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CHARACTERIZATIONS OF INFINITE-DIMENSIONAL
AND NONREFLEXIVE SPACES

M. EDELSTEIN AND L. KEENER

Infinite-dimensional, resp. nonreflexive spaces are charac-
terized in terms of subsets having a finite visibility property
without being starshaped.

1* Introduction* A well-known result of Smulian [4] states
that every nonreflexive normed linear space contains a decreasing
sequence of nonempty closed and bounded convex sets whose inter-
section is empty. This result was used by V. L. Klee [1] to show
that a normed linear space is nonreflexive if, and only if, it contains
a decreasing sequence of closed and bounded starshaped sets whose
intersection is empty. Also proved by Klee [2] is the following.
Theorem [Klee]. Every infinite dimensional normed linear space con-
tains a decreasing sequence of unbounded but linearly bounded closed
convex sets whose intersection is empty. Here, a set is called linearly
bounded if each straight line intersects it in a bounded set.

In the present paper other characterizations of infinite-dimen-
sional, and of nonreflexive spaces are given which are similar in
spirit and not unrelated to those mentioned above. To this end use
is made of the notion of finite visibility. A set S is said to have
the finite visibility property, f.v.p. for short, if for any finite F aS
there is an x e S such that the line segment [x, y] is contained in S
for all y in F. As customary a set S is called starshaped if an
s e S exists such that the above condition is satisfied with s replacing
x and S replacing F. A well-known theorem of Krasnoselski [3]
implies that in a finite dimensional normed linear space X if S is
closed and bounded and has f.v.p. then S is starshaped. (In fact, if
dim X — n, and card S ^ n + 1, then the above mentioned theorem
holds if the hypothesis is satisfied for all F with card F = n + 1.)
A previous version of this paper was mainly concerned with showing
that in some Banach spaces a weakly closed bounded set may have
f.v.p. without being starshaped. The broader scope of the present
paper is due to suggestions made by Professor Klee in a personal
communication, in which he conjectured the two theorems of this
paper and directed us to relevant passages in some of his works.
It is indeed a pleasure to acknowledge his help.

2* Preliminary results*

LEMMA 1. A compact subset S of a Hausdorff linear topological
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space X is starshaped if it has the finite visibility property.

Proof. For x e S, let Sx = {y e S: [x, y] c S}, a closed set. The
family {Sx: xe S} has the finite intersection property by f .v.p. so
Π Sx Φ 0 by compactness, and S is starshaped.

LEMMA 2. Le£ E be a closed subspace of a normed linear space
X, S a closed convex linearly bounded set in E and x a point in
X ~ E. Then K = co {{x} U S} is closed.

Proof. Let y e K, y Φ x, and let F be the subspace spanned by
x and S. Clearly y eF. Thus if R is the ray emanating from x,
through y, i.e. R = {zeX: z = x + a(y — x), a ^ 0}, then R is con-
tained in F. Moreover, R cannot be parallel to E, for if parallel,
then with w e S, Rr = {z e X: z — w + a(y — x)f a >̂ 0} is contained in
E and by linear boundedness there is a w' e i2' ~ S. But then w'
and S can be separated by a hyperplane HczE, relative to E. The
subspace spanned by H and a? clearly determines a closed half space
of F which contains {{x} U S} and is disjoint from y, leading to a
contradiction, since y e K. Suppose now that u is the point of inter-
section of R and E. It suffices to show that ue S. If not, then
there is an open ball B about u which is disjoint from S and co {{x} U B}
is a neighborhood of u which contains no point of the form Xx +
(1 — λ)s for any λ, 0 ̂  λ < 1 and s e S. This is impossible since y e K.
Hence y e K and K = K as claimed.

LEMMA 3. Let x be a normed linear space, E a closed subspace
of X and I a line skew to E, i.e. I neither intersects E nor is parallel
to any line of E. Let {Ck: k = 1, 2, •} be a decreasing sequence of
closed convex subsets of E and {pk: k = 1, 2, •} a sequence on I con-
verging to some pQ. Let Kt = co {{pj (J CJ for i ^ 1 and KQ =
co {{p0} U CJ.

Then S — U ί ^ ' i = 0, 1, •} is weakly closed. If, in addition,
Cj is linearly bounded then so is S.

Proof. To prove that S is weakly closed let x e X ~ S. Then
x £ Ko, which is closed by Lemma 2, and convex. Thus there is a
hyperplane H such that xeH+ and Ko c H~ where H+ and Ήr are
open half spaces determined by H. Let n0 be such that pn e H~~
whenever n > n0. Then, for such n, Kncz Ήr since {{pn} U Cn}c Ήr.
On the other hand, as (J [K^. i ^ n0} is weakly closed there is a weak
neighborhood W of x which is disjoint from it. It follows that
Wf) H+ is a weak neighborhood of x which is disjoint from S. Hence
S is weakly closed. To prove linear boundedness observe first that,
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as can be readily verified, in finite dimensional spaces boundedness
and linear boundedness are equivalent for closed convex sets. If now
l} is a line in X let L be the subspace spanned by I U ?i Then LdC1

is bounded and closed and lλ Π S is contained in the compact set

co{{pt:fc = 0,l, •.•}U(C1ΠL)}

and therefore bounded. Hence S is linearly bounded, as asserted.

