CONCERNING SIU'S METHOD FOR SOLVING y'(t) = F(t, y(g(t)))

MURIL L. ROBERTSON

A procedure is given, which is parameterized by a certain set of real-valued functions, that yields sufficient conditions on each of g and F to guarantee a solution to y'(t) = F(t, y(g(t))).

The following is the main result.

THEOREM 1. Suppose that f is a real-valued continuous function with connected domain J of real numbers so that

 $(1) \quad 0 \in J \text{ and } f(0) > 0$

(2) f is increasing on $J \cap [0, +\infty)$

(3) f is decreasing on $J \cap (-\infty, 0]$

(4) 0 < k < 1, if the range of f is unbounded; and k = 1 if the range of f is bounded

(5) B is a Banach space, $F: J \times B \rightarrow B$, and $N: J \rightarrow R$

(6) F is continuous and there is a constant C so that

$$\left| \int_{0}^{x} \left| \left| F(s, 0) \right| \right| ds
ight| \leq C f(x), \text{ for all } x \text{ in } J.$$

(7) $||F(t, x) - F(t, y)|| \le N(t) ||x - y||$, for $t \in J$ and $x, y \in B$

(8) N is positive and Lebesgue integrable or subintervals of J

(9) g is any continuous function from J into J so that $g(x) \in f^{-1}[f(0), k| f'^{\text{sign}x}(x)|/N(x)]$ for all $x \in J$. $(f'^{\text{sign}x}$ denotes the right-hand derivative if x > 0 and it denotes the left-hand derivative if x < 0.) (10) $q \in B$.

Then, there is a unique function $y: J \rightarrow B$ so that y'(t) = F(t, y(g(t))), y(0) = q and $||y(t)|| \leq \text{Constant} \cdot f(t)$, for all t in J.

LEMMA. If f satisfies conditions (1), (2), and (3) in the statement of Theorem 1, then $\int_{0}^{x} f'^{\text{signs}}(s) \, ds$ exists in the Lebesgue sense and is less than or equal to f(x) - f(0), for each $x \in J$.

Proof of Lemma. Suppose x > 0. Let $f_n(s) = [f(s + 1/n) - f(s)]n$. Then $f'^+(s) = \lim f_n(s)$ for almost all s > 0. Clearly each f_n is summable, because each f_n is continuous. Also, for each n

$$\int_0^x f_n(s) = \int_0^x n \left[f\left(s + \frac{1}{n}\right) - f(s) \right] ds$$
$$= n \int_{1/n}^{x+1/n} f(s) ds - n \int_0^x f(s) ds$$

$$= n \int_{x}^{x+1/n} f(s) ds - n \int_{0}^{1/n} f(s) ds \text{ (which approaches} \\ f(x) - f(0))$$
$$\leq 2 \cdot \{ \text{sup of } f \text{ on } [0, x+1] \}$$

Thus, by Fatou's lemma [see 3, page 39], f'^+ is summable on [0, x] for all x > 0 and $x \in J$ and

$$\int_0^x f'(s) ds \leq \liminf \int_0^x f_n(s) ds \leq f(x) - f(0) \; .$$

The proof is similar for x < 0.

Proof of Theorem 1. Let $||\cdot||$ be the norm of B and define $|\cdot|$ to be the norm defined by $|z| = \sup\{||z(x)||/f(x): x \in J\}$ for each z continuous from J into B such that this supremum exists. Let Y denote the Banach space of all such z, with norm $|\cdot|$. For each $z \in Y$ and $x \in J$, let $(Tz)(x) = q + \int_{0}^{x} F(s, z(g(s))) ds$. Suppose z, $w \in Y$. Then

$$egin{aligned} ||\, (Tz)(x)\, -\, (Tw)(x)|| &= \left| \left| \int_{0}^{x} [F(s,\, z(g(s))) \, -\, F(s,\, w(g(s)))] ds
ight| \ &\leq \left| \int_{0}^{x} N(s) \, ||\, z(g(s)) \, -\, w(g(s)) \, ||\, ds
ight| \ &\leq \left| \int_{0}^{x} N(s) f(g(s)) ds
ight| \, |z - w| \; . \end{aligned}$$

Thus, $|Tz - Tw| \leq \sup \left\{ \left| \int_{0}^{x} N(s)f(g(s))ds \right| / f(x) \right\} |z - w|$. The following shows that T is a contraction.

