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ON M-PROJECTIVE AND M-INJECΊΊVE MODULES

G. AZUMAYYA, F. MBUNTUM AND K. VARADARAJAN

In this paper necessary and sufficient conditions are
obtained for a direct sum ®aeJAa of ^-modules to be M~
injective in the sense of Azumaya. Using this result it is
shown that if {Aa}aGJ is a family of Λ-modules with the pro-
perty that ®aeκAa is M-injective for every countable subset
K of J then φ α 6 j Aa is itself M-injective. Also we prove
that arbitrary direct sums of M-injective modules are M-injec-
tive if and only if M is locally noetherian, in the sense that
every cyclic submodule of M is noetherian. We also obtain
some structure theorems about Z-projective modules in the
sense of Azumaya, where Z denotes the ring of integers.
Writing any abelian group A as D@H with D divisible and
H reduced, we show that if A is Z-projective then H is torsion
free and every pure subgroup of finite rank of H is a free
direct summand of H.

Most of these results were motivated by the results of B. Sarath

and K. Varadarajan regarding injectivity of direct sums.

l M-projective and Jf-injective modules* Throughout this

paper R denotes a ring with 1 Φ 0 and all the modules considered
are left unitary modules over R. By an ideal in R we mean a left
ideal in R. M denotes a fixed jβ-module. We first recall the notions
of M-projective and ilf-injective modules originally introduced by one
of the authors [1].

DEFINITION 1.1. An ϋJ-module H is called Λf-projective, if given
a diagram

H

of maps of jβ-modules with the horizontal sequence extact, 3 a map
h: H~>M such t h a t φ<> h — f.

The notion of an ikf-injective module is defined dually.

REMARK 1.2. Regarding R as a left module over itself in the
usual way it turns out that ϋMnjective modules are the same as the
injective modules over R. However ϋJ-projective modules are not
the same as protective modules over R.
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LEMMA 1.3. Every divisible abelian group D is Z-projective.

Proof. Trivial consequence of the fact Horn (D, Z) = 0 = Horn (D,
Zk) whenever D is divisible.

REMARK 1.4. We know that protective modules over Z are free.
Hence no divisible abelian group D Φ 0 is projective over Z.

LEMMA 1.5. Suppose H is a torsion free abelian group with
the property that every pure subgroup of rank 1 of H is a free
direct summand of H. Then every pure subgroup of finite rank
of H is also a free direct summand of H.

Proof. By induction on the rank of the subgroup. Let S be a
pure subgroup of H of rank k with &>1. We can pick a pure subgroup
B of S of rank 1. Then B is also pure in ϋfand hence by assumption
B is free abelian and H = C 0 B for some C. Since Sz) B we get
S = (S n C) φ B. Now S Π C is of rank (k - 1) and pure in S and
hence pure in H. By the inductive hypothesis S ΓΊ C is free abelian
and . f f = ( S n C ) φ L for some L. From C D S Π C we now C =
(S Π C) φ (L Π C). Thus S = (S Π C) φ B is free abelian and

ff = c e B = (S n C) © (L n C) e js

DEFINITION 1.6. We say that a torsion free abelian group H
has property (P) if every pure subgroup of finite rank of H is free
and a direct summand of H.

Given any abelian group A we can write A as D φ H where D
is the maximal divisible subgroup of A and H is reduced. Also H =
A/J5 is well-determined up to an isomorphism. We will refer to any
group isomorphic to H as the reduced part of A.

THEOREM 1.7. Suppose H is reduced abelian group which is Z-
projective. Then H is torsion-free with property (P).

Proof. It is well-known that a reduced abelian group which is
not torsion-free admits of a nonzero finite cyclic direct summand
[3, Th 9, p. 21]. Clearly the identity map Zm~+Zm (for m ̂  1) can
not be lifted to a map Zm -+ Z. This proves that Zm is not Z-pro-
jective. Hence if a reduced abelian group H is Z is Z-projective it
has to torsion free.

