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UNIFORM APPROXIMATION BY ELEMENTS OF A
CONE OF REAL-VALUED FUNCTIONS

WALTER ROTH

The present paper gives conditions for approximation of all
functions of a subspace M of C(K), where K is a compact
Hausdorff space by elements of an "admissible" subcone N of
M. This implies generalizations of well-known theorems of
Bauer and Stone-Weierstrass.

1. Preliminaries. Let K be a compact Hausdorff space, M
a linear space of real-valued continuous functions on K. A subcone N
of M is said to be admissible if it separates the points of K and contains
the constant functions. Denote by Nc the set of functions in C(K)

that are the pointwise sup of finitely many functions in N. Let < be
N

the relation on Ωκ (the set of probability measures on K) defined by:

α < v iff for every / i n N μ ( / ) ^ v(f). Then < is an order relation on
N Nc

Ωκ. For every / x £ Ω x there exists an Nc-maximal (maximal with

respect to <.) measure vSΩκ such that v>μ (see [1], 1.5) The
N c N c

Nc- maximal measures live on every Baire set containing the Choquet
boundary Chκ(N) of N.

Chκ(N) = {x E K I for every μ EΩK u>ex implies μ = ex) (ex is
the point measure at x). For / E C(K) the upper and lower envelopes
are defined by

fN =inf{Λ E -N\h >/} fN = snp{hEN\h </}

fs resp. jλΓ are upper resp. lower-semi-continuous and coincide with / on
). For every Nc- maximal measure μ E Ω x we have μ(f) =

2. An approximation-theorem: conditions for
measures.

THEOREM 1. Let M be a linear space of continuous real-valued
functions on the compact Hausdorff space K and N an admissible
cone, N is uniformly dense in M (dense with respect to the sup-norm)
// and only if
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( 1 ) For all N c - m a x i m a l m e a s u r e s μ , v in Ω κ μ > v implies μ > v,
M MM

and one of the following conditions holds
(2a) Every Mc-maximal measure of Ωκ is Nc-maximal.
(2b) fN = / for every f in M.
If K is metrizable or if Chκ(N) is compact (2a) and (2b) can be

replaced by (2c) Chκ(N) = Chκ(M)

The proof will use

LEMMA 1. N is uniformly dense in M if and only if for all μ, v in

Ωκ μ > v implies μ > v.
N M

This Lemma is an immediate consequence of the Hahn-Banach
Theorem and still holds if both N and M are admissible cones. Using
the fact that the uniform closure of N in C(K) is given by

N = {/ E C(K) I such that for every measure A on K λ (N) g 0 implies
A(f)iO.}

we decompose each such measure A = JJJ A || (μ - v), where μ, v E ί l κ

and deduce Lemma 1.

To prove the theorem

(a) suppose (1) and (2a) hold, μ,v GΩK such that μ > v.
N

Let μ' be Mc-maximal and μ' > μ v' be Mc-maximal and υ'> v.

Then μ' and v1 are Nc-maximal (2a) and μ1>μ, v'>v because

Nc CMC), M is a linear space, therefore < implies > (indeed < is
M M M

an equivalence relation M) and we conclude

μ'Mμ
v(f) = v'(f) forevery/inN.

v'Mv

i.e. μ' > v1 which implies by (1) μ' > v\ hence μ > v. From Lemma 1
N M M

we deduce M C N.
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(β) (2b) implies (2a) because for every fEM the set
{h E JVCI h < /} is directed upward converging pointwise (2b) to the
continuous_function_£L By DinΓs Lemma the convergence is uniform,
hence f<ΞNc,M CΛΓC, Mc CNC. Nc and Mc define the same order
relation on Ωκ.

(γ) Suppose K is metrizable or Chκ(N) is compact. In this case
Chκ(N) = Chκ(M) implies (2a) because every measure in Ωκ is Nc~
maximal (resp. Mc- maximal) then if and only if it lives on Chκ(N) (resp.
Chκ(M)).

