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CONVOLUTION MULTIPLIERS AND DISTRIBUTIONS

ARPAD SZAZ

In this paper, in a purely algebraic way, Schwartz distribu-
tions in several variables are generalized in accordance with
their homomorphism interpretation proposed by R. A. Struble.

0. Introduction. R. A. Struble in [10] has shown that
Schwartz distributions can be characterized simply as mappings, from
the space 3) of test functions into the space % of smooth functions,
which commute with ordinary convolution. This new view of distribu-
tions has turned out to be very useful [11,12] and motivated us to give a
simple generalization for distributions which is closely related to
Mikusiήski operators and convolution quotients of other types [11, 12,
4,13]. The method employed here is an appropriate modification of a
general algebraic method [5, 2, 8].

Mappings which commute with convolution are called convolution
multipliers here. (Distributions can be characterized as convolution
multipliers, Mikusiήski operators themselves are convolution multi-
pliers.)

In §1, convolution multipliers from various subsets of 3) into % are
discussed. We are primarily concerned with their maximal extensions.

In §2, a module Wl of certain maximal convolution multipliers is
constructed and investigated from an algebraic point of view.

In §3, Schwartz distributions are embedded and characterized in
W. For example, we prove that distributions are the only continuous
elements of 2)ϊ. Finally, we show that there are elements in W which
are not distributions.

To illustrate the appropriateness of our generalizations, we refer to
the following facts:

One of the difficulties in working with Schwartz distributions is that
only distributions Λ satisfying Λ * 3) = 3 are invertible in
3)'. Whereas, distibutions Λ satisfying A*3) C3) such that Λ * 3) has
no proper annihilators in % are invertible in 3ft. (The heat operator in
two dimensions [1] seems to be a distribution which is not invertible in
3)\ but is invertible in 9K.)

There are regular Mikusiήski operators [1] which are not
distributions. Whereas, normal Mikusiήski operators [11] can be em-
bedded in Wl.

1. Convolution multipliers and their maximal
extensions. Let k be a fixed positive integer, R* be the k-
dimensional Euclidean space and C be the field of complex numbers.
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Let % be the set of all infinitely differentiate functions from R*
into C, and let 3) be the subset of % consisting of all those functions
with compact support.

It is known that with the pointwise linear operations and convolu-
tion 2 is a commutative complex algebra without proper zero-divisors,
and % is a complex vector space and a Q) -module.

DEFINITION 1.1. Let

M = {F: ΌFC3)^%\ V φ,ψEDF: F(φ)*ψ = φ *F(ψ)}.

PROPOSITION 1.2. Let F EM. Then F has a maximal extension in
M.

Proof Let & = {GEM: FCG}. Under set inclusion 9 is a
novoid partially ordered set. Moreover, if 38 is a chain in ^, then U 39
is an upper bound for it in 9. (To prove this use (2.19) Theorem in
[3].) Thus, by Zorn's lemma 9 has a maximal member.

DEFINITION 1.3. Let D CS. Then D is said to be normal [11] if
and only if Ό^ φ and D has no proper annihilators in %, i.e., / E % and
/ * D = {0} imply that / = 0.

LEMMA 1.4. Let D C3. Suppose that for every 0 < e 6 R ' there
exists φ EQ) such that O^φorφ ^ 0 and the diameter of the support of
φ is less than e. Then D is normal. In particular, 2 is normal.

Proof See the proof of 1.5. Lemma in [4].

PROPOSITION 1.5. Let D C3). Then every FEM with domain D
has a unique maximal extension in M if and only if D is normal.

Proof. Suppose first that every FEM with domain D has a
unique maximal extension in M. To prove that D is normal suppose
that / E % such that / * D = {0}. Let F and 0 be the functions defined
on 3) by F(φ) = / * φ and O(φ) = 0. Then F and 0 are maximal
extensions of F \ D in M. Thus, / * φ = 0 for all φ E 3). Hence, it
follows that / = 0.

