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ON POWER-INVARIANCE

ELOISE HAMANN

Let R be a commutative ring with identity, and consider
the power series ring -R[[X]] in one analytic indeterminate over
R. Is the coefficient ring R unique in the sence that if -R[[X]]
is isomorphic to S[[Γ]] with Y an analytic indeterminate over
S, need S be isomorphic to Rl Whenever this is the case, R
will be called power-invariant. It will be shown that if R
is a quasi-local or a complete semi-local ring then R is power-
invariant.

The answer to the general question was not known by the author
until the Commutative Algebra Conference in June of 1974 at the
University of Nebraska where a counterexample was produced by
Andy Magid. He has graciously requested that it be reproduced in
this paper. The fact that rings with nilpotent Jacobson radical are
power-invariant is known [6]. The paper will also show that if
i?[[X]] = S[[F]], under the assumption that certain elements are not
zero-divisors that there exist one-to-one maps from R into S and S
into R. In particular, this is the case if R is a domain. Finally,
the paper generalizes the power-invariant results to an arbitrary
number of variables.

The following notational conventions will be observed and referred
to throughout the paper. J(R) will denote the Jacobson radical of
a ring R. W, R, S, X, Y, j , u, v will be such that W=R[[X]] = S[[Y]]
where X and Y are analytic indeterminates over R and S respec-
tively; Y = j + uX, and X = k + vY where Je J(R), ueW,ke J(S),
and v e W.

Note that since W is complete with respect to both (X) and (Y),
W is also complete with respect to (X, Y) and thus also complete
with respect to the ideals jW and kW contained in (X, Y). (If {wn}
is a Cauchy sequence in the (X, F)-adic topology, it can be written
as a sum of two Cauchy sequences {sn} and {tn} which are also Cauchy
with respect to the (X)-adic and (Y)-adic topologies respectively.
Let s be the limit of {sj in the (X)-adic topology and t the limit of
{tn} in the (Y)-adic topology. Since s and t are then limit points
of {s%} and {tn} respectively in the (X, F)-adic topology, s + t is a
limit point of {wn}. Conceivably the (X, Y)-adic topology may not
be Hausdorff, so that limits aren't necessarily unique.) Further, R
is certainly a closed subset of W in the iΐF-adic topology so R is
complete with respect to (j), the ideal of R generated by j , but
perhaps not Hausdorff. Similarly, S is complete but perhaps not
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Hausdorff with respect to (&), the ideal of S generated by (k).

l Andy Magid's counterexample* The example is the com-
pletion with respect to a certain ideal of Melvin Hochster's counter-
example to the question whether R[X] isomorphic to S[Y] implies S
is isomorphic to R, where X and Y are ordinary indeterminates over
R and S respectively. Specifically, there exists a Noetherian ring R
with zero Jacobson radical which has a finitely generated nonfree
module P such that P 0 R — RK Taking symmetric algebras of both
sides yields A[T] isomorphic to R[X, Y, Z] where T, {X, Y, Z) are
indeterminates over A and R respectively and A is the symmetric
algebra of P, and is not isomorphic to R[X, Y\. See either [3] or
[4] for more details. If M is a l?-module, let SB{M) denote the
complete symmetric algebra of M over B, i.e., the completion of the
symmetric algebra SB(M) with respect to the ideal generated by M.
To get the counterexample for the power series case, take the com-
plete symmetric algebras of P φ R and R3 over R. Then SB(P(BR) s
SB(P)[[T]] and SR(R*) = R[[X, Y, Z\\ with T an analytic indeter-
minate over SB(P) and X, Y9 Z independent analytic indeterminates
over R. It remains to show that SB(P) is not isomorphic to R[[X, Y]].
It suffices to show that SB(P) ~ R[[X, Y]] implies SB(P) = R[X, Y].
Let M be any finitely generated lϋ-module. J(SB(M)) is the ideal
generated by M since MS(M) is certainly contained in J(SB(M)) and
S(M)/MS(M) = R whose Jacobson radical is zero. Thus, the associated
graded ring of S(M) with respect to J(S(M)) is S(M)/MS(M) 0
MS(M)/]MS(M)]2 0 - which is isomorphic to S(M). Thus, S(M)
determines S(M) and the result follows.

