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WEAK-UNICOHERENCE

EpwiN Dupa

1. Introduction. A connected topological space X is said to
be weakly-unicoherent if whenever X = A U B, where A is compact
and connected and B is closed and connected, then ANB is
connected. A brief review of the origin of unicoherence and weak-
unicoherence is given and then followed by several new characteriza-
tions of weak unicoherence for locally connected generalized continua.

A connected topological space X is said to be unicoherent if
whenever X = A U B, where A and B are closed connected subsets of
X, then A N B is connected. All Euclidean spaces, spheres of dimen-
sion greater than one, all closed cells, and locally connected continua
which do not separate the plane are examples of unicoherent spaces.

Unicoherence for continua was defined by K. Kuratowski in a
paper, [5], in which the property played an important part in a
topological characterization of a sphere. The property itself had been
used earlier by K. Kuratowski in [4]. L. Vietoris in [6] referred to the
property as continua ‘“‘ohne Henkel”.

For the purpose of generalizing basic theorems on light-open
mappings on two manifolds to light-open mappings on higher dimen-
sional manifolds or at least obtaining analogues of those results, G. T.
Whyburn in [8] introduced a new version of unicoherence for general-
ized continua. A generalized continuum X is said to be unicoherent if
whenever X = A U B, where A is compact and connected and B is
closed and connected, then A N B is connected. For locally con-
nected generalized continua Whyburn obtained the following character-
izations: (A) A locally connected generalized continuum X is unicoher-
ent if and only if every compact set in X which separates a containing
region also separates X. (B) A locally connected generalized con-
tinuum X is unicoherent if and only if the boundary of every condition-
ally compact component of a closed and connected set is a continuum.

In [2] R. F. Dickman, Jr. called spaces which satisfies the newer
version of unicoherence weakly-unicoherent and gave a characteriza-
tion of locally connected generalized continua which are weakly-
unicoherent in terms of the Complementation Property. In [1] M. H.
Clapp and R. F. Dickman, Jr. gave two new characterizations of
weakly-unicoherent locally connected generalized continua X by using
the Freudenthal compactification of X. In this paper we obtain several
new characterizations of weak-unicoherence which in turn gives a
means for obtaining a direct proof of one of the characterizations in [1]
and thus answers a query of that paper.
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2. Notation. A generalized continuum is a locally compact,
connected, separable metric space and a continuum is a compact
connected metric space. For a subset A of a space X, the closure of A
in X will be denoted by A or CLxA and the boundary or frontier of A
in X will be denoted by FrA or FryA. A region is an open connected
set and an open compact set U is an open set which has a compact
closure. By a mapping will be meant a continuous function.

3. Characterizations. Definition: Let a space X be sepa-
rated by aset F. A subset H of F is said to be essential if there exists a
separation X — F = Ay U By such that HN A, # ¢ and H N By # ¢.

THEOREM 1. Let X be a locally connected generalized
continuum. The space X is weakly-unicoherent if and only if for every
closed set F which separates X each open set containing an essential
compact component of F contains a compact open subset of F which
separates X.

Proof. Suppose X is weakly-unicoherent, H is an essential com-
pact component of F, and U is an open set containing H. There is a
compact region W such that HCW CW CU and FFWNF =¢. Let
K=WNF and suppose K does not separate X. Let X -F=
Ay UBy be a separation such that A;,NH#¢ and ByN
H# ¢. Choose a region R such that K CR CR CW, FrR N Au# ¢,
FrR N By# ¢ and X — R is connected. By weak-unicoherence FrR is
a continnum and FrR = (FrR N Ay) U(FrR N By) is a separation,
hence the condition of the theorem holds.

For the converse suppose X is not weakly-unicoherent and let
X = A UB, where A is closed and connected, B is a continuum, and
A N B is not connected. Let R be a component of X—A or X — B
whose frontier is not connected. Let H be a component of A N B
such that FrR N H# ¢. Let W be a compact region containing H and
such that FTtWN(A NB)=¢ and (X—W)NFrR#¢. Let L=
FrW N R and notice that L is a compact subset of R. Let L, be a
continuum in R which contains L and let K be the continuum in R
which contains L, and all the components of R — L, which have their
frontiers in L,. The continuum K is an essential component of a
compact separating set of X so applying the condition of the theorem to
R and K it follows that K separates X. On the other hand, if R CB,
then X — K = A union the components of X — A except R union the
components of R — L, which meet A. Thus X — K is connected and
consequently X is weakly unicoherent.
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THEOREM 2. Let X be a locally connected generalized
continuum. The space X is weakly-unicoherent if and only if for every
closed and connected set F and any component R of X — F with a
compact frontier implies FrR is a continuum.

Proof. Suppose X is weakly-unicoherent and let R be any compo-
nent of X — F which has a compact frontier. There is the separation
X —-FrR=RU(X-R), when R#X. Let H be a compact compo-
nent of FrR. By a modification of the argument in Lemma 3.13 of [3]
there exists a region W in R suchthat HCW,Fr;WNFIR=¢,R-W
is connected and (R — W) N FrR # “ ¢. Notice that X — R is connected
so that X — W = (X — R)U(R — W) is connected and hence X — W is
connected. We now have that

W N (X - W) =(FrR N W)U (FrW)

is a separation which thus contradicts the weak-unicoherence of
X. Therefore FrR is a continuum.