To prove the converse suppose that D is normal and FEM with
domain D. We prove that

F = {(<p, / ) G 9 x ? : V σ E D : / * σ = (p* F(σ)}

is the unique maximal extension of F in M.
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To prove that F is a function, suppose that (φ,/i), (φ,/2)E
F Then

fλ * σ - φ * F(σ) and f2 * σ = φ * F(σ)

for all σ ED. Hence, it follows that (jx- f2)*σ = 0 for all
σ ED. This implies that /j = /2.

Now, we prove that F is a multiplier. For this, suppose that
φ,ψE Dp. Then

F ( φ ) * σ = <p *F(σ) and F(ψ)*σ = ^ *F(σ)

for all σ G D. Hence, it follows that

* ^ - φ * F(ι/0) * σ = 0

for all σ E D. This implies that F(φ) * φ = φ* F(ψ).
The remaining part of the proof is quite obvious.

REMARK 1.6. In the following, we shall not make use of Proposi-
tion 1.2. and 1.5. They are only to make clear and complete our
treatment.

DEFINITION 1.7. Let

M ={FEM: DF is normal}.

For any F ELM, let

F = {(φ,/) E ® x g : V σ E D F : / * σ = φ * F(σ)}.

THEOREM 1.8. Let FEM. Then Fis the unique maximal exten-
sion of F in M.

Proof. See the second part of the proof of Proposition 1.5.

COROLLARY 1.9. Let FEM. Then Dp is an algebra ideal in 3),
and F is a vector space and a 3)~module homomorphism.

Proof. Easy computation.

COROLLARY 1.10. Let F,GEM. Suppose that DcDLΠDG

such that D is normal and F(φ) = G(φ) for all φ ED. Then F = G.

Proof. Trivial.
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2. A module of convolution multipliers.

DEFINITION 2.1. Let

m = {F: F(ΞM}

and

For any F, G G Wl and Φ G 9?, let

F + G = F + G

and

THEOREM 2.2. Wίίίft + and * , 9? is a commutative ring with unity
and without proper zero-divisors, and 3K is a unitial 9l-module.

Proof. In the course of this proof we shall often use the following
obvious fact: If D,, D2 C S are normal then D, * D2 is normal. Moreover,
if in addition D, * 3) CD, and D2 * 0 CD2, then D, * D2 CD, Π D2, and so
D, ΓΊ D2 is also normal.

Suppose that F, G G 3K and Φ, Ψ G 9?. From the definition of 3)? it
follows immediately that Φ~\3)) and Ψ~ι(3)) are normal algebra ideals in
3).

The first step is to prove that / + G, F*ΦG9ftandΦ + Ψ, Φ*ΨG
9?. For example, we prove that F * Φ G 3 R . For all <pEDF and

we have

(F°φ)(φ *ψ) = F(Φ(φ * ψ)) = F(φ *Φ(ψ)) = F(φ)*Φ(ψ).

Hence, it follows that DF *Φ" !(®) CDFoφ. Thus DFoφ is normal.
Moreover, for all φ,ψE DFoφ, we have

(F oφ)(<p) * ψ = F(Φ(φ)) *ψ = F(Φ(φ) * ψ) = F(φ * Φ(ψ))

= <p*F(Φ(ψ)) = φ *(Foφ)(ψ),

Thus F o φ G Jί, and so F * Φ = F
The next step is to prove the required commutative, associative and

distributive laws for + and *. For example, we prove that F * ( Φ +
Ψ) = F * Φ + F * Ψ . Clearly, DF *(Φ~\2) ΠΨ"!(®)) is normal and for
all φGDF* (φ-'(S) Π Ψι(3))), we have
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(F * (Φ + Ψ))(φ) = (F o (φ + ψ))(φ) = F(Φ(<p ) + Ψ(φ ))

Hence, using Corollary 1.10., we get F * (Φ + Ψ) = F * Φ + F * Ψ.
Now, let 0 and 1 be the functions defined on 2) by

0(φ) = 0 and l(φ) = φ.