2* Some power-invariant rings* The following theorem from
[8] and [9] will be needed for the results of this section.

THEOREM 1. Let B = ΣΓ=0<M^ e i£[[X]], and suppose that ψ is
an R-endomorphism of R[[X]] such that φ{X) — B. Then:

(a) φ is onto if and only if aγ is a unit of R.
(b) If φ is onto, then φ is one to one.
(c) φ is an automorphism if and only if aγ is a unit of R.

THEOREM 2. Let B = ΣiT=obtX'eR[[X]]. //Π*=i(δ?) = 0 in
R (or Π^=i (Bn) = 0 in JS[[X]]) and R is complete with respect to
(b0) (or i2[[X]] is complete with respect to (J5)) then φB which maps
ΣΓ̂ oΛt-X* to ΣΠ=OΛ4JB* is an R-endomorphism.

THEOREM 3. Let B = ^t^hX1 e R[[X]\. Let A be an ideal of
R. If b0A = A, then A Q fl?=i (βk).
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Also recall that an element of i2[[X]] is invertible if its constant
term is invertible [7].

We are ready for our first result.

THEOREM 4. If R is quasi-local, R is power-invariant.

Proof. Let the notation be as in the next-to-last paragraph of
the introduction. If u is an invertible element of W, then Theorem
1 implies R[[Y]] = R[[X]] = S[[Y]] and Γis an analytic indeterminate
over R. Thus, S~ W/(Y) = R. By symmetry we can reduce to
the case where both u and v are in the maximal ideal of W. For
weW, let WiβS be such that w == w0 + Wj.Y + •••. Taking the
F-coefficient of both sides of Y = j + uX we get 1 = j \ + u^Xx +
MjXo = 3i + Wo-Xi + ujc. u0 is in the maximal ideal since u is, so j \
is invertible. Similarly k\ the X-coefficient of k is invertible.
Suppose for the moment that there is an iϋ-endomorphism of i?[[X]]
which takes X to kf and an S-endomorphism which takes Y to j .
In this case Theorem 1 would imply R[[k]] = R[[X]] = S[[Y]] with
k analytically independent over R, and R — S/(k)[[Y]] with Γ an
analytic indeterminate over S/(k). Similarly, S ~ R/(J)[[X]] with X
analytically independent over R/(j). However, (X, j) = (X, Y) = (k, Y)
so that S/(k) = W/(X, Y) s Λ/0"). This yield i ί s S . It remains
only to show the desired endomorphisms exist. W is certainly
complete with respect to (j) (or (&)), so by Theorem 2 and symmetry,
the result will follow from the following proposition.

PROPOSITION. Let R[[X]] = S[[Y]] = W where Y = j + uX and
X = k + vY as above. If u is in J{W), then ΠΓ=i (jn) = 0 as an
ideal in R.

Proof. Since Γin=ΛYn) = 0, by Theorem 3 it suffices to show
that j[Πn=i(Jn)] = n?=iθ'%). Let A = Πn=ΛJn). First assume that
AnnΛ j £ A. Let / e A so that / = jt, for some tlf and / = jntn for
some ίΛ given n. jfa — jn~Hn) = 0 implies ίx — i9*"1^ 6 A, which
further implies tt e W1'1). Since n was arbitrary ίx e A. Thus, / e iΛ
and jA = A. Now let us show that Ann^ j Q A. It suffices to
show that fj* = 0 implies / 6 (j). Let ff = 0, in which case /Y* =
ΣLi (Dff-WXK If we take the Γ* coefficient of both sides, we get
/0 expressed as a sum of terms of the form fajhjb.__huCluChXdlXdh

