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DIFFERENTIABILITY CONDITIONS AND BOUNDS
ON SINGULAR POINTS

GARY SPOAR

It is well-known that a normal arc J^4 of cyclic order
four in the conformal plane contains at most finitely many
singular points and in fact at most eleven. This bound can
be reduced to four in the case of a strongly differentiable
<i<. Using a characterization of singular points on such
arcs this paper shows that strong differentiability is not a
necessary condition for this bound. In fact a much weaker
condition, viz., the existence of tangent circles, is sufficient
to obtain four as the least upper bound.

In [4] a conformal proof is given for the following result. "A
normal arc J ^ of cyclic order four contains at most eleven singular
points."

That a strongly differentiable ([3], 3.1) J^ contains at most four
singular points can be found in 4.1.4.3 of [1] and in 3.6 of [4].

In §3 it is shown that assuming only Condition I ([3], 1.5) the
maximum number of singular points on such arcs and curves is still
four and that this is the best possible bound.

In order to obtain this result it is necessary to categorize the
different possible types of singular points on such arcs. This charac-
terization is similar to that of 0. Haupt and H. Kϋnneth for linearly
singular points of arcs of linear order three ([1], 3.2.1).

The definitions and notations used in this paper can be found in
[2] and [3]. We include the notations of ordinary and strong con-
formal differentiability for the reader's convenience. It is obvious
that strong differentiability implies ordinary differentiability.

(a) A point p on an arc Ssf is said to be (conformally) differen-
tiable if it satisfies two conditions:

Condition I. For every point R^p, and for every sequence of
points s —>p, se A, s^p, there exists a circle Co such that C(p, $,
R) —• Co. Co is called the tangent circle of Szf at p through R and
is denoted C(τ, R).

Condition II. If s—>p, s^?p, there exists a circle C(p) such that
C(τ, s) —> C(p). C(p) is called the osculating circle of Jzf at p.

(b) A point p on an arc Sxf is said to be (conformally) strongly
differentiable if it satisfies the following conditions:
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Condition Γ. Let R^ p, Q —> R. If two distinct points u and
v converge on Szf to p, then C(u, v, Q) always converges.

Condition IF. C(t, u, v) converges if the three mutually distinct
points t, u, v converge on jzf to p.

1* Types of singular points* Hereafter, when considering a
two-sided neighbourhood L U {z} U M of an interior point z on an arc
J ^ we assume that Szf has been oriented so that L[M] is a preceding
[proceeding] one-sided neighbourhood of z on

DEFINITION. Let z be a singular point of an oriented arc J ^ of
cyclic order four. Then z is (1, 3) [(3, 1); (2, 2)] singular provided that
for any two-sided neighbourhood L U {z} U M of z on J^J there exists
a circle which meets L and Λf once and three times [three times and
once; twice], respectively.

REMARK, (i) Counting multiplicities for this definition, each of
the points in common with the circle and J ^ must be intersection
points.

(ii) For normal arcs J&l of cyclic order four, these are the only
possible singular points. Otherwise, we would have what might be
called a (4, 0) or (0, 4) singular point z. But z is elementary ([3],
5.1) since JK contains only finitely many singular points. Thus a
(4, 0) or (0, 4) singular point does not exist for normal arcs j#Z of
cyclic order four.

(iii) In each case there exists a limiting supporting general
osculating circle of J ^ at z which may be the point circle. If z is
(1, 3) or (3, 1) singular, then one of the limiting supporting general
osculating circles is the one-sided osculating circle of J < at z from
the right or left, respectively, since J^< is one-sidedly strongly differ-
entiable at z; cf. ([4], 3.4).

(iv) Let J < be differentiate at a singular point z. Then the
osculating circle supports J ^ at z\ cf. ([2], 9) and ([3], Theorem 4).
But JK is one-sidedly strongly differentiate at z. Thus differentiate
singular points are both (3, 1) and (1, 3) singular.