Assume now that the condition holds and X = A U B, where A is
closed and connected and B is a continuum. Suppose ANB=DUE
is a separation. Let & be the union of all components C of X — B or
X — A which have FrC CD and let € be the union of all components C
of X—B or X— A which have FrCCE. Then ( UE)U(2 UD)=
X is a separation of X. Since X is connected it must also be
weakly-unicoherent.

THEOREM 3. A locally connected generalized continuum X is
weakly-unicoherent if and only if whenever X = A U B, where A and B
are closed and connected sets wtih compact frontiers, then A N B is
connected.

Proof. Assume X is weakly-unicoherent and X = A U B, where A
and B are closed and connected sets with compact frontiers. Suppose
ANB=DUE is a separation. Each component C of X —A or
X —B has a compact frontier so by Theorem 2 FrC is a
continuum. As in the proof of Theorem 2 this leads to a separation of
X. But X is connected, hence A N B is connected.

If the condition holds X is clearly weakly-unicoherent.

CoroLLARY 1. A locally connected generalized continuum is
weakly-unicoherent if and only if whenever X = A U B, where A and B
are closed and connected, then A N B compact implies A NB is a
continuum.
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It is an easy observation that any open connected subset of a
locally connected unicoherent continuum is weakly-
unicoherent. Given a weakly-unicoherent locally connected general-
ized continuum X we will construct a compactification of X which is a
unicoherent locally connected continuum and in which X is a dense
region. By the paper of Clapp and Dickman it follows that our
compactification is the Freudenthal compactification of X.

To begin the construction write X = U;_, A,, where for each
positive interger n, A, is a continuum, A, Cint A,,,, and each compo-
nent of X — A, is not conditionally compact. For the positive integer
n,X—A, has only finitely many  components, say
C..,C.y -+, C,.. With each decreasing sequence of cemponents,
C.DGC,,D---DC,, D associate a point X; ;... not in X and let K
be the set of all such points. On the set X U K take as a basis for a
topology a countable basis of connected open sets for the topology of X
and for any point x; ;.. € K take the basic open sets containing x;, ;... to
be the components C,; of the defining sequence which determines the
point and the point. Clearly this gives a topology for X UK =X
which has a countable basis and which is Hausdorff. To show X is
compact let {U, } be some open cover of X and we may as well suppose
it is a countable collection {U;} and that each U, is a basis
element. There is some positive integer n such that each component
C,; of X — A, is contained in some U, of the covering for if not, then
there exists a decreasing sequence C;,DC,,D--- of such
components. The decreasing sequence determines a point x, ;.. of K
and there is an element U, of the covering with x,,..€ U. But
U, = G, for some subscript i, of x;,,..., hence we can suppose that there
is an integer N such that each component Cy; of X — Ay is contained in
some U; of the covering. Since there are only finitely many compo-
nents of X — Ay, and Ay is a compact subset of X, it follows that some
finite subcollection of {U;} covers X.

Since X is compact Hausdorff and has a countable basis it can be
considered as a compact metric space. Considering X as a subspace of
X it is homeomorphic to the space X and is therefore
connected. Considering X as a subset of X it is open and dense in X
so that X is connected. The basis chosen for X is made up of open
connected sets so that X is a locally connected continuum. The set K
is a compact totally disconnected set in the relative topology.

To show X is unicoherent suppose X = A U B, where A and B are
continuaand A N B = D UE is a separation. There exist open sets U
and V with disjoint closures such that DCU, ECV, F(UU V) is
compact and Fr(U U V) CX.. Let A, be the componentof AUU UV
containing A and let B, be the component of B U U U V containing
B. Notice that FrA, CFr(U U V) and therefore is compact and simi-
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larly for FrB,. It is also true that A,— K and B, - K are open and
connected and CLy(A,— K)NCL4x(B,—K)CU U V contradicts the
weak-unicoherence of X.

THEOREM 4. A locally connected generalized continuum X is
weakly-unicoherent if and only if X is homeomorphic to a region in a
locally connected unicoherent continuum.

4. Application. As an application we show that a compact
quasi-monotone mapping preserves weak-unicoherence. A mapping
f: X —> Y is compact if the inverse image of each compact set is itself
compact. A mapping f(X) = Y is quasi-monotone [7] if whenever Q is
a continuum with a nonvoid interior in Y, then each component of

f7'(Q) maps onto Q.

THEOREM 5. If f(X) =Y is a compact quasi-monotone mapping
on locally connected generalized continua and X is weakly-unicoherent,
then so is Y.

Proof. Let Y =A U B, where A and B are closed connected sets
and A N B is compact. If either A or B is Y, then the intersection is
connected so we may as well suppose A and B are proper
subsets. Since f is quasi-monotone and compact and A has interior
points, f'(A) has only finitely many components, A, ---, A, and
f(A)=A for i=1,2,---,n. Similarly f'(B)=B,UB,U---UB,,
where each B; is a component of f'(B) and f(B;)=B for i=
1,---,m. Ifn=1andm =1,then X = A, U B,, A, N B, is a continuum
and f(A,NB;)=A N B so that A N B is a continuum. Suppose then
that at least one of m and n is greater than one so that X is the union of
a finite number ( > 2) of connected sets. There is at least one A; or one
B; such that the union of the remaining sets is connected. Let B; be
such that if H is the union of all the A;’s and all the B;’s except B;, then
H is connected. Now it follows that X = H U B;, H and B; are closed
and connected and H NB; is compact so that HNB;, is a
continuum. Furthermore, f(H N B;)=A N B and hence A NB is a
continuum.
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