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FIXED POINT ITERATIONS OF NONEXPANSIVE

MAPPINGS

SIMEON REICH

Let C be a boundedly weakly compact convex subset of a
Banach space E. Suppose that each weakly compact convex
subset of C possesses the fixed point property for nonexpansive
mappings, and let T: C —» C be nonexpansive. In this note it is
shown (by a very simple argument) that if a sequence of iterates
of T (generated with the aid of an infinite, lower triangular,
regular row-stochastic matrix) is bounded, then T has a fixed
point.

Dotson and Mann [3] proved this theorem under the additional
assumption that E was uniformly convex. (Their complicated proof
relied heavily on the uniform convexity of E.) We use our method also
to establish a similar result (essentially due to Browder) for nonlinear
nonexpansive semigroups.

Let C be a closed convex subset of a Banach space (E, | |), and let
T: C-» C be nonexpansive (that is, | Tx - Ty | ^ | x - y | for all x and y
in C). Let N denote the set of nonnegative integers, and suppose
A = {ank: n, k E N} is an infinite matrix satisfying

ank ^ 0 for all n, k G JV,

ank = 0 if k > n,

dnk ~ 1 for all n ELN,
k=0

lim ank = 0 for all k £ N.

If x0 belongs to C, then a sequence 5 = {xn: n 6 N } C C can be defined
inductively by

n

xn = an0 Xo + Σ ank Γx k_!, n E N.
Ac = 1

This iteration scheme is due to Mann [8].
It is not difficult to see that if T has a fixed point, then S is

bounded. Dotson and Mann [3, Theorem 1] have proved that if E is
uniformly convex, and if S is bounded for some x0 in C, then T has a
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fixed point. Their proof is rather complicated and relies heavily on the
uniform convexity of E. In this note we establish a far-reaching
extension of the Dotson-Mann theorem in a very simple manner. We
remark in passing that a special case of the Dotson-Mann result was
independently established by Reinermann [10, p. 10]. He assumed that
A is column-finite.

THEOREM 1. Let C be a boundedly weakly compact convex subset of
a Banach space E. Suppose that each weakly compact convex subset of C
possesses the fixed point property for nonexpansiυe mappings, and that
T: C-* C is nonexpansiυe. If the sequence S defined above is bounded
for some x0 in C, then T has a fixed point

Proof. Pick a point y in C, and set R = lim suprt_^ | y - xn |. i? is
finite because 5 is bounded. Let K = {z ΘC: lim sup*—| z - xn | ^ R}.
K is a non-empty bounded closed convex (hence weakly compact) subset
of C Now let z be in K. Then

I Tz - xn I g an0\ Tz - jcol + Σ a»k I Tz - Txk^\
k = ί

n

^ an0\Tz-χ0\ + Σ ank | z -**- i | .
k = l

For each positive e, there is m (e) G N such that | z - xk | < R + 6 for all
k > m. Therefore we obtain for n > m + 1,

m + l

I Γ Z - J C I ^ απ 0 |Γ2-x 0 | + 2 Ortiz-Jct-i| + 2 αnk(i? + e)
fc = l fc = m+2

m + l

g α n 0 | Γ z - χ 0 | + Σ Λnfc (z-Xfc^j + 1? +6

= /ι(n)-hl? + 6

where limn_wβ Λ (n) = 0. Thus Γz belongs to K, and the result follows.

REMARK. S need not converge, even if E is a Hubert space [5].
In the setting of Theorem 1, let rw = inf{r: there exists y E C such

that I y - xn I ^ r for all n S m}, and # = l i m ^ rm. Since C is convex
and boundedly weakly compact, there is at least one point z in C such
that lim sup^.) z ~ xn \ = R. Such a point is called an asymptotic center
of S with respect to C (cf. [4]). The proof of Theorem 1 shows that the
set of asymptotic centers of 5 with respect to C is invariant under T (cf.
[9, p. 253]). Consequently, it contains a fixed point of T. In particular,
if the asymptotic center is unique (this indeed happens when E is
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uniformly convex, or more generally, uniformly convex in every direction
[2]), then it is a fixed point of T. Note that a weakly compact convex
subset of a Banach space which is uniformly convex in every direction has
normal structure and therefore possesses the fixed point property for
nonexpansive mappings [6].

The idea of the proof of Theorem 1 can be also applied to a result on
nonlinear nonexpansive semigroups which is essentially due to Browder

[1].
Recall that a nonexpansive semigroup on a subset D of a Banach

space E is a function U: [0, oo) x D —> D satisfying the following condi-
tions:

ί2, x) = U(tί9 U(t2, x)) for tu ί 2 δ 0

and x G D,

\U(t,x)-U(t,y)\^\χ-y\ f o r ί ^ O

and x, y G D,

1/(0, JC) = JC for xGD.

A semigroup U is called bounded if for each x in D there is M(x)
such that I U(t, x ) | = M(x) for all t ^ 0. It is said to have a fixed point x0

if J7(ί,x 0)= *o for all ί ^ O . If U has a fixed point, then it is clearly
bounded. In order to prove the converse statement, we shall assume
that D has the common fixed point property for nonexpansive
mappings. This means that every commuting family of nonexpansive
self-mappings of D has a common fixed point.

THEOREM 2. Let Cbe a boundedly weakly compact convex subset of
a Banach space E. Suppose that each weakly compact convex subset of C
possesses the common fixed point property for nonexpansive mappings, and
that U: [0, <»)x C—> C is a nonexpansive semigroup. If U is bounded,
then it has a fixed point.

Proof Fix a point x0 in C, and let y be another point in C. R =
l i m s u p p l y - U(t,xo)\ is finite because the orbit {U(t,x0): t g θ } is
bounded. Let K = {z G C: lim s u p ^ l z - U(t, xo)\ ̂  R}. K is a non-
empty bounded closed convex (hence weakly compact) subset of C If
z G K, ί0 = 0, e > 0, and t is large enough, then

I ϊ/(f0, z) - l/(ι, x0) I = I l/(f0, z) - l/(f0, U(t - to,
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Consequently, U(tθ9 z) also belongs to K. Thus K is invariant under the
commuting family of nonexpansive mappings {U(t, •): ί§0} . Hence
the result.

In the setting of Tfieorem 2 we can also define an asymptotic center,
this time for {U(t,x0): ίδO}. If E is uniformly convex in every direc-
tion, this asymptotic center is unique. Moreover, a weakly compact
convex subset of E has normal structure and therefore possesses the
common fixed point property for nonexpansive mappings [7]. The
proof of Theorem 2 shows that in this case the asymptotic center of
{ί/(ί,.χ0): t ^0} is a fixed point of U.

REMARK. A version of Theorem 2 is true for arbitrary commutative
semigroups of nonexpansive mappings.
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