For the remainder of the paper oδ< will denote a normal oriented
arc of cyclic order four. Since end-points of such arcs are ordinary;
cf. ([4], 3.3), we will restrict our attention to open arcs. The inclusion
of end points will involve no additional singular points.
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LEMMA 1.1. Let z be a (2, 2) singular point on J&Z which is
neither (3, 1) nor (1, 3) singular. Then J^ζ does not satisfy Condi-
tion I at z.

Proof. Since z is neither (3, 1) nor (1, 3) singular, the two one-
sided osculating circles of jxζ at z intersect Szζ at z. Let us assume
that J ^ satisfies Condition I at z. Thus the family τ of tangent
circles of J^l at z is a pencil of the second kind at z; i.e., the
circles of τ touch each other at z. There are two possible cases to
consider.

Case (i). z is not a cusp point; i.e., the nontangent circles of
J^J at z all intersect J < at z. But then ^satisfies Condition Γ ([3],
3.1) at z; cf. ([3], Theorem 5). Let L U ^ U i l ί b e a sufficiently small
two-sided neighbourhood of z on J%ζ. Since z is (2, 2) singular, but
not (3, 1) or (1, 3) singular, there is a circle which intersects each of
L and M at two points but no circle which meets L three times and
M once, or L once and M three times. Call these points I < V <
m' < m.

Now let t move monotonically and continuously from V on J ^
toward z. Then there is a point w e C(Z, £, m) on J ^ which moves
monotonically and continuously from mf toward z; cf. ([4], 2.1). This
movement will yield t — u — z as t reaches z. Thus we obtain a
general tangent circle K of J ^ at # intersecting L at ϊ and ikf at m.
But if is then a tangent circle of Jzζ at 2 belonging to the pencil τ
above, since Condition Γ is satisfied at z. Also K supports J ^ at z;
otherwise a suitable circle close to K would intersect J ^ at three
points close to z and also at I and m, thus violating the order of J^J.
But then, since Condition Γ is satisfied at z, a circle close to K through
I, r, r', where r, r' e L with r, r' close to z, will meet M at a point s
close to m. Thus this circle meets L three times and Λf once; a
contradiction.

(ii). z is a cusp point; i.e., the nontangent circles of
at 2 all support J ^ at 2. Let L U {z} \J M be a small two-sided
neighbourhood of z on J ^ . Let r e L. Then the tangent circle C(τ, r)
of J^i at 2 through r is close to the osculating circle C of L U {2}
at 2. Since C intersects Ĵ < at 2, then C(τ, r) supports Ĵ < at z.
Next let s be close to z on L, s^r. Then the nontangent circle
C(z, s, r) is close to C(τ, r) and supports J ^ at z, since 2 is a cusp
point. It therefore intersects ikf at a point t. Hence a circle close
to C(z, s, r) will meet Ssζ at least five times; a contradiction.

Thus our assumption that J ^ satisfies Condition I is incorrect
and we have desired result.
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2 /Vsingular points* Let a be the end-point of s/i with a < s
for all se.£<. Let Γa be the system of circles passing through a.
Then y is Γα-singular ([4], 2.3) if, for any neighbourhood N of y
on J < there exists a circle of Γa that meets iV at least three times.

LEMMA 2.1. Let zu z2 be two singular points of J3<. Also let
a be the end-point of J ^ with a < z1 < #2.

(a) // zL and z2 are (3, 1) and (1, 3) singular, respectively, then
there is at least one Γ ̂ singular point s on J^fA with zx ^ s ^ z2.

(b) If zγ and z2 are (1, 3) and (3, 1) singular, respectively, then
there is at least one Γ^singular point s on J ^ with zγ < s < 22.

(c) // zu z2 are both (1, 3) singular, then there is at least one
Γa'Singular point s on J^" with zx < s ^ z2.

(d) If zu z2 are both (3, 1) singular, then there is at least one
Γa-singular point s on J ^ with zx ^ s < z2.