Case 1. Suppose x > 0. Then if $0 \le s \le x$, $f(g(s)) \in [f(0), kf'^+(s)/N(s)]$. Thus, $\left|\int_0^x N(s)f(g(s))ds\right| = \int_0^x N(s)f(g(s))ds \le \int_0^x kf'^+(s)ds \le k(f(x) - f(0))$, by the lemma.

Case 2. Suppose x < 0. Then if

$$x \leq s \leq 0, f(g(s)) \in [f(0), -kf'^{-}(s)/N(s)]$$
.

Thus,

$$\left|\int_{0}^{x} N(s)f(g(s))ds\right| = \int_{x}^{0} N(s)f(g(s))d \leq s k \int_{0}^{x} f'^{-}(s)ds \leq k(f(x) - f(0)) ,$$

by the lemma.

Thus, in either case $c = \sup \left\{ \left| \int_{0}^{x} N(x) f(g(s)) ds \right| / f(x) \right\} \leq \sup \left\{ k(1 - f(0)/f(x)) \right\}$. So, if the range of f is unbounded, $c \leq k$ and if the range of f is bounded by L and k = 1, then $c \leq 1 - f(0)/L$. So T

has contraction constant c. The zero function Z is in Y, because $(TZ)(x) = q + \int_{0}^{x} F(s, 0) ds$ and $||(TZ)(x)||/f(x) \leq [||q|| + Cf(x)]/f(x) \leq ||q||/f(0) + C$. Now if $w \in Y$, $||(Tw)(x)||/f(x) \leq |Tw - TZ| + |TZ|$. Thus $Tw \in Y$. So, by Banach's contraction mapping principle, T has a unique fixed point in Y. This proves Theorem 1.

REMARKS. (1) Given any g one may find an appropriate N and apply Theorem 1, by requiring $N(x) \leq k |f'^{\text{sign}x}(x)|/f(g(x))$.

(2) At any particular x, there is an f so that $f'^{\text{sign}x}(x) = \infty$ and so that t does not have infinite derivative in a deleted neighborhood of x. For this type f, g(x) could be any number.

In [5], Siu essentially uses the method of Theorem 1 with $f(x) = \exp(|x|/e)$ to obtain:

THEOREM 2 (Siu). If $|g(x)| \leq |x| + c$, where 0 < c < 1/e, for all real numbers x, then y' = y(g), y(0) = q has unique solution subject to $||y(x)|| \leq \text{constant} \cdot \exp(|x|/e)$

In [4], the author proves:

THEOREM 3. If $\{I(i)\}$ is a sequence of intervals so that $I(0) = \{0\} \subseteq I(i) \subseteq I(i+1), I(i) = [a(i), b(i)], and \max \{a(i-1) - a(i), b(i) - b(i-1)\} < 1$ for each positive integer i; then y' = y(g), y(0) = q has unique solution on $\cup \{I(i)\}$, whenever g is countinuous and $g(I(i)) \subseteq I(i)$ for each positive integer i.

The following theorem is comparable to each of Theorem 2 and Theorem 3.

THEOREM 4. Suppose the hypothesis of Theorem 3 holds and k is in (0, 1) such that $\max \{a(i-1) - a(i), b(i) - b(i-1)\} < k$ for each positive integer i. Then, for each positive integer i, there exists $\delta(i) > 0$ such that if g is a continuous function from $\cup \{I(i)\}$ into $\cup \{I(i)\}$ such that $g(I(i)) \subseteq [a(i) - \delta(i), b(i) + \delta(i)]$, then y'(t) = F(t,y(g(t))), y(0) = q has a solution on $\cup \{I(i)\}$ for any F such that N =1, where F and N satisfy the conditions listed for them in the hypothesis of Theorem 1.

