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CONCERNING SIU'S METHOD FOR SOLVING
y'{t) = F{t,y{g{t)))

MURIL L. ROBERTSON

A procedure is given, which is parameterized by a certain
set of real-valued functions, that yields sufficient conditions
on each of g and F to guarantee a solution to y'(t)=F(t,y(g(t))).

The following is the main result.

THEOREM 1. Suppose that f is a real-valued continuous function
with connected domain J of real numbers so that

(1) OeJ and /(0) > 0
(2) f is increasing on JΠ [0, +°o)
(3) f is decreasing on Jn(-°°,0]
(4) 0 < k < 1, if the range of f is unbounded; and k = 1 if

the range of f is bounded
(5) B is a Banach space, F: J x B-+B, and N:J—>R
(6) F is continuous and there is a constant C so that

\^\\F(s,0)\\ds Cf{x), for all x in J.

(7) \ \ F ( t , x ) - F ( t , y ) \ \ ^ N ( t ) \ \ x - y \ \ , f o r t e J a n d x , y e B
( 8 ) N is positive and Lebesgue integrable or subintervals of J
(9) g is any continuous function from J into J so that g(x) e

/"'[/(O), k\f'sis™(x)\/N(x)] for all xeJ. (f'sisnx denotes the right-hand
derivative if x > 0 and it denotes the left-hand derivative if x < 0.)

(10) qeB.
Then, there is a unique function y: J'—+ B so that y'{t) = F(t, y(g(t))),
y(0) =. q and \\y(t)\\ ̂  Constant-/(ί), for all t in J.

LEMMA. If f satisfies conditions (1), (2), and (3) in the statement
/' s i g n s(s) ds exists in the Lebesgue sense and is

0

less than or equal to f(x) — /(0), for each xeJ.

Proof of Lemma. Suppose x > 0. Let fn(s) = [f(s + 1/ri) — f(s)]n.
Then / ' + (s) = lim fn (s) for almost all s > 0. Clearly each fn is
summable, because each fn is continuous. Also, for each n

S x+ljn Γz

f(s)ds — n I f(s)ds
I/Λ JO
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Γx + l/n Γl/tt

— n \ f(s)ds — n \ f(s)ds (which approaches
Jx JO

f(χ) - /(O))
^ 2 {sup of / on [0, x + 1]}

Thus, by Fatou's lemma [see 3, page 39], / '+ is summable on [0, x]
for all x > 0 and xeJ and

[Xf'+(s)ds ^ liminf [* fn(s)ds ^ f(x) - /(0) .
Jo Jo

The proof is similar for x < 0.

Proof of Theorem 1. Let || || be the norm of B and define | |

to be the norm defined by \z\ — svφ{\\z{x)\\lf{x):xe/} for each z con-

tinuous from J into B such that this supremum exists. Let Y denote

the Banach space of all such z, with norm | |. For each zeY

and xeJ, let (Tz)(x) = q + Γ F(s, z(g(s)))ds. Supposes, weY. Then
Jo

\\(Tz)(x) - (Tw)(x)\\ = [F(s, z(g(s))) - F(s, w(g(s)))]ds
JO

N(s)\\z(g(s)) — w(g(s))\\ds

\z — w\ .

Thus, I Tz - Tw\ ^ sup \\[XN(s)f(g(s))ds\/f(x)\\z - w\. The following
II Jo )

shows that T is a contraction.

Case 1. Suppose x > 0. Then if 0 ^ s ^ x, f(g(s)) e [/(0),

kf'+(s)/N(s)]. Thus, I j o*iNΓ(s)/(0(s) | j j
- fΦ))f by the° lemma.

, )

= j"-ΛΓ(8)/(flf(8))d8 ^ j"fc/'+

Case 2. Suppose α? < 0. Then if

x ^ s ^ 0, /(g(β)) 6 [/(0), -kf'-(8)/N(8)] .

Thus,

by the lemma.
ίIΓ* I / )

Thus, in either case c = sup \\\ N(x)f(g(s))ds\ f(xn ^ sup{k(l —
f(0)/f(x))}. So, if the range of / is unbounded, c ^ k and if the
range of / is bounded by L and k = 1, then c ^ 1 — f(0)/L. So Γ
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has contraction constant e. The zero function Z is in Y, because

(TZ)(x) = q+ jV(«, 0)ds and \\(TZ)(x)\\/f(x) ̂  [\\q\\ + Cf(x)]/f(x) ^

\\q\\/f(0) + C. Now if weY, \\(Tw)(x)\\/f(x) £\Tw- TZ\ + \TZ\.
Thus Twe Y. So, by Banach's contraction mapping principle, T
has a unique fixed point in Y. This proves Theorem 1.