Proof. In all cases there exists at least one Γα-singular point
s on jzζ with zL ^ s ^ z2; cf. ([4], 2.5). Hence (a) is obtained automa-
tically.

To obtain (b) refer to the proof of 2.4 in [4], where JVi = Lt U
fa} U Mx and N2 = L2{J {z2} U Λf2 are two-sided neighbourhoods of z1

and a:2 on j ^ , respectively. Since z^ is (1, 3) singular there exists a
circle meeting Lt once and Mt three times. Now z2 is (3, 1) singular.
Hence there exists a circle meeting L2 three times and M2 once. The
process used in the proof with respect to these two pairs of quad-
ruplets enables one to construct a circle of Γa meeting the closed
subarc & of J < bounded by zx and z2 at three interior points. Then
by 2.3 of [4], there exists at least one Γα-singular point s in the
interior of &\ i.e., zι < s < z2. Arguments similar to those used
above yield (c) and (d).
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LEMMA 2.2. Let zx < z2 < < zn be n singular points of
none of which are (2, 2) singular. Let a be the end-point of
with a < zγ. Then J&Z contains at least n — 1 Γ ̂ singular points.

Proof. By our assumptions and remark (ii) of §1, zt is (1, 3)
singular but not (3, 1) singular, or (3, 1) singular but not (1, 3) singular,
or both (3, 1) and (1, 3) singular; i = 1, 2, , n. For i = 1, 2, ,
n — 1, define the intervals

((zi9 zi+1) if Zi is (1, 3) singular and zi+ί is (3, 1)

singular ,

[zif z i+1] if Zi is not (1, 3) singular and zί+1 is not

(3, 1) singular ,

" i+1 I [Zi, %i+i) if zi is n o t (1, 3) singular and zi+1 is (3, 1)

singular ,

(zu zi+1] if Zi is (1, 3) singular and zi+1 is not (3, 1)

singular.

Then (zif zi+1) and (zί+1, zi+2) are disjoint subsets of J ^ for i = 1, 2,
• , w — 2, and by Lemma 2.1 there is a Γα-singular point in <«„ zi+1)
for i = 1, 2, , w — 1. Hence J^< contains at least w — 1 Γα-singulai
points.

3* The main result• We are now ready to derive the desired
result.

THEOREM 1. A normal arc J ^ of cyclic order four, satisfying
Condition I at each point, contains at most four singular points.

Proof. By Lemma 1.1, all the singular points of Jϊζ are of type
(3, 1) or (1, 3). Let us assume that J<< contains at least five singular
points zlf zi9 zz, z4, z6. If a is the end-point of J^ with a < z19 then
by Lemma 2.2 J ^ contains at least four /Vsingular points.

Now let μ be a Mδbius transformation mapping a to °o. Then
removing μ (a) we have the open plane. But /^-singular points now
become linearly singular points (points of linear order three). Also
let Lι be a small preceding neighbourhood of zx and M a small pro-
ceeding neighbourhood of z6. Then the arc μ(Lt (J [zu z5] U M5) is a
bounded normal arc of linear order three containing at least four line-
arly singular points. This is known to be impossible; cf. ([1], 3.2.4).

Thus J&ί contains at most four singular points.

A closed curve C4 of cyclic order four is automatically normal.
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Using the method of the proof of Theorem 1, one obtains the following
result.

THEOREM 2. A closed curve C4 of cyclic order four satisfying
Condition I contains at most four singular points.

Finally, we should note that there are normal arcs and curves
of cyclic order four satisfying Condition I which contain four singular
points. For example, consider any arc of the ellipse given by the
equation Sx2 + iy2 = 12 containing the points P^O, T/ΊΓ), P2(2, 0), P3(0,
-VΊΓ) and P4(-2, 0) or the ellipse itself. Each Pif i = 1, 2, 3, 4 is
a singular point of this arc.

Hence the maximum number of four singular points for normal
arcs and curves of cyclic order four satisfying Condition I obtained
in Theorems 1 and 2 is the best possible bound.
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