As a corollary of Theorem 1 we find a well-known theorem ([1], Th.
II.4.5) on affine functions on a compact convex set:

COROLLARY 1. Let A be the set of the affine continuous functions
on the compact convex set X, Ex(X) the extreme points of X,
f: Ex(X)->R a bounded continuous function (in the relative topology
on Ex{X)).

f can be extended to a function in A if and only if

(1) f=f on Ex(X) (/ = i n f { g G Λ | g > / on Ex(X)}
f = sup{g<ΞA\g<f on Ex(X)})

and

(2) For all Ac-maximal measures μ, v in Ωx μ > v implies μ(f) =

v(f)

To prove the corollary suppose K = Ex(X), N = A \κ and M =
N + R /, where / = / | κ = / | κ e C(K). Clearly N is closed in C(K)
and from Theorem 1 (2b) we see that N is uniformly dense in M, i.e.

REMARK. It is easy to show that if N is a linear space too, then
condition (1) in Theorem 1 can be reduced to the comparison of
maximal simplex measure (c.f. [1], Chapter 1.6), i.e.

(Γ) For all Nc-maximal simplex measures μ, v in Ω κ μ>v
N

implies μ > v.

3. Conditions for the order relation. In this section we
are going to replace (1) in Theorem 1 by conditions in terms of the order
relation g in the function sets N and M. We use a simple generaliza-
tion of a theorem of Cartier, Fell and Meyer:
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LEMMA 2. Let M be a linear space of continuous real-valued
functions on the compact Hausdorff space K, N an admissible cone in
M. Suppose that for every function f E M the set

{gEN\g<f}

is directed upward. Then for all μ,v,vx,v2Eflk, λ b λ 2 g θ such that

μ > v, λi + A2= 1 and
N

for every fin M v{f) = λxvx{f) + λ2v2(f)

there exist μu μ2 E Ωκ such that μx > vu μ2 > v2 and
N N

foreveryfinMμ(j)^kxμx{f)

To prove the lemma assume λ,,λ2>0. Define φ: MxM-*Rby

Φ(f,g) = λi^,(/N) -1- λ2v2(gN)

Then

(a) φ is positive subhomogeneous.

(β) For every /EM, also ~/£Af and therefore

{h E NI ft < - /} is directed upward, hence

{h E - NI h > /} is directed downward, hence

(γ) Suppose F = {(/,/)GMxM} and

Then φo(f,f) = μ(f)^μ(fs)£v(fN)=φ(f9f).

(δ) By the Hahn-Banach Theorem there exists a linear extension

<0r: M x M -> R of ψo such that i/r S φ .

(e) Let μ,, μ2 be probability measures on K such that for every /
in M

and μ2(/) = llλ2ψ(0,f)
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Then we conclude

For every / in Mμ(f) = φo(fj) = φ(fj) = λ,μ,(/) + λ2μ2(/).

For every /in -Nμι(f) = l/λ,ψ(/,0)S 1/A (̂/,O) = */,(/„) = *>,(/).

Hence IΊ < μ! and ι̂ 2 < μ̂

which proves the lemma. Now we can state:

THEOREM 2. Let M be a linear space of continuous real-valued
functions on the compact Hausdorff space K, N an admissible cone in
M. N is uniformly dense in M if and only if

(1) For every f EM the set

{gEN\g<f}

is directed upward and

(2) Ch

Proof Of course M CN implies (1) and (2). Suppose now (1)
and (2) hold and

R={(v,μ)eM'XM'\ μ,vgθ, | | μ | | = | | v | | = l , „

S={(μ,μ)EM'XM'\ μ^O | |μ | |=l}

Both R and S are compact convex in the weak topology on M' xM',
S C R. We show 5 = JR and apply Lemma 1.

Lemma 2 shows that

Ex(R)c{(ex,μ)eR\xeChκ(M)}

because every μ£M', μ^ex for every x E Chκ(M), is a convex
combination of two different elements of M'. From Chκ(N) =
Chκ(M) we conclude now

€χ =

hence Ex (R) C 5, which implies R = 5 and proves the theorem.

