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CHARACTERIZATIONS OF INFINITE-DIMENSIONAL
AND NONREFLEXIVE SPACES

M. EDELSTEIN AND L. KEENER

Infinite-dimensional, resp. nonreflexive spaces are charac-
terized in terms of subsets having a finite visibility property
without being starshaped.

1. Introduction. A well-known result of Smulian [4] states
that every nonreflexive normed linear space contains a decreasing
sequence of nonempty closed and bounded convex sets whose inter-
section is empty. This result was used by V.L. Klee [1] to show
that a normed linear space is nonreflexive if, and only if, it contains
a decreasing sequence of closed and bounded starshaped sets whose
intersection is empty. Also proved by Klee [2] is the following.
Theorem [Klee]. Every infinite dimensional normed linear space con-
tains a decreasing sequence of unbounded but linearly bounded closed
convex sets whose intersection is empty. Here, a set is called linearly
bounded if each straight line intersects it in a bounded set.

In the present paper other characterizations of infinite-dimen-
sional, and of nonreflexive spaces are given which are similar in
spirit and not unrelated to those mentioned above. To this end use
is made of the notion of finite visibility. A set S is said to have
the finite visibility property, f.v.p. for short, if for any finite Fc S
there is an €S such that the line segment [z, ¥] is contained in S
for all y in F. As customary a set S is called starshaped if an
se S exists such that the above condition is satisfied with s replacing
2 and S replacing F. A well-known theorem of Krasnoselski [3]
implies that in a finite dimensional normed linear space X if S is
closed and bounded and has f.v.p. then S is starshaped. (In fact, if
dim X = n, and card S =7 + 1, then the above mentioned theorem
holds if the hypothesis is satisfied for all F/ with card F = n + 1.)
A previous version of this paper was mainly concerned with showing
that in some Banach spaces a weakly closed bounded set may have
f.v.p. without being starshaped. The broader scope of the present
paper is due to suggestions made by Professor Klee in a personal
communication, in which he conjectured the two theorems of this
paper and directed us to relevant passages in some of his works.
It is indeed a pleasure to acknowledge his help.

2. Preliminary results.

LeMMA 1. A compact subset S of a Hausdorff linear tovological
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space X 1is starshaped if it has the finite visibility property.

Proof. For ze S, let S, ={yeS:[x, y]< S}, a closed set. The
family {S,: xS} has the finite intersection property by f.v.p. so
N S, # @ by compactness, and S is starshaped.

LEMMA 2. Let E be a closed subspace of a normed linear space
X, S a closed convex linearly bounded set in E and x a point in
X ~ E. Then K = co{{x} U S} is closed.

Proof. Let ye K, y + «, and let F be the subspace spanned by
x and S. Clearly y€ F. Thus if R is the ray emanating from uz,
through vy, i.e. R={2eX:z2 =2+ a(y — x), « = 0}, then R is con-
tained in F. Moreover, R cannot be parallel to E, for if parallel,
then with weS, R ={zeX:2z=w + a(y — x), « = 0} is contained in
E and by linear boundedness there is a w' e R’ ~ S. But then w’
and S can be separated by a hyperplane H C E, relative to E. The
subspace spanned by H and z clearly determines a closed halfspace
of F' which contains {{x} U S} and is disjoint from y, leading to a
contradiction, since y € K. Suppose now that w is the point of inter-
section of R and E. It suffices to show that w€S. If not, then
there is an open ball B about » which is disjoint from S and co {{x} UB}
is a neighborhood of # which contains no point of the form \x +
(1 — A)sforany A, 0 <A <1 and seS. This is impossible since y € K.
Hence y< K and K = K as claimed.

LEMMA 3. Let x be a normed linear space, E a closed subspace
of X and 1 a line skew to E, i.e. | neither intersects E nor is parallel
to any line of E. Let {Ci:k =1,2, ---} be a decreasing sequence of
closed convex subsets of K and {p,:k =1, 2, ---} a sequence on 1 con-
verging to some p,. Let K, =cof{{p,}UC} for 1=1 and K, =
co {{p.} U C}.

Then S =U{K;:t=0,1, ---} is weakly closed. If, in addition,
C, 1s linearly bounded then so ts S.

Proof. To prove that S is weakly closed let x€ X ~ S. Then
x ¢ K,, which is closed by Lemma 2, and convex. Thus there is a
hyperplane H such that € H* and K, H- where H* and H  are
open halfspaces determined by H. Let w, be such that p,ec H-
whenever n > n,. Then, for such n, K, c H™ since {{p,} UC,}c H .
On the other hand, as U {K;: ¢ < n,} is weakly closed there is a weak
neighborhood W of % which is disjoint from it. It follows that
WnN H" is a weak neighborhood of  which is disjoint from S. Hence
S is weakly closed. To prove linear boundedness observe first that,
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as can be readily verified, in finite dimensional spaces boundedness
and linear boundedness are equivalent for closed convex sets. If now
l, is a line in X let L be the subspace spanned by [ Ul,, Then LNC,
is bounded and closed and I, N S is contained in the compact set

co{{piik=0,1,---}U(C N L)}

and therefore bounded. Hence S is linearly bounded, as asserted.