Then 0,1 E 31 and

Finally, we prove that 9Ϊ has no proper zero-divisors. For this
suppose that Φ*Ψ = 0. Then for all φ E Φι(2) and φ E Ψ'ι(3)), we
have

Since 9? is commutative, it is no restriction to assume that Ψ ̂  0. Then
there exists ψoEΨ~ι(3)) such that Ψ(φo)^0. Moreover, for all φ E
Φι(3)), we have Φ(<p)*Ψ(^0) = 0. Thus Φ(<p) = 0 for all φ EΦ" ι(®),
and so Φ = 0.

LEMMA 2.3. (i) Let F E Sft. Then F /s injective if and only if the
range of F has no proper annihilators in 3).

(ii) Let ΦE3tf. Then Φ is injective if and only if Φ ^ 0 .

Proof (i) Suppose first that F is injective. Let 0 / φ E DF,
^ e 3 and suppose that χ *F(D F ) = {0}. Then

Hence, since F is injective and F(0) = 0, it follows that χ * φ = 0. This
implies that * = 0.

Suppose now that F(DF) has no proper annihilators in 2. Let
φuφ2EDF and suppose that F{φx) - F(φ2). Then

φ, * F(ψ) = F(φ,) * ιA = F(φ2) * ι/ί = φ2 * F(ι/ί)

i.e., (φ, - φ2) * F(ι/f) = 0 for all φ E DF. Hence, by the assumption, it
follows that ψx = φ2-
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(ii) The necessity is trivial. Suppose now that Φ^O. Then
there exists φ E Φ " 1 ^ ) such that Φ(φ)^0. This implies that Φ(DΦ)
has no proper annihilators in 2>.

THEOREM 2.4. Let Φ 6 31. Then Φ w invertible in 31 if and only
if the range of Φ has normal intersection with 2).

Proof Suppose first that Φ is invertible in 31. Then there exists
Ψ<Ξ3l such that Φ * ψ = 1. Thus, for all φ EDΦ*Ψι(D), we have

Hence DΦ * Ψ'\3)) CΦ(DΦ) Π 3). Thus Φ(DΦ) Π S is normal.
Suppose now that Φ(DΦ) Π 3) is normal. Then Φ ̂  0, and so Φ is

injective. Thus Φ 1 is a function. Moreover, for any <p, ψ E Φ(DΦ) Π
3) we have

Φ(Φ~ι(φ) * ψ) = Φ(φ-ι(φ)) * ψ = φ * ι/>

and

Φ(φ * Φ" !(^)) = φ * !

i.e., φ-!(y)*ιfr = y * Φ'XΨ). Thus Φ"1 |Φ(DΦ) ί l ® G l We prove
that Φ11Φ(DΦ) Π 9b is the inverse of Φ in 31. Clearly, DΦ * (Φ(DΦ) Π 3)
is normal, and for all φ GDΦ*(Φ(DΦ) Π ®) we have

(φ * φ 1 1 φ(DΦ) Π 3>)(φ) = Φ(Φ"!(φ)) = φ =

This implies that Φ * Φ"11 Φ(DΦ) Π 3) = 1.

EXAMPLES 2.5. Let O ^ G S such that φ = 0, and let Φ be theφ = 0,

function defined on 3) by Φ(ψ) = φ *ψ. Then 0^ΦESR, but Φ is not
invertible in 31.

Namely, Φ φ φ ) Π 3) = φ * 3) is not normal, since / * (φ * 3)) = {0}
for all constant / E %.

3. Embedding of distributions. Let 3)' be the set of all
Schwartz distributions on R\ and let %' be the subset of 3)' consisting
of all those distributions with compact support.