LEMMA 4. Let X be a linear space, E a subspace of X and I
a line in X which is skew to E. If p, qsl, p Φ q, and A, B are
convex subsets of E then

co {{p} U A} Π co {{q} U B) = A Π B .

Proof. Let x e co {{p} U A} Π co {{q} U B}. It suffices to show that
xeAΠB. If this were not the case then xe [p, a) ΓΊ [q, b) for some
aeA and beB, with a Φ b. But then α, δ, p, # would have to be
coplanar against the assumption that I is skew to E.

LEMMA 5. Let X be a linear space, E a subspace of X and I
a line in X which is skew to E. Suppose pt'. i — 1, 2, is a
sequence of distinct points on I. Let CidE be convex, Kt — co {{^JU
Ct}i = 1, 2, and S = (J {Kt: i = 1,2, •}. Then S is starshaped
if, and only if, Π {C*: ΐ = 1, 2, •••} Φ 0 ami S has f.v.p. if, and
only if, {Cέ: i = 1, 2, •} fcas ί&e finite intersection property.

Proof. If V is a line such that V ΓΊ (JSΓy — Cό) Φ 0 then card (V Π
i Q ^ 1 for any i Φ j . Indeed, if for some i Φ j V Π K% contains two
or more points then V is contained in Li9 the linear span of Kt) but
then Γ Π (Kj ~ C5) = 0 since Lt Π ίΓj c Cά by the preceding lemma.
Hence [u, pt], with ueKj ~ Cό and i ^ i, is not contained in S as
card ([u, p%] n S ) ^ y<0. Thus U {[u, pm] czSime M), where M is a set
of two or more positive integers, implies that u e Π {Cm: m e M}. It
follows that for S to be starshaped it is necessary that Π {Ci' i =
1, 2, •} ^ 0 and for it to have f.v.p. {C,: i = 1, 2, •} has to have
the finite intersection property.

For the converse note that u e Π {Cv i = 1,2, •} implies Su = S
and if F c S is finite then, for iV sufficiently large, F c U i ^ ί =
1, 2, •} and this last set is contained in Su for any uef] {C€: i —
1,2, ...,N}.

3* Main results*

THEOREM 1. A normed linear space is infinite-dimensional if,
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and only if, it contains a linearly bounded, weakly closed subset S
which has the finite visibility property but fails to be star shaped.

Proof. If X contains a set S with the stated properties then by
the Krasnoselski theorem [3] X must be infinite-dimensional.

Assume now that X is infinite-dimensional and E is a closed sub-
space of X of codimension 2. By the theorem of Klee quoted in the
introduction, E contains a decreasing sequence {Ck: k = 1, 2, •••} of
nonempty, closed, linearly bounded subsets whose intersection is
empty. Let i be a line which is skew to E and {pk: k — 1, 2, •} a
sequence of distinct points on I converging to pQel. Let Ki9 i =
0,1, and S be as in Lemma 3. Then S is weakly closed and
linearly bounded by that lemma. By Lemma 4 S has f.v.p. but
fails to be star shaped.

THEOREM 2. A normed linear space X is nonrefiexive if, and
only if, it contains a set S which is bounded, weakly closed, has the
finite visibility property but fails to be starshaped.

Proof. If X contains a set S with the stated properties then,
by Lemma 1, it fails to be reflexive.

Assume now that X is nonreflexive and, as in the construction
of the proof of Theorem 1, let E be a closed subspace of X of codi-
mension 2 and I a line skew to E. Let {pk} be a sequence of distinct
points on I converging to pQ e I. By the Smulian theorem [3] there
exists a decreasing sequence {Ck: k = 1, 2, •••} of nonempty, closed
and bounded convex sets in E whose intersection is empty. Let Ktf

i =z 0, 1, and S be defined as in the proof of Theorem 1. Then
the arguments used there apply again to the effect that S is weakly
closed, bounded, with f.v.p. but not starshaped.

4* An example in l^ The following is an example of a concrete
subset of l1 having all the properties of the set S of Theorem 2.
Let S consist of all x = (xlf x2, , xn, •) e lγ such that

( i ) xn^ 0 for n = 1, 2, . . .

(ϋ) IMI = i;
(iii) if x2n Φ 0 then xk = 0 for 1 ^ k < 2n.
To show that S has the finite visibility property let FczS be

finite and N an odd integer which is larger than the index of the
first positive coordinate of each member of F. If eNeS has 1 for
its ΛΓth coordinate then clearly [u, eN] c S for all ue F.

To prove that S is weakly closed let y = (ylf y2, - -, yn, — -)elί~ S
and assume, as we may, that \\y\\ = 1. Since yίS, there must be
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positive integers n, k such that k < 2n and yk > 0 and y2n > 0. If
u = (uif --,uk, . . . ) , ! ; = (^, , v2n, •) e L are such that ^fc = v2n = 1
and all other coordinates = 0 then

W= {ze I,: u(z)>0 and v(z) > 0}

is a weak neighborhood of y which is disjoint from S. Since bounded-
ness of S is obvious it remains to show that S is not starshaped. If
now u = (u19 u2, , uk9 •) G S and ukφ$ then for x = (xlf , a?w, •) e S
with s2k = 1 we have [u, cc] g S.
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