4. Applications: The case M = C ( X ) . If we choose
Λf = C(X) Theorem 2 leads to generalizations of theorems of Bauer and
of Stone-Weierstrass.
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THEOREM 3. Let N be an admissible cone of continuous real-
valued functions on the compact Hausdorff space K. The following
conditions are equivalent:

(1) N is uniformly dense in CK).
(2) N is maximum-stable, i.e. Nc CN, and Chκ(N) =

Chκ(N-N).
(3) Forallf,geNinf{h GΛΓ|fc >/ v g}eN (f v g is the point -

wise sup of f and g)

and Chκ (N) = Chκ (N - N) and Chκ (-N) = K.

Proof The implications (1) => (2) and (1) =^(3) are
trivial. Suppose (2) holds: Theorem 2 shows that N - N CN, hence N
is a linear space. Nc CN therefore implies (Nc - NC)CN. From the
classical Stone-Weierstrass theorem we know that Nc - Nc is dense in
C(K) which proves N = C(K).

Suppose now (3) holds. We show that Nc CN and therefore (3)
implies (2): Let /,g G JV. Then

h = / v g(-N) = inf {/ G N\j >f v g}E N

Now ft Uκ<-N) = /vg|α,κ<-N) and Chκ(-N) = K imply ft=/vgGN,
hence Nc CN.

Bauer's theorem (see [1], Th. II.4.1) is a special case of the
following.

THEOREM 4. Let N be a uniformly complete admissible cone of
continuous real-valued functions on the compact Hausdorff space X,
K = Chx(N-N). The following conditions are equivalent:

(1) N\K = C(K).

(2) For all Nc-maximal measures μ, v in ίϊx μ > v implies μ = v

and Chx(N) = K.
(3) For all f,geN inΐ{h (ΞN\h>fvg}EN and Chx(N) =

Chx(N - N) and Chx{ -N) = K.

Proof. Clearly N \ κ is closed in C(K). (1) » (2) is an immediate
consequence of Theorem 1. (1) φ (3) is trivial. To prove the implica-
tion (3) Φ (1) we take /, g 6JV. (3) guarantees the existence of an
h<ΞN such that h = inf{j <ΞN\j >/vg}. From Chκ(-N) = K we
conclude now h\κ = fvg\κ. Hence N\κ is maximum stable and
Theorem (3) proves ΛΓ|X = C(K). (Obviously Chκ(N\κ) = Chx(N).)
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5. Examples.

1. Suppose K is the finite set {JC17 ,xn}, N an admissible cone of
functions (here real-valued finite sequences) on K. Then Chκ(N)
consists of all Jt, E K such that there exists / E N , such that /(*,) < /(*,•)
for all ιV/. (see [4], §7, Ex. 3). In this case Theorem 3 states:

N = C(K) = Rn iff for all f,g<ΞN inf{h <ΞN\h > / v g j E N and
for every JC, E X there are f,g E JV such that if iV / /(x( )</(*,) and

2. Let K be the compact subset {1,§,U, ,0} of R. Then C(X)
is the set of all convergent real-valued sequences.

N = {(y)n E C(K)\(y)n = (α,,α2, αk) + λ ( U , U , ,0) + r,

where r ER, /c EN, λ ^min{0,Oi,α2, * ' <*k}}

defines an admissible cone in C(K) with the properties:

(1) ΛΓΠ(-N) = R:
L e t / E N Π ( - N ) . Then

φ λ = - ρ = 0 because A,pSO

Φα,, , α k ^ θ , β,, ,/3k^0.

Φ α,= - β , = 0, αfe = - f t =0.

Φ/eR.
(2) Every x 6 X is a maximum point of an element of N. (For

x = 0 choose αf = 0, λ = - 1). Therefore Chκ(N) = K and

Every 1/nGK is a minimum point of an element of N, hence
CΛχ(-N) = K

(3) N is maximum-stable.
From Theorem 3 we conclude that N is uniformly dense in C(X).
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