As shown in [3], m is o-additive iff m1,(Z) =0
BX

for all Z in Q,. Similarly m is r-additive iff m,(Q) =0 for all Q in
Q. Moreover, if m is o-additive or r-additive, then m(Q)=
m(Q N X) and m,(Q) = r,(Q N X) for all Q in B(BX).

Let now F be another real locally convex Hausdorff space and let
{q: q € J} be a generating directed family of continuous seminorms on
F. Let (E, F) denote the space of all continuous operators from E
into F. We define M (B, 4(E, F)) to be the space of all finitely-additive
Z(E, F) valued measures m on B with the following two properties:

(1) For each x’ € F’ the set function x'm: B— E’, (x'm)(G)s =+
x'(m(G)s), s €E, is in M(B,E"). '

(2) Given g € J there exists p in I such that for all x’ in the polar
B of B, in F’ the x'm isin M,(B,E’) and |m |;;, = m,,(X) < where
for Q@ in B,m,,(Q)=sup{(x'm),(Q):x'€EBj}. We define
M, (B, ¥(E, F)), M.(B, ¥(E, F)), M,(Ba, ¥(E, F)) and M, (Bo, 4(E, F))
analogously. Let m € M(B, ¥Y(E, F)) and f a function from X into
E. We say that f is m-integrable over G in B if

(i) For each x’' € F’, the integral f fd(x'm) exists
G
(i1) there exists a vector in F denoted by f fdm such that for all
G
x' € F' we have x’(f fdm) =f fd(x'm).
G G

Since F is a locally convex Hausdorff space, the f fdm is unique
G

whenever it exists. If f is m-integrable over all G in B, we say that f is
m -integrable.

2. Continuous linear operators from C, into F. Let
E,F,{p:p €I}, {q: q €J} be as in paragraph 1. Recall that a linear
operator T from a topological vector space A into another B is weakly
compact if it maps bounded subsets of A into weakly relatively
compact subsets of B. We need the following lemma due to Grothen-
dieck [2].
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LEMMA 1. Let T be an operator from a topological vector space A
into another B and let T' and T" denote, respectively, the transpose and
the second transpose of T. The following are equivalent :

(1) T is weakly compact

(2) T" maps A" into B

(3) If B’ is equipped with the Mackey topology m(B',B) and A’
with the strong topology B(A’,A), then T' is continuous.

LEMMA 2. Let f, be in C,. and G in B. Define ¢ on M(B, E’) by
d(m) =J' fodm. Then ¢ belongs to the (C.,u)".
G

Proof. Let A ={f€C.:||fll, =|foll, for all p in I}. Then A is
u-bounded and hence the polar A°in (C,, u) is a strong neighborhood
of zero. We will finish the proof by showing that ¢ is bounded on
A°. To this end consider an arbitrary m in A’ Let € >0 be
given. There exists a B-partition G,, G,, - - -, G, of G and x; € G; such

ffodm
G
we can find zero sets Z CG, such that [Em(G)s/|=

|Em(Z)s:|+e Again by the regularity of |ms; | (|ms;| is the absolute
variation of ms;) we can find pairwise disjoint cozero sets U, -+, U,
Z, CU; such that X|ms; |(U; — Z))<e. For each i choose h; € C*, with
0=h =1, such that h=1 on Z and h;=0 on X—U. Set h=

> h;s,. Then h € A and hence J hdml =1. But
X

that =|Zm(G)si|+¢€, s, = fo(x;). By the regularity of ms;

fx hdm' = 'Z L his;dml —|Z fu.—z. hdms;)

= lZ m(Z)s;

—eéljfodm|—3e.

Since € >0 was arbitrary we conclude that f fo dmlél and this
G

completes the proof.
THeorReM 3. If T is a continuous weakly compact operator from
(C,, u) into F, then there exists a unique m € M(B, £(E, F)) such that :
(1) Every f in C, is m-integrable and f fdm = T(f)
X

2 If peI and q€J are such that ||T|,, =sup{q(T(f)):
Ifll =1} =<, then [m |, =|T |
(3) For every x' € F', we have T'x' =x'm
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(4) For every bounded set S in E the set Vs ={Zm(G))s;:{G.}isa
finite B-partition of X, s, € S} is weakly relatively compact.
Conversely, if m € M(B, £(E, F)) is such that

