CONCERNING SIU'S METHOD FOR SOLVING

$$
y^{\prime}(t)=F(t, y(g(t)))
$$

Muril L. Robertson

Abstract

A procedure is given, which is parameterized by a certain set of real-valued functions, that yields sufficient conditions on each of g and F to guarantee a solution to $y^{\prime}(t)=F(t, y(g(t))$).

The following is the main result.

Theorem 1. Suppose that f is a real-valued continuous function with connected domain J of real numbers so that
(1) $0 \in J$ and $f(0)>0$
(2) f is increasing on $J \cap[0,+\infty)$
(3) f is decreasing on $J \cap(-\infty, 0]$
(4) $0<k<1$, if the range of f is unbounded; and $k=1$ if the range of f is bounded
(5) B is a Banach space, $F: J \times B \rightarrow B$, and $N: J \rightarrow R$
(6) F is continuous and there is a constant C so that

$$
\left|\int_{0}^{x}\|F(s, 0)\| d s\right| \leqq C f(x), \text { for all } x \text { in } J .
$$

(7) $\|F(t, x)-F(t, y)\| \leqq N(t)\|x-y\|$, for $t \in J$ and $x, y \in B$
(8) N is positive and Lebesgue integrable or subintervals of J
(9) g is any continuous function from J into J so that $g(x) \in$ $f^{-1}\left[f(0), k\left|f^{\prime \operatorname{sign} x}(x)\right| / N(x)\right]$ for all $x \in J . \quad\left(f^{\prime \operatorname{sign} x}\right.$ denotes the right-hand derivative if $x>0$ and it denotes the left-hand derivative if $x<0$.)
(10) $q \in B$.

Then, there is a unique function $y: J \rightarrow B$ so that $y^{\prime}(t)=F(t, y(g(t)))$, $y(0)=q$ and $\|y(t)\| \leqq$ Constant $\cdot f(t)$, for all t in J.

Lemma. If f satisfies conditions (1), (2), and (3) in the statement of Theorem 1, then $\int_{0}^{x} f^{\prime \text { signs }}(s) d s$ exists in the Lebesgue sense and is less than or equal to $f(x)-f(0)$, for each $x \in J$.

Proof of Lemma. Suppose $x>0$. Let $f_{n}(s)=[f(s+1 / n)-f(s)] n$. Then $f^{\prime+}(s)=\lim f_{n}(s)$ for almost all $s>0$. Clearly each f_{n} is summable, because each f_{n} is continuous. Also, for each n

$$
\begin{aligned}
\int_{0}^{x} f_{n}(s) & =\int_{0}^{x} n\left[f\left(s+\frac{1}{n}\right)-f(s)\right] d s \\
& =n \int_{1 / n}^{x+1 / n} f(s) d s-n \int_{0}^{x} f(s) d s
\end{aligned}
$$

$$
\begin{aligned}
& =n \int_{x}^{x+1 / n} f(s) d s-n \int_{0}^{1 / n} f(s) d s \text { (which approaches } \\
& f(x)-f(0)) \\
& \leqq 2 \cdot\{\text { sup of } f \text { on }[0, x+1]\}
\end{aligned}
$$

Thus, by Fatou's lemma [see 3, page 39], $f^{\prime+}$ is summable on $[0, x]$ for all $x>0$ and $x \in J$ and

$$
\int_{0}^{x} f^{\prime+}(s) d s \leqq \lim \inf \int_{0}^{x} f_{n}(s) d s \leqq f(x)-f(0)
$$

The proof is similar for $x<0$.
Proof of Theorem 1. Let $\|\cdot\|$ be the norm of B and define $|\cdot|$ to be the norm defined by $|z|=\sup \{\| z(x)| | / f(x): x \in J\}$ for each z continuous from J into B such that this supremum exists. Let Y denote the Banach space of all such z, with norm $|\cdot|$. For each $z \in Y$ and $x \in J$, let $(T z)(x)=q+\int_{0}^{x} F(s, z(g(s))) d s$. Suppose $z, w \in Y$. Then

$$
\begin{aligned}
\|(T z)(x)-(T w)(x)\| & =\left\|\int_{0}^{x}[F(s, z(g(s)))-F(s, w(g(s)))] d s\right\| \\
& \leqq\left|\int_{0}^{x} N(s)\|z(g(s))-w(g(s))\| d s\right| \\
& \leqq\left|\int_{0}^{x} N(s) f(g(s)) d s\right||z-w|
\end{aligned}
$$

Thus, $|T z-T w| \leqq \sup \left\{\left|\int_{0}^{x} N(s) f(g(s)) d s\right| / f(x)\right\}|z-w|$. The following shows that T is a contraction.