where α, 6α, ca, da, are all integers, and 1 <^ h ^ i. (Recall wt denotes
the Yι coefficient in S of w in S[[ Y]].) Further, a + ΣJrΛ K + Σί-i c« +
Σ L i = i- If such a term involves /0, i.e., α = 0, then not all of
the ba, ca, and da can be ^ 1 since this would give Σ«=ϊ δ« + ΣίU c« +
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Σ«=i da ^ (i — h) + h + h > i. Thus, any term involving f0 involves
either j0, uQ, or XQ each of which is in J(W). If a term does not
involve /0, then it must involve Xo or j 0 . (If not then a + Σ«=ΐ ba +
Σ«=i ca + Σί-i dβ ̂  1 + (i - λ) + λ > i.) Since Xo = & and i 0 e (fc),
we have fo = afo + bk where αeJ(TF). Since 1 — a is invertible,
/oe (ίfc) £ (&, Y) = 0', X). However, f e R so / e (j) as required.

COROLLARY. Leέ R[[X)] = S[[Γ]], y = j + uX, and X=k + vY.
Let P be a maximal ideal of R, and Q the maximal ideal of S such
that (P, X) = (Q, Y), then RP = SQ where the completion can be taken
with respect to the maximal ideals in question or with respect to
(j)Rp and (k)SQ.

Proof. Let M= (P, X) = (Q, Γ), then WM can be thought of
as a subring of i2P[[X]] or Ŝ H Y]]. In either case the completion of
WM with respect to If is all of ^[[X]] or Sρ[[Y]] where RP is com-
pletion with respect to PRP and SQ is completion with respect to
QSQ. Thus, it!p[[X]] = SQ[[Y]] and the result follows from Theorem
4. The proof of the other completion is similar, this time complete
WM with respect to (X, Y) = (j, X) = (k, Y).

THEOREM 5. If R is a complete semi-local ring, R is power-
invariant.

Proof. Let R[[X]] = S[[Y]] = W, then Wand S are also complete
semilocal. Since a complete semilocal ring is a direct sum of complete
local rings, the result follows from the corollary.

3* Existence of one to one maps* The following lemmas are
needed for our next result. With notation as in the introduction, we
keep the convention that if weW = R[[X]] = S[[Y]] that wt is the
Yi coefficient in S of W, and we let wi denote the X1 coefficient in
R of w. Since i = 0 and i = 1 are the only cases of interest, there
should be no confusion with exponents.

Define φ:R^R by φ(r) = (ro)°.

LEMMA 1. With 0 , R, S, W, X, Y as above and Y = j + uX,
X= k + vY, we have (Y) Γ\ R Q Ker φ S (i). ((i) denotes the ideal
of R generated by j).

Proof. Since Yo = 0 the first containment is trivial. Now suppose
r 6 i20 and (ro)° = 0, then r0 = ίX and r = tX + fY. Since r = r°
r = f°y° = /°i.
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LEMMA 2. With everything as in Lemma 1, assume φ(j) is
either zero or not a zero-divisor. Then Ker φ = 0, or Ker φ = (j).

Proof. If φ(j) = o, Ker φ = (j) by Lemma 1. If φ(j) Φ 0, let
f eKerφ. f = aj also by Lemma 1. 0 = Φ(f)Φ(a)φ(j), which implies
φ(a) = 0. Thus, a = bj and it is clear that /eΠϊUO"")- Since
Φ(j) = (Uo)°v°j is not a zero-divisor, j1 is not a zero-divisor. Thus
i ίήϊU 0"*)l = Πϊ-i (i ) = 0 by Theorem 3. Thus, / = 0 and Ker 0 = 0.

LEMMA 3. With notation as above, j not a zero-divisor implies
k is not a zero-divisor.