(5) holds, then every f in C. is m-integrable and the operator

T() = f fdm is u-continuous and weakly compact.
X

Proof. Suppose that T is u-continuous and weakly compact. By
Lemma 1, T"” maps (C,,u)"into F. If f € C. and G in B, the function
fxe (xc is the characteristic function of G) defines an element of (C,, u)”

by <M,fXG>=f fdu, u € M(B,E’)=(C,,u)’. Thus we may consider
G

fxc as an element of (C.,u)". Define m(G):E—F by m(G)s =
T"(xss), G in B. 1t is easy to see that m(G) € £(E, F). In this way
we define a map m: B — ¥(E, F) which is clearly finitely additive. If
x'€F' and s in E, then (x'm)(G)s =x"(T"(xss)) ={T'x', xc8) =
T'x'(G)s. Thus x'm =T'x' EM(B,E’). Let q€J. Since T is u-
continuous there exists p €I such that |T|,, <. Let
x"E€Bj,. Then for f in C. with ||f|, =1 we have |[{(f,x'm)|=
[f, T'x")| = (Tf,x")| = | T |l,.- Thus|x'm|, =||T|,, which proves that
Iml,e =Tl and so m is in M(B,¥(E,F)). Let G be in B and
f€C. For x'€F" we have x'(T"(xof)) =(T'x’, xcof) = {x'm, xcf) =

f fd(x'm). This shows that f fdm = T"(xsf) EF. Taking G =X
G G

we get f fdm =T"(f)=T(f). For f€ C,. with |f]l, =1 and x' € B}

we have |[x'(T())|=|ffd(x'm)|=|x'm|, =||m|,,. This proves that
| T|l,q =|lm |, For the uniqueness of m, suppose m, is another

element in M(B,%(E,F)) such that jfdm,=T(f) for all
X

fec.. Thenforx'EF'wehavef fd(x'm)=f fd(x'm,) for all f in
X X

C.. This implies that x'm = x'm, and hence m =m, since F is a
locally convex Hausdorff space. Finally, let S be a bounded subset of
Eand W=V,, LetA={feC.:f(X)CS}. Then A is u-bounded
and therefore T(A) is weakly relatively compact. We will finish the
proof of (4) by showing that E is contained in the weak closure of
T(A). Let G,---,G, be a B-partition of X and s,,---,s, in S. Let
X, XxnEF'. There exist g&€J and M>0 such that
x;EMBj;. Let p €I be such that |T|,, <®. Since S is bounded,
d =sup{p(s):s EE}<x. By the regularity of (x;m), we can find
zero sets Zy,---,Z, with 2 (xim), (G, — Z;))<e€[2d (where € >0 is
arbitrary) for j=1,---,N. Next, again by regularity, we can find
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pairwise disjoint cozero sets U, - - -, U, with Z, CU, such that for each
jy1=j=N,wehave 2, (x)m),(U;, — Z))<e/2d. Foreachi between 1
and n we pick a function'h, € C* mith 0= h, =1, such that h; =1 on Z,
and h; =0 on the complement of U,. The function h = X7 h;s; is in A
and hence T(h)& T(A. Moreover

x(T(h) =2, m(G))s;

xj(z m(Z)s, — >, m(G)s; + 2, JU‘_Z h,s,dm)l <elR+e2=¢€

This shows that Zm (G;)s; is in the weak closure of T(A) and the proof
of (4) is complete. Conversely, suppose that m € M(B, 4(E, F))
satisfies (4). Let GEB and f € C,.. Denote by D; the set of all
a={G,,---,G,; x,,- -, x,} where {G;} is a B-partition of G and x, €
G. For a,y in D; we write a = vy if the B-partition of G for « is a
refinement of the one in y. Then D; becomes a directed set.

For a={G,---,G,; x,,"-",x,} in D; we define z, =
2m(G,))f(x;). By (4) the net {z.} is contained in a weakly compact
set. Hence there exists a subnet which converges weakly to a vector z

in F. But for each x'€F we have x’(za)—>f fd(x'm). Thus
G
x’(z)=J’ fd(x'm) which shows that f fdm =z. Define T:C, — F,
G G

T(f)=f fdm. Then T is u-continuous and weakly compact. For

X

the continuity, let g €J. Choose p €I such that |m|,, <. If

x'€BY and |f|, =1, we have |x'(T(f))|= U fdx'm)=|x'm|, =
X

[m],. It follows that |T|,, =|m|,, and the continuity of T is
established. To prove the weak compactness consider an arbitrary
bounded set A in C,. and let S denote the convex circled hull of
U{f(X):f€A}. Then Sisboundedin E. Let W=V, Clearly W
is convex and circled. By hypothesis W is also weakly relatively
compact. It follows that the polar W° of W in F' is a m(F',F)
neighborhood of zero. We will show that T'(W° CA°. Letx'€ W°
and fEA. If G, ---,G, is a B-partition of X and x; € G,, then
|x"(Z'm(G,)f(x,)|=1. This implies that [x'(ffdm)|=1. Thus
(T'x',fy|=[{x", T(f))| =1 which proves that T'x' € A°. Now the
result follows Lemma 1.