Case 1. Suppose $x>0$. Then if $0 \leqq s \leqq x, f(g(s)) \in[f(0)$, $\left.k f^{\prime+}(s) / N(s)\right]$. Thus, $\left|\int_{0}^{x} N(s) f(g(s)) d s\right|=\int_{0}^{x} N(s) f(g(s)) d s \leqq \int_{0}^{x} k f^{\prime+}(s) d s \leqq$ $k(f(x)-f(0))$, by the lemma.

Case 2. Suppose $x<0$. Then if

$$
x \leqq s \leqq 0, f(g(s)) \in\left[f(0),-k f^{\prime-}(s) / N(s)\right]
$$

Thus,

$$
\left|\int_{0}^{x} N(s) f(g(s)) d s\right|=\int_{x}^{0} N(s) f(g(s)) d \leqq s k \int_{0}^{x} f^{\prime-}(s) d s \leqq k(f(x)-f(0))
$$

by the lemma.
Thus, in either case $c=\sup \left\{\left|\int_{0}^{x} N(x) f(g(s)) d s\right| / f(x)\right\} \leqq \sup \{k(1-$ $f(0) / f(x))\}$. So, if the range of f is unbounded, $c \leqq k$ and if the range of f is bounded by L and $k=1$, then $c \leqq 1-f(0) / L$. So T
has contraction constant c. The zero function Z is in Y, because $(T Z)(x)=q+\int_{0}^{x} F(s, 0) d s$ and $\|(T Z)(x)\| / f(x) \leqq[\|q\|+C f(x)] / f(x) \leqq$ $\|q\| / f(0)+C$. Now if $w \in Y,\|(T w)(x)\||f(x) \leqq|T w-T Z|+|T Z|$. Thus $T w \in Y$. So, by Banach's contraction mapping principle, T has a unique fixed point in Y. This proves Theorem 1.

Remarks. (1) Given any g one may find an appropriate N and apply Theorem 1, by requiring $N(x) \leqq k\left|f^{\prime \operatorname{sign} x}(x)\right| / f(g(x))$.
(2) At any particular x, there is an f so that $f^{\operatorname{sign} x}(x)=\infty$ and so that t does not have infinite derivative in a deleted neighborhood of x. For this type $f, g(x)$ could be any number.

In [5], Siu essentially uses the method of Theorem 1 with $f(x)=$ $\exp (|x| / e)$ to obtain:

Theorem 2 (Siu). If $|g(x)| \leqq|x|+c$, where $0<c<1 / e$, for all real numbers x, then $y^{\prime}=y(g), y(0)=q$ has unique solution subject to $\|y(x)\| \leqq$ constant $\cdot \exp (|x| / e)$

In [4], the author proves:

Theorem 3. If $\{I(i)\}$ is a sequence of intervals so that $I(0)=$ $\{0\} \cong I(i) \subseteq I(i+1), I(i)=[a(i), b(i)]$, and $\max \{a(i-1)-a(i), b(i)-$ $b(i-1)\}<1$ for each positive integer i; then $y^{\prime}=y(g), y(0)=q$ has unique solution on $\cup\{I(i)\}$, whenever g is countinuous and $g(I(i)) \subseteq I(i)$ for each positive integer i.

The following theorem is comparable to each of Theorem 2 and Theorem 3.

Theorem 4. Suppose the hypothesis of Theorem 3 holds and k is in $(0,1)$ such that $\max \{a(i-1)-a(i), b(i)-b(i-1)\}<k$ for each positive integer i. Then, for each positive integer i, there exists $\delta(i)>0$ such that if g is a continuous function from $\cup\{I(i)\}$ into $\cup\{I(i)\}$ such that $g(I(i)) \subseteq[a(i)-\delta(i), b(i)+\delta(i)]$, then $y^{\prime}(t)=F(t$, $y(g(t))), y(0)=q$ has a solution on $\cup\{I(i)\}$ for any F such that $N=$ 1, where F and N satisfy the conditions listed for them in the hypothesis of Theorem 1.