For any a Φ 0 in H let Sa = {xeH\x and a linearly dependent
over Z). Then it is trivial to see that Sa is a pure subgroup of
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rank 1 in H. Moreover Sa is reduced since H is. Hence 3 a prime
p such that Sa Φ pSa. Let ce Sa be such that c g pSa. Since Sa is
a pure subgroup of H we see that c $ pH. Hence η{c) Φ 0 where
rj\ H-+H/pH denotes the canonical quotient map. Regarding H/pH
as a vector space over Zp we can comylete Ύ]{G) to a basis {̂ (c)} U
{%W of HjpH over #„. Let θ: H/pH~+ Zp be the ϋΓp-linear map
determined by θ(η(p)) = le Zp and #(%) = 0 for all je J. The Z-
projectivity of H now yields a map h: H—+ Z with

z—> zp—>o
ψ

commutative, where φ: Z—*ZP is the canonical quotient map. From
φh(e) = θoη(G) =le Zp it follows that φh(c) Φ 0. Hence g = Λ\Sβ:
Sa—*Z is a non-zero homorphism. It follows that Im g = kZ for
some integer & ί> 1. Composing g with the obvious isomorphism
kZ ~ Z we get an epimorphism gf: Sa —> Z. Since Z is free the
sequence £α • Z —• 0 splits. Sα being a torsion-free group of rank

gt

1 it now follows that Sa > Z is an isomorphism. Thus for a Φ 0
in H the subgroup Sα is isomorphic to Z.

Our next step is to show that Sa is a direct summand of H.
Let c be a generator for Sa= Z and F = {α e Horn (H, Z)\a(c) Φ 0}.
From what we have seen already V is a nonempty set. Let I =
minαeF |α(c)|. We will show that ϊ = 1. Suppose on the contrary
I > 1. There definitely exists an element ae V such that a(c) = L
Let p be a prime divisor of I and I — kp. Now c g #Sα. The argu-
ment used already yields a map h: H—» Z such that φfc(c) = l e Z^.
This means h(c) = np + 1 for some ne Z. Writing n = M + r with
d e Z and r an integer satisfying 0 ^ r < k consider the element
h- dae Horn (H, Z). Now, {h - d}(c) = np + I - dl = np + I -
dkp = rp + 1. Clearly, 0 < rp + 1 < rp + p = (r + l)p ^ λ p = I.
Thus /S = h — da is in V and |/3(c) | = rp + 1 < ί, contradicting the
definition of I. This contradiction proves that h = 1. It now follows
that 3 an a: H—> Z with cφ) = 1, in which case 3 a splitting μ\Z—*
H for α with μ(l) = c. Hence Sα = μ(Z) is a direct summand of H.

It is clear that every pure subgroup of rank 1 of H is of the
form Sa for some a Φ 0 in H. Now appealing to Lemma 1.5 we
immediately see that H has property (P).

COROLLARY 1.8. Let A — D φ i ϊ w?iώ D £λe maximal divisible
subgroup of A. If A is Z-projective then H is torsion-free and
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has property (P).

COROLLARY 1.9. A finitely generated abelian group A is Z-
projective <=> A is free of finite rank.

COROLLARY 1.10 Suppose H is a reduced decomposable torsion-
free abelian group, (i.e., H is the direct sum of rank 1 torsion-free
abelian groups). Then H is Z-projective <=* H is free.

PROPOSITION 1.11. Let p be a prime. An abelian group A is
ZpOO-injective if and only if A ~ ( φ α e j ZpOO) 0 B, a direct sum of
copies of ZpOO with an abelian group B having no p-torsion.

Proof. Suppose A ~ ( φ α 6 j ZpOO) 0 B with B having no p-torsion.
Since ®aeJ Zp0O is divisible, it is injective over Z and hence ZpOO-
injective as well. The only subgroups of ZpOO are ZpOO and Zpk for
some integer k i> 1. When B has no p-torsion Horn (Zpk, B) = 0 =
Horn (ZpOOf B). This proves that B is ZpOO-injective.

Conversely, assume A to be Z^-injective. Let aeA be an ele-
ment in the p-primary torsion of A. Suppose the order of a is pk.

Then 3 a homomorphism Zpk > A carrying the element 1 of Zpk

to a. Since A is Zp0O-injective 3 an extension g: ZpOO—*A of / . Then
Im g is divisible, a e Im g and Im g is in the p-primary torsion of A.
This proves that the p-primary torsion of A is divisible. Since any
divisible subgroup of A is a direct summand of A and since any
divisible p-primary abelian group is a direct sum of copies of ZpOO

it follows that A ~ ( φ α 6 j ZpO0) 0 B with B having no p-torsion.
We now recall the definitions of an .M-epimorphism and an M-

monomorphism due to one of the authors [1], and state two results
due to him.

DEFINITION 1.12. (i) Let A, B be i?-modules and Θ\A—*B an
epimorphism. θ is said to be an ilί-epimorphism if 3 a map ψ: A —>
M such that Ker θ Π Ker ψ = 0.