By the preceding theorem, given a continuous weakly compact
operator T from C, into F there exists m EM(IAS’,C%’(E, F)) which
represents T. Since the operator T: C(BX, E)— F, T(f) = T(f), is also
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weakly compact and since the dual of C(BX, E) (with the uniform
topology) is M, (Bo(BX), E') we can find, using an argument analogous
to that of Theorem 2, an m € M,(B(BX), £(E, F)) representing
m. The next theorem gives necessary and sufficient conditions on m
and m so that T is B} continuous.

THEOREM 4. Let T be a u-continuous and weakly compact
operator from C, into F and let m and m be as above. The following
are equivalent

(1) T is B} continuous

(2) Given q €J there exists p in I with |T|,, <% such that
m,(Z,)—0 whenever {Z,} is a sequence of zero sets decreasing to the
empty set.

(3) Given q €J there exists p €I with |T|,, <« such that for
each Z in Q, we have inf{m,,(V): V cozero set, VD Z}=0.

Proof. (1 > 3). Since T is Bi-continuous there exists p € I such
that T°'(B,) is a B,, neighborhood of zero. Let now Z be in
Q,. Then there exists g € C’(X) with g(Z)=0 such that W=
{feC.:egfll, =1}CT'(B,). Let €>0 be given and set V=
{x eBX:|g(x)|<e}. Then V is a cozero set containing Z. For a
given & > 0 there exist x’ € B}, a By(BX) partition G, - -, Gy of V and
s; in E with p(s;) =1 such that |2 x'm(G,)s;|>m,,(V)—8. Next we
choose compact sets Z, CG; and pairwise disjoint open sets 0; with
Z,Cco,CcV such  that |[Zx'mi(G)s, —Zx'm(Z)s | <8 and
(x'm), 0, —Z)<d. For each i,1=i=n, we pick h, € C*(X) with
0=h =1,h =1o0nZ and A =0 in the complement of 0; in BX. Set
h=2hs. Then l/eh €W and so q(Th))=e. Thus

W, (V)<8+2|x'm(G)s;|=6+8+3

f ﬁis,d (x'm) !
0.2

+|x(T(h))| =38 +e

Since § >0 was arbitrary we conclude that ri1,,(V)=e. (3> 2). Let
x'€F'. Ifx'€ MB)forsome g €J andif p €1 is as in (2), then from

the fact that (x'm),(Z)=0 for all Z in Q, and from J' fd(x'm)=
X

fd(x'r), which holds for all f in C., it follows that x'm is
BX

o-additive and hence (x'rmi),(A)=(x'm),(A NX) for each A in
B(BX). Letnow {Z,}be asequence of zero sets in X which decreases
to the empty set. For each n there exists a zero set F, in X such that
FNX=2Z7,. Lete>0begiven. By (3)there exists a cozero set V in
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BX containing N F, such that m,,(V)<e. Since (NF)N(Bx —V)=
(J there exists N such that F,N---NFy CV.
Now it follows that for n = N we have

mp.q(Zn)émp,q(ZN) = mpvq(Fl n--- nFN)<€'

(2> 1). Let q€J and choose p € I satisfying (2). For x' € B}
and Z, | & we have (x'm), (Z,) = m,,(Z,)— 0 which implies that x'm
is o-additive and so (x'm),(A)=(x'm),(A NX) for each A in
B(BX). Let Z be in Q,. There exists h =0 in C’ such that Z =
{x EBX:h(x)=0}. For each n set F,={x € BX: h(x)=<1/n}. Then
Z,=F,NX isazerosetin X and Z, | &. Given r >0 there exists n
such that m,,(Z,)<1/2r. Choose g€ C®’ 0=g=1 with g=0o0n Z
and g=1 on the complement of V in pBX, where V=
{x €BX:h(x)<1/n}. Let now f € C, with ||f],, =r and ||fg], =6 =
12]|m |l If

x'€BY, |x'ffdm |=|x'{ fdm = x'f fdml
\4

x’f g"fdﬁl'ér-1/2r+8||m||,,‘q§1.
BX-V

+

This shows that q(ffdm)=1. Thus {feC.:|fl, =r |fgl, =8}C
T'(B,) and s, T"'(B,) is a B, , neighborhood of zero. Since this is true
for all Z in Q, it follows that T'(B,) is a B,, neighborhood of zero
which proves that T is B} continuous.