Proof of Theorem 4. Let f be a positive continuous piecewise linear function with domain $\cup\{I(i)\}$ such that f has slope $M(i)$ or $(b(i-1), b(i)))$ and slope $-M(i)$ on ($a(i), a(i-1)$) where the sequence $\{M(i)\}$ is chosen such that for each nonnegative integer n,
$M(n+1)$

$$
\begin{aligned}
>\max \{ & {\left[f(0)+\sum_{i=1}^{n} M(i)(a(i-1)-a(i))\right] /[k-(a(n)-a(n+1))] } \\
& {\left.\left[f(0)+\sum_{i=1}^{n} M(i)(b(i)-b(i-1))\right] /[k-(b(n+1)-b(n))]\right\} . }
\end{aligned}
$$

Let

$$
\begin{aligned}
& \delta(n+1)=\min \{a(n+1)-a(n+2), b(n+2)-b(n+1), \\
& {\left[k M(n+1)-\left[f(0)+\sum_{i=1}^{n+1} M(i)(a(i-1)-a(i))\right]\right] / M(n+2),} \\
& \left.\left[k M(n+1)-\left[f(0)+\sum_{i=1}^{n+1} M(i)(b(i)-b(i-1))\right]\right] / M /(n+2)\right\} .
\end{aligned}
$$

It follows that the hypotheses of Theorem 1 hold.
Remark. The solution in Theorem 4 is unique in the Banach space Y of Theorem 1, which depends on f.

The following is a straightforward application of Theorem 1.

Theorem 5. Suppose

$$
\begin{equation*}
-1<-k<a<0<b<k<1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m \geqq \max \{1 /(k+a), 1 /(k-b)\} \tag{2}
\end{equation*}
$$

(4) $\quad l(x)= \begin{cases}x-(\log n k) / n & , \quad x \leqq a \\ a-(\log k m /(1-m a)) / n & , \quad a<x<b \\ -x+a+b-(\log k n(m b+1) /(1-m a)) / n, & b \leqq x\end{cases}$
and

$$
u(x)= \begin{cases}-x+a+b+(\log n k /(1-m a) /(1+m b)) / n, & x \leqq a \\ b+(\log \mathrm{km} /(1+m b)) / n & , \quad a<x<b \\ x+(\log n k) / n & b \leqq x\end{cases}
$$

$$
\begin{equation*}
l \leqq g \leqq u \text { and } g \text { is continuous . } \tag{5}
\end{equation*}
$$

Then, there is a unique solution to $y^{\prime}(t)=F(t, y(g(t))), y(0)=q$ where F and N satisfy the hypotheses of Theorem $1, N=1$ and, $\|y(x)\| \leqq$ constant $\cdot f(x)$, for all real numbers x, where

$$
f(x)= \begin{cases}(1-m a) \exp (-n(x-a)) & , x \leqq a \\ 1-m x & , \\ 1 \leqq m \leqq 0 \\ (m b+1) \exp (n(x-b)) & , \\ 1 \leqq x \leqq b\end{cases}
$$

Remark. If $a=-b$, then $u=-l$.
The following is a generalization of a theorem by D. R. Anderson [1].

Corollary to Theorem 5. Suppose $0<\beta<1, \varepsilon>0$, and

$$
|g(x)| \leqq \begin{cases}-x+\frac{1}{e}-\varepsilon & x \leqq-\beta \\ \beta+\left(\log \frac{1}{\beta}\right) / e-\varepsilon & -\beta<x<\beta \\ x+\frac{1}{e}-\varepsilon & \beta \leqq x\end{cases}
$$

Then, there is a solution to $y^{\prime}(t)=F(t, y(g(t))), y(0)=q$ for $N=1$ any y subject to $\|y(x)\| \leqq$ constant $\cdot f(x)$ for an appropriate f.

Proof. Straightforward.

Remark. As β approaches $0, g$ is allowed to become indefinitely large at 0 .

The author wishes to thank Professor Bob Dorroh for his help with the lemma to Theorem 1.

References

1. D. R. Anderson, An existence theorem for a solution of $f^{\prime}(x)=F(x, f(g(x)))$, SIAM Review, 8 (1966), 359-362.
2. R. J. Oberg, On the local existence of solutions of certain functional-differential equations, Trans. Amer. Math. Soc., (1969), 295-302.
3. F. Riesz, and B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.
4. M. L. Robertson, The equation $y^{\prime}(t)=F(t, y(g(t)))$, Pacific J. Math., 43 (1972), 483491.
5. Y. T. Siu, On the solution of the equation $f^{\prime}(x)=\lambda f(g(x))$, Math. Z., 90 (1965) 391, -392.

Received April 16, 1973 and in revised form March 6, 1975.
Auburn University