Proof of Theorem 4. Let f be a positive continuous piecewise linear function with domain $\cup \{I(i)\}$ such that f has slope M(i) or (b(i-1), b(i)) and slope -M(i) on (a(i), a(i-1)) where the sequence $\{M(i)\}$ is chosen such that for each nonnegative integer n,

$$egin{aligned} M(n+1) \ &> \max\left\{ \left[f(0) + \sum\limits_{i=1}^n M(i)(a(i-1)-a(i))
ight] \Big/ \left[k - (a(n)-a(n+1))
ight]
ight, \ & \left[f(0) + \sum\limits_{i=1}^n M(i)(b(i)-b(i-1))
ight] \Big/ \left[k - (b(n+1)-b(n))
ight]
ight\} \,. \end{aligned}$$

Let

$$\begin{split} \delta(n+1) &= \min \left\{ a(n+1) - a(n+2), \, b(n+2) - b(n+1) , \\ \left[kM(n+1) - \left[f(0) + \sum_{i=1}^{n+1} M(i)(a(i-1) - a(i)) \right] \right] \right/ M(n+2) , \\ \left[kM(n+1) - \left[f(0) + \sum_{i=1}^{n+1} M(i)(b(i) - b(i-1)) \right] \right] \right/ M/(n+2) \right\} . \end{split}$$

It follows that the hypotheses of Theorem 1 hold.

REMARK. The solution in Theorem 4 is unique in the Banach space Y of Theorem 1, which depends on f.

The following is a straightforward application of Theorem 1.

THEOREM 5. Suppose

$$(1) -1 < -k < a < 0 < b < k < 1$$

$$(2) m \ge \max \{1/(k+a), 1/(k-b)\}$$

$$(3) nk \ge \max \{(1 - ma)/(1 + mb), (1 + mb)(1 - ma)\}$$

$$(4) \qquad l(x) = egin{cases} x - (\log nk)/n & , & x \leq a \ a - (\log km/(1-ma))/n & , & a < x < b \ -x + a + b - (\log kn(mb+1)/(1-ma))/n & , & b \leq x \end{cases}$$

and

$$u(x) = egin{cases} -x + a + b + (\log nk/(1 - ma)/(1 + mb))/n \ , & x \leq a \ b + (\log km/(1 + mb))/n \ , & a < x < b \ x + (\log nk)/n \ , & b \leq x \end{cases}$$

(5)
$$l \leq g \leq u \text{ and } g \text{ is continuous }.$$

Then, there is a unique solution to y'(t) = F(t, y(g(t))), y(0) = qwhere F and N satisfy the hypotheses of Theorem 1, N = 1 and, $||y(x)|| \leq \text{constant} \cdot f(x)$, for all real numbers x, where

$$f(x) = \begin{cases} (1 - ma) \exp(-n(x - a)), & x \leq a \\ 1 - mx, & a \leq x \leq 0 \\ 1 + mx, & 0 \leq x \leq b \\ (mb + 1) \exp(n(x - b)), & b \leq x \end{cases}$$

226

REMARK. If a = -b, then u = -l.

The following is a generalization of a theorem by D. R. Anderson [1].

COROLLARY TO THEOREM 5. Suppose $0 < \beta < 1, \varepsilon > 0$, and

$$|g(x)| \leq egin{cases} -x + rac{1}{e} - arepsilon & x \leq -eta \ eta + \left(\log rac{1}{eta}
ight) ig/ e - arepsilon & -eta < x < eta \ x + rac{1}{e} - arepsilon & eta \leq x \;. \end{cases}$$

Then, there is a solution to y'(t) = F(t, y(g(t))), y(0) = q for N = 1any y subject to $||y(x)|| \leq \text{constant} \cdot f(x)$ for an appropriate f.

Proof. Straightforward.

REMARK. As β approaches 0, g is allowed to become indefinitely large at 0.

The author wishes to thank Professor Bob Dorroh for his help with the lemma to Theorem 1.

References

1. D. R. Anderson, An existence theorem for a solution of f'(x) = F(x, f(g(x))), SIAM Review, **8** (1966), 359-362.

2. R. J. Oberg, On the local existence of solutions of certain functional-differential equations, Trans. Amer. Math. Soc., (1969), 295-302.

3. F. Riesz, and B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.

4. M. L. Robertson, The equation y'(t) = F(t, y(g(t))), Pacific J. Math., 43 (1972), 483-491.

5. Y. T. Siu, On the solution of the equation $f'(x) = \lambda f(g(x))$, Math. Z., **90** (1965) 391, -392.

Received April 16, 1973 and in revised form March 6, 1975.

AUBURN UNIVERSITY