LEMMA 4. Let X be a linear space, E a subspace of X and 1
a line in X which is skew to E. If p,qel, p #+4q, and A, B are
convex subsets of K then

co{{p}jud}jnco{{gfuB}=ANB.

Proof. Let xeco{{p}U A} N co{{q} U B}. It suffices to show that
xe AN B. If this were not the case then z € [p, @) N [g, ) for some
acA and be B, with a # b. But then a, b, p, ¢ would have to be
coplanar against the assumption that [ is skew to E.

LEMMA 5. Let X be a linear space, E a subspace of X and 1
a line im X which is skew to E. Suppose p:t1=12 --- is a
sequence of distinct points on l. Let C,C K be convex, K, = co {{p;} U
ClY=12--- and S=U{K:1=1,2 ---}. Then S is starshaped
if, and only if, N{Ci:1=12 ---}#+ @ and S has fv.p. if, and
only if, {C:i =12, ---} has the finite intersection property.

Proof. If I’ is a line such that ' N (K; ~ C;) # & then card (I' N
K) <1 for any % + j. Indeed, if for some % # j I’ N K, contains two
or more points then I’ is contained in L,, the linear span of K,; but
then ' N (K; ~ C;) = @ since L, N K;c C; by the preceding lemma.
Hence [u, p,], with ue K; ~ C; and 7 +# J, is not contained in S as
card (fu, »,]N S) = We. Thus YU{[u, p.] = S: m e M}, where M is a set
of two or more positive integers, implies that u e N {C.: me M}. It
follows that for S to be starshaped it is necessary that M {C: 7 =
1,2 ---}# @ and for it to have f.v.p. {C;:7 =1, 2, ---} has to have
the finite intersection property.

For the converse note that ue N {C;:v=1,2, ---} implies S, = S
and if F'c S is finite then, for N sufficiently large, FCc U {K;: 7 =
1,2, ---} and this last set is contained in S, for any ueN{C:7 =
1,2 ---, N}

3. Main results.

THEOREM 1. A normed linear space is infinite-dimensional if,
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and only if, it contains a linearly bounded, weakly closed subset S
which has the finite visibility property but fails to be starshaped.

Proof. If X contains a set S with the stated properties then by
the Krasnoselski theorem [3] X must be infinite-dimensional.

Assume now that X is infinite-dimensional and E is a closed sub-
space of X of codimension 2. By the theorem of Klee quoted in the
introduction, £ contains a decreasing sequence {C,:k =1, 2 ---} of
nonempty, closed, linearly bounded subsets whose intersection is
empty. Let I be a line which is skew to £ and {p,:k =12 ---} a
sequence of distinct points on ! converging to p,€l. Let K, i =
0,1, --- and S be as in Lemma 3. Then S is weakly closed and
linearly bounded by that lemma. By Lemma 4 S has f.v.p. but
fails to be starshaped.

THEOREM 2. A normed linear space X is nonreflexive if, and
only if, it contains a set S which is bounded, weakly closed, has the
finite visibility property but fails to be starshaped.

Proof. If X contains a set S with the stated properties then,
by Lemma 1, it fails to be reflexive.

Assume now that X is nonreflexive and, as in the construction
of the proof of Theorem 1, let E be a closed subspace of X of codi-
mension 2 and ! a line skew to E. Let {p,} be a sequence of distinct
points on ! converging to p,€l. By the Smulian theorem [3] there
exists a decreasing sequence {C,:k =1,2 ...} of nonempty, closed
and bounded convex sets in F whose intersection is empty. Let K,
1=20,1 --- and S be defined as in the proof of Theorem 1. Then
the arguments used there apply again to the effect that S is weakly
closed, bounded, with f.v.p. but not starshaped.

4., An example in },. The following is an example of a concrete
subset of !, having all the properties of the set S of Theorem 2.
Let S consist of all © = (x, 5, -+, 2, ++-) €l, such that

(i) z,z0forw=1,2 .--;

(ii) flzll=1

(iii) if x,, # 0 then z, =0 for 1 =k < 2n.

To show that S has the finite visibility property let FF S be
finite and N an odd integer which is larger than the index of the
first positive coordinate of each member of F. If eye€S has 1 for
its Nth coordinate then clearly [u, ey]C S for all we F.

To prove that S is weakly closed let ¥ = (¥, ¥s, ***y Yuy, *+*)EL~ S
and assume, as we may, that ||y || = 1. Since y¢ S, there must be
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positive integers », k such that k¥ < 2% and v, >0 and w,, > 0. If
U= Uy +v, Uy *++)y V=(Vy, ++¢, Vay, +++) €L, are such that u, =v,, =1
and all other coordinates = 0 then

W= {zel;:u(z)>0 and wv(z)> 0}

is a weak neighborhood of ¥ which is disjoint from S. Since bounded-
ness of S is obvious it remains to show that S is not starshaped. If
NOW U={(Uy;, Uy, *++, Uz, +++) €S and u,#0 then for x=(x, -+, 2,,---) €S
with s, = 1 we have [u, x]¢ S.
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