(ii) Let a: A—>B be a monomorphism. a is called an ikf-mono-
morphism if 3 a map β:M—>B such that Ima and Im/S together
generate B.

PROPOSITION 1.13 [1], [5]. The following conditions on an R-
module H are equivalent.

(1) H is M-projective
(2) Given any M-epimorphism Θ:A—>B and any f:H—+B E

a map h: H-* A such that θoh = /
(3) Every M-epimorphism θ: C-+H splits.
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PROPOSITION 1.14. Dual of Proposition 1.13.

DEFINITION 1.15. For any module H let Cp(iJ)(respy C\H)) =
the class of all modules M such that H is M-projective (respy M-
injective). For any module M let CP(M) (respy Ct(M)) denote the
class of ikf-projective (respy ikf-injective) modules.

PROPOSITION 1.16 [l], [5].

(1) Cp (H) is closed under submodules, homomorphic images
and the formation of finite direct sums.

(2) C^H) is closed under submodules, homomorphic images
and arbitrary direct sums.

(3) CP(H)(respy Ci(H)) is closed under direct sums (respy direct
products) and direct summands (respy direct factors)

REMARKS.

1.17. In general CP(H) is not closed under formation of arbitrary
direct sums. For instance let R — Z and H = Q the additive group
of the rationale. From Lemma 1.3 we see that Q is Z-projective.
Thus Ze CP(Q). Let J be an infinite set and for each ae Jlet Ma =
Z. Then each MaeCp(Q). Clearly Q is a quotient of ®aeJMa and
the identity map of Q can not be lifted to a map of Q into ©αejΛfα.
This means ®aeJMaί CP(Q).

1.17'. Since CP(H) is closed under submodules from 1.17 it follows
that CP{H) in general is not closed under formation of arbitrary
direct products.

1.18. In general C^H) is not closed under formation of arbitrary
direct products. Let B = Z and H = Z. From Proposition 1.11 we
have Z^eC^Z). Let M = ]JP ZpOO, the direct product taken over
all primes. It is known and quite easy to see that 3 a subgroup of
M which is isomorphic to Q. If Me C^Z) from (2) of Proposition
1.16 it would that Qe Cι{Z). Since the identy map of Z can not be
extended to a map of Q into Z it follows that Z is not Q-injective.
In other words Q$ G\Z). This in turn implies Λfg C\Z).

2. ikΓ-injectivity of direct sums* For any module A and any
xeA we denote the left annihilator {λelϋ|λ# = 0} of x by Lx.

DEFINITION 2.1. An element xe A is said to be dominated by M
if Lx~DLm for some meM.

Given a family {A}aeJ of modules let x be the element of ΐ[aeJ Aa

whose ^-component is xa. Let Ix = {Xe R\XxeφaeJ Aa}.

DEFINITION 2.2. We call xeΠ*ejA, a special element if Ixxa~



14 G. AZUMAYA, F. MBUNTUM AND K. VARADARAJAN

0 for almost all a. In other words 3 a finite subset F of J such that
Xxa = 0 for all X e Ix and for all a$F.

PROPOSITION 2.3. A is M-injectίve <^> A is Rm-injective for all
me M.

Proof. This is an easy consequence of 1.16 (2). The implica-
tion => follows from the closedness of C*(A) under submodules. As
for <=, by the closedness of C*(A) under direct sums it follows
that A is φ m 6 3 f J2m-injective. Since M is a homomorphic image of
®meM Rm and since C*(A) is closed under homomorphic images, it
follows that A is M-injective.

THEOREM 2.4. ®aejAa is M-injective <=> each Aa is M-injective
and every element of T[aejAa dominated by M is special.

Proof. =>: Let x e πAa be dominated by M, that is, there is
an m e ! " such that LmcLx. This implies that the mapping λm —•
Xx(XeR) is well defined and gives a homomorphism f:Rm—»πAa.
The image of the submodule Ixm by / is clearly W c φ Aa). Thus
the restriction of / to Ixm is regarded as a homomorphism Ixm —• 0
Aa. Since 0A α is .Bm-injective, this homomorphism can be extended
to a homomorphism Rm->φiα which means that there exists an
ue®Aa such that Xx = Xu for all Xe Ix. It follows then that Ixxa =
Ixua for all a e J. But since ua = 0 for almost all a, it follows that
Ixxa = 0 for almost all a too, i.e., x is special.