REMARKS. (1) Given any g one may find an appropriate N and
apply Theorem 1, by requiring N(x) ^ k\f'sisnx(x)\/f(g(x)).

(2) At any particular x, there is an / so that f'sisnx(x) = oo
and so that t does not have infinite derivative in a deleted neighbor-
hood of x. For this type /, g(x) could be any number.

In [5], Siu essentially uses the method of Theorem 1 with f(x) =
exp(\x\/e) to obtain:

THEOREM 2 (Siu). If \g(x)\ ^ \x\ + c, where 0 < c < 1/e, for all
real numbers x, then y' = y(g), y(0) = q has unique solution subject
to 11 y(x) 11 <; constant exp (| x \/e)

In [4], the author proves:

THEOREM 3. If {I(i}} is a sequence of intervals so that 1(0) =
{0} S I(i) S I(i + 1), I{i) = [a(i)9 b(i)], and max {a(i - 1) - a(i), b(i) -
b(i — 1)} < 1 for each positive integer i; then yr ~ y(g), y(0) = q has
unique solution on \J{I(ϊ)}, whenever g is countinuous and g(I(i))Ql(i)
for each positive integer i.

The following theorem is comparable to each of Theorem 2 and
Theorem 3.

THEOREM 4. Suppose the hypothesis of Theorem 3 holds and k
is in (0, 1) such that max {a(i — 1) — a(i), b(i) — b(i — 1)} < k for each
positive integer i. Then, for each positive integer i, there exists
δ(ϊ) > 0 such that if g is a continuous function from (J {I(i)} into
U {I(i)} such that g(I(i)) S [a(i) - δ(i), b{i) + §(£)], then y'(t) = F(t,
y(θ(t)))> vΦ) — Q has a solution on U {I(i)} for any F such that N =
1, where F and N satisfy the conditions listed for them in the
hypothesis of Theorem 1.

Proof of Theorem 4. Let / be a positive continuous piecewise
linear function with domain U {I(i)} such that / has slope M(i) or
(b(i — 1), b(i))) and slope —M(i) on (a(i), a(i — 1)) where the sequence
[M(i)} is chosen such that for each nonnegative integer n,
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M(n-

>

Let
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max |[/(0) + Σ M(i)(a(i - 1) - a(i))V [k - (a(n) - a(n + 1))] ,

- 6« - 1))]/ [fc - φ(n + 1) - b(n))]\ .[/(0) + Σ

= min \a(n 2), 2) -

Σ 2) ,

2)} .

It follows that the hypotheses of Theorem 1 hold.

REMARK. The solution in Theorem 4 is unique in the Banach
space Y of Theorem 1, which depends on / .

The following is a straightforward application of Theorem 1.

THEOREM 5. Suppose

(1)

(2)

(3)

(4)

and

— 1 < —k < a <0 <b < k <1

m ^ max {l/(& + α), l/(fc - 6)}

^ max {(1 — mα)/(l + mδ), (1 + mδ)(l —

a? — (log nk)/n

a — (log kml(l — ma))/n
x S a,

a < x < δ

u(x) =

( 5 )

— α? + α + 6 — (log kn(mb + 1)/(1 — ma))In , b S %

— a? + α + 6 + (log nk/(l — ma) 1(1 + mb))/n , α? ̂  α

6 + (log km/(l + mb))/n , a<x <b

x + (log nk)/n , δ ^ a?

I ^ 9 t^ u and g is continuous .

Then, there is a unique solution to /(£) = F(t, y(g(t))), y(0) = #
where F and iV satisfy the hypotheses of Theorem 1, N = 1 and,
||2/(a?)|| g constant -/(a?), for all real numbers x, where

/(*) =

(1 — mα) exp (—n(x — a)) , a? ̂  α

1 — mcc , a ^ a? ̂  0

1 + mx , 0 ^x ^b

\{mb + 1) exp (%(# — 6)) , b ^ x



[i].
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REMARK. If a = — b, then u = — I.

The following is a generalization of a theorem by D. R. Anderson

COROLLARY TO THEOREM 5. Suppose 0< β <1, ε > 0,

X "T" £ »V ^ ^ yθ

( log— ) / e - s - £ < α? < β

x + — - ε β^x .
e

Then, there is a solution to yf(t) = F(ί, y(g(t))), y(0) = g /or JV = 1
« ?/ subject to \\y(x)\\ ^ constant-f(x) for an appropriate f.

Proof. Straightforward.

REMARK. AS β approaches 0, g is allowed to become indefinitely
large at 0.

The author wishes to thank Professor Bob Dorroh for his help
with the lemma to Theorem 1.
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