It is known that, under addition and convolution, T is a commuta-
tive ring with unity and without proper zero-divisors, and 3)f is a unitial
Έ1-module. Moreover, C and % are embedded in 3)' such that
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DEFINITION 3.1. For any Λ E 2', let FΛ be the function defined on
2 by

THEOREM 3.2. The mapping defined on 3)' by

Λ ^ F Λ

is an injection from 3)f into ffl taking %' into Tt such that

FΛ l + Λ 2 = F Λ l + FΛ 2 for all Λ h Λ 2 G S '

and

FΛl*Λ2 = F Λ l * F Λ 2 /or all Λi G $' and Λ 2 e S ' .

Proof Easy computation.

REMARK 3.3. Theorem 3.2. allows us to more and less identify Λ
with FΛ. But, for the easier understanding, we shall not make this
identification complete.

THEOREM 3.4. Let F E 2ft. Then F = FΛ /or some Λ G 2' if and
only if DF = 2.

Proof See Lemma 3 in [10].

In the following theorem % and 2 are supposed to be equipped
with their usual topologies [9].

THEOREM 3.5. Let FeWl. Then F = F Λ for some A E 2' if and
only if F is continuous.

Proof Suppose first that F = FA for some Λ E 2'. Then F(φ) =
Λ*φ for all φ E 2, Thus, by 6.33 Theorem in [9], F is continuous.

Suppose now that F is continuous. Let A be the function defined
on DF ={φ: φ EDF} by

λ(φ) = F(φ)(0).

Then λ is a continuous linear functional on the linear subspace DF of
2. Thus, by 3.6 Theorem in [9], there exists AEQ)' such that λ C
Λ. Moreover, we have
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FA(φ)(t) = (Λ * ψ){t) = A(Ft φ) = λ(Ft φ) = F((y, φ)v)(0)

= F(SΓ_, φ)(0) = ( ^ F(φ))(O) =

for all ψ G DF and t G Rk. Hence, it follows that F = FΛ.

REMARK 3.6. The proof of Theorem 3.5 shows that we might have
used an apparently weaker continuity property of F in Theorem 3.5., if
we had taken the topology of the pointwise convergence on R* instead
of the usual topology of % [12].

LEMMA 3.7. Let ΦG3Ϊ. Suppose that (<τ)*=1 is an approximate
identity (delta sequence [12]) such that {σnfn=xCDφ and {Φ(σn)}Z=λC3).
Then Φ(DΦ) C Q).

Proof. Let <p,ψε.DΦ such that Φ(ψ) G 2. Then

Φ(φ)*σn = φ *Φ(σπ) and Φ(crπ)* ψ = σn *Φ(ψ)

for all n. Hence,

supp Φ(ψ) * σn C supp <p + supp Φ(σn)

and, using Lions' theorem [12],

[supp Φ(σn)] + [supp φ] = [supp σπ] -f [supp Φ(ψ)]

for all n. Thus, we have

supp Φ(<p) * σn Csupp φ + [supp Φ(ψ)] - [supp ψ] + [supp σn]

for all n. Therefore, there exists a bounded set BCRk such that

suppΦ(<p)*σ-π CB

for all n. Hence, since limn_ocΦ(φ)*crn = Φ(<p), it follows that

supp Φ(φ )CB.

EXAMPLE 3.8. Let Q be the quotient field of 3. Suppose that
q G Q such that Dq contains an approximate identity, but Dq/ 2 \{0}.
(To make it clear, recall that Q consists of all

I = {(σ, χ) G (3) \{0}) x 2: χ * ̂  = σ * φ }
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such that φ,ψ&3) and ψjέ 0. Concerning the existence of such a q
see [1].) Then, it is clear that q EM, and so q E9PΪ. Moreover, by
Lemma 3.7., we have q(D4)C3). Therefore q = q U{(0, 0)}. Hence,
since Dq £ 2>\{0}, it follows that D« ϊ S. Thus, by Theorem 3.4., there
is no Λ E § ' such that q = F A .
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