<=: Let meM and consider the cyclic submodule Rm of M.
Let I be a left ideal of R. Then IM is a submodule of Rm. (Con-
versely every submodule of Rm is of the form Im with a suitable
left ideal I). Let there be given a homomorphism h:Im—>04α.
Then since φ i α c τ τ A α and πAa is Λf-whence j?m-injective, h can be
extended to a homomorphism ΐJm—*ττAα. Let xeπAa be the image
of m. Then the homomorphism is given by Xm-+Xx(Xe R). There
fore it follows that Ix = h(Im) C 0 4 α whence Iclx. On the other
hand, since clearly Lm c L*, x is dominated by M and thus x is
special by assumption, i.e., Ixxa = 0 whence /#α = 0 for almost all
a. Let i* be the element of 0 Aa whose α-component is xa or
0 according as Ixa Φ 0 or Ixa = 0. Then it is clear that Xu — Xx
for all X e I. Further, it is also clear that LmaLxc. Lu and therefore
the mapping λm —> Xu(X e R) is well defined. This mapping gives a
homomorphism f:Rm—>0Aα which is an extension of h, because
/(λm) = Xu = Xx for all λ e I. This implies that 0 Aa is iϋm-injective
and so is M-injective (by Proposition 2.3).
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THEOREM 2.5. The direct sum of any family of M-injective
modules is M-injective *=> every cyclic submodule of M is noetherian.

Proof. <=. Let {Aa} be a family of Λf-injective modules. Let
x be an element of πAa dominated by M; thus there is an meM
such that Lm(zLx. Consider Ixm. Since clearly Lxalx whence
Lm c Ix, it follows that IJLm = Ixm. On the other hand, Ixm is a
submodule of the Noetherian module Rm. Hence Ix/Lm is finitely
generated, i.e., there exist a finite number of elements λ^ λ2, •••, Xn

of Ix such that

Ix = B\ + RX2 + + RXn + Lm .

It follows therefore Ixxa — RXtxa + RX2xa + + RXnxa for all
components xa. Since, however, for each i, λ^α = 0 for almost all
α, it follows that Ixxa = 0 for almost all α, that is, x is special.
Thus φ A α is Λf-injective by Theorem 2.4.

=>. Let Rm} meM be any cyclic submodule of M. Then R/Lm ~
Rm, and there is a (1 — 1) correspondence between the left ideals
of R containing Lm and submodules of Rm. Thus in order to show
that Rm is noetherian it is sufficient to prove that there is no pro-
perly ascending infinite sequence of ideals of R containing Lm. Suppose
there exists an infinite sequence Lm c I1 c J2 c I3 c of ideals Ij
with Ij Φ Ij+1 for every j ^ 1. Let B3 = R/Iΰf τjji R—^Bj the canonical
projection. Let Aj be the injective hull of Bj. Then each Aό is M-
injective also. By assumption 3 an m 6 M s.t. Ix 3 Lm. The element
χ = {%ί)tei °f Πi^i A3 where xs = ηs (1) is clearly dominated by M.
For any λ 6 I3 we have λa;̂ . = 0 for k^ j . Hence Ij c Ix for all j ^
1. Let Xj be any element of I i + 1 which is not in 1̂ . Then λia?i ^ 0
and Xj 6 /,. This proves that Ixxό Φ 0 for every j ^ 1. This means
jc is not a special element and hence by theorem 2.4, φi2siAy is not
M-injective. This proves the implication ==>.

REMARK 2.6. A result of H. Bass [2] asserts that arbitrary
direct sums of injective modules over R are injective <=> R is noetherian.
Theorem 2.5 is a generalization of this result of H. Bass. When
M = R we get the result of Bass.

THEOREM 2.7. Suppose {Aa}aeJ is a family of R-modules such
that for every countable subset K of J, φ«6# Aa is M-injective. Then
φα ej- Aa is itself M-injective.

Proof. Assume that (BaejAa is not ikf-injective. Then, by
Theorem 2.4, there exists an xeJ\aeJAa which is dominated by M
but is not special, i.e., Ixxa Φ 0 for infinitely many aeJ. Let K be
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an infinite countable subset of the infinite set {a e J\ Ixxa Φ 0}. Let
y be element of ΐ[aeκAa whose α-component ya is equal to xa for
all ae K. Then clearly Ixaly, so that it follows that y is dominated
by M and Iyya = Iyxa Φ 0 for all ae K. This implies again by
Theorem 2.4 that φ α e # ^ L is not M-injective (because each Aa is
M-injectiue by the assumption of our theorem). This is a contradic-
tion, and so the proof is completed.
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