We have an analogous theorem for B’ with a similar proof.

THEOREM 5. Let T, m and m be as in Theorem 3. The following
are equivalent :

(1) T is B'-continuous

(2) Given g € J there exists p € I, || T |, < such that for each G
in Q we have inf{m,,(V): V cozero set, GCV}=0.

(3) Given g € J there exists p € I with ||T||,, < that m,,(Z,)—0
for each net {Z,} of zero sets in X which decreases to the empty set.

THEOREM 6. Suppose T is a linear operator from C, into F which
is Bi-continuous and that every weakly closed bounded subset of F is
weakly sequentially complete. Then there exists m € M(B, £(E, F)),
with respect to which each f in C, is integrable, such that T(f) = [ fdm
forall fin C,. Moreover, if T is B continuous, given q € J there exists
p €I with |m|,, <» such that m,,(Z,)—0 whenever {Z,} is a se-
quence of zero sets which decreases to the empty set.
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Proof. Since T is B,-continuous, T' maps F' into the space
M,(B,E')=(C.,B))’. Let Z be a zero set in X. There exists g € C*
such that Z ={x:g(x)=0}. For each n let

V,={x e X:|gx)|<1/n}.

Choose f, in C’0=f,=1 with f,=1 on Z and f,=0 on
X —V,. Then f, > X, pointwise. An arbitrary element of B(X) can
be written as a finite disjoint union of sets of the form Z — F where
F CZ and F, Z are zero sets. It follows that for G in B(X) there exists
a bounded sequence {f,} in C* which converges pointwise to y;. For u
in Mg(B,E') and s € E we have (u,f.s)=[fd(us)— [ xcd(ps)=
{4, xc8). Thus f,s = xgs in the o((C,,B)", M,(B,E’)) topology and
hence T"(f.s)— T"(xss) in the o(F",F’') sense. But T"(f,s)= T(f.s)
and the set {T(f,s):n =1,2,---} is o(F, F') bounded. Also the se-
quence {T"(f.s)} is weakly Cauchy. By hypothesis there exists a € F
that T"(f.s)— a in the o (F, F') topology. This implies that T"(xss) =
a € F. Define m(G)s =T"(xgs). It is easy to see that m €&
M(B, £(E, F)) and that T(f) = [fdm for all f in C,.. Assume next that
T is B)-continuous. Let T:C(BX,E)——> F, T(f)= T(f). As in the
case of T we can find m € M(B(BX), £(E, F)) such that T(f) = [ fdm
forall f in C,. Now to complete the proof we use an argument similar
to that of Theorem 4.

If m €M,(Ba, ¥(E, F)), then the restriction of m to B is in
M, (B, #(E, F)). The following result is a partial converse.

THEOREM 7. Let m € M, (B, ¥(E, F)) be such that for any s € E
the set (ms)(B) is weakly relatively compact in F. Then there exists a
unique m in M,(Ba, £(E, F)) whose restriction to B coincides with
m. Moreover, if |m||,, <, then || |,, =|m |q

Proof. Let G EBa andset W ={Z:Z CG,Z a zero set }. If we
order W by inclusion, it becomes a directed set. For s €E,
{m(Z)s:Z & W} is a net in F. By hypothesis there exists a subnet
which converges weakly to some a in F. For x’€F’', x'm is o-
additive and thus has a unique extension to a member pu, of
M,(Ba,E’). Moreover x'm(Z)s — u,(G)s. Thus x'(a)= u.(G)s.
Define m(G)s =x’(a). Then x'm = u,. € M,(Ba, E'). Furthermore
m(G)€ #(E,F). Indeed if |m|,, <, then for x’' € B} we have
|x'm(G)s | = |w(G)s|=p(s)|uell, =p()x'm |, =p(s)|m |, Thus
q(m(G)s)=p(s)|m|,, which proves that m(G)€E ¥(E,F). Also
Ix'ml, = ||l = | x'm ||, implies that |7 |l,, =|/m |, Finally suppose
A is another extension. Then for each x’ in F' both x’A and x'rm are
extensions of x’m and hence they are equal. This implies that A = .
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