Proof, j not a zero-divisor implies {j9 X) is a ΫP-sequence.
Suppose ί; is a zero-divisor, then some element of S kills k, say
sk = 0. We get sX = svY. Now sv£{x) since then s would be a
multiple of Y. However, sX = svj + svuX makes svj a multiple of
X which is a contradiction. Thus, k is not a zero-divisor.

THEOREM 6. Let R[[X]] = S[[Y]], Y = j + uX9 X = k + vY. If
j and φ(j) — (io)° are not zero-divisors (unless 0), then there exist 1
to 1 maps from R into S and from S into R.

Proof. We need only consider the two cases of Lemma 2.

Case 1. Ker φ = (j) Φ 0.

In this case R is actually isomorphic to S. Let A = Imφ. If
r e R, r = r0 + wΓ for some w e TF and r = r° = (ro)° + w«Y° = ̂ (r) +
w°j. Thus, i2 = A + (j), φ = ̂ 2, and A Π (i) = 0 all follow. R = A +
(j) = A + jR implies R = A + iA + + i^A + iw+1i2 for any n.
R is complete with respect to (j) and also Hausdorff as in the proof
of Lemma 2. Thus, R — A[[j]\. j not a zero-divisor and A Π (i) = 0
together imply that j is an analytic indeterminate over A so R =
A[[X]]. We have PΓ = A[[&, Γ]]. We next show that (F) Π A[[k]] = 0.
Let te (Y) Π A[[k]]. t = ly = Σϊ-o<*>&*. (Here α ^ i and i is an
ordinary subscript.) α 0 e ( i ) Π i = 0 so ί]/ = ΣΓ=i^* Taking constant
terms in S we get 0 = Σ £ i (^i)o^ Since fc is not a zero-divisor
ΣΓ-i (αjofc'"1 = 0 a n d (αi)oe (*)• Thus, αt 6 (k, Y) Π A - (j) n A = 0.
By induction α< = 0 for all i and (Γ) Π A[[k]] = 0. But then A[[&]] s
T7/(Γ) = S. k not a zero-divisor and (k) Π A S (i) |Ί A = 0 imply k
is also an analytic indeterminate over A and S ~ A[[X]] = i2.

Case 2. Ker 0 = 0.

Clearly the map from R to S which takes r to r0 is 1-1. Let
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φ denote the map from S to S which takes s to (s°)0. Since k is not
a zero-divisor, φ{k) is zero or not a zero-divisor. Thus, by Lemma 2
Ker φ — 0 or Ker ^ = (k). If Ker ^ — (k) the above argument with
the role of R and S reversed yields R ~ S. If Ker φ = 0, the map
from S to R which takes s to s° is 1-1.

There is the following analogue of Theorem 6. The proof
is due to Nagata and appears in [1].

THEOREM 7. If R is an integral domain and R[X] = S[Y], then
there exist injective homomorphisms of R into S and S into R.

4* %-Variable case* I believe the work on power-invariance to
data has involved only one variable. It is natural to consider the
following question. When can one conclude S = R, if there exists
some n such that R[[Xlf , XJ] = S[[Yl9 , ΓJ] where the X, and
Yi are independent analytic indeterminates over R and S respectively.
To wit, we give the following definition:

DEFINITION. R will be called "forever power-invariant" provided
S ~ R whenever there is a positive integer n such that S[[XU ,
Xn]]~R[[Xlf -. ,XJ] where the Xi are independent analytic inde-
terminates over R and S.

Induction readily yields the following:

THEOREM 8. If R is a quasi-local or a complete semi-local ring,
then R is forever power-invariant.

The next theorem generalizes the result that a ring with nilpotent
Jacobson radical is power-invariant under the 1-variable definition.
It also relaxes the nilpotent condition to a nil Jacobson radical.

THEOREM 9. If every element of J{R) is nilpotent, then R is
forever power-invariant.

Proof. LetR[[Xl9 . -, Xn]] = S[[YU •••, Yn]]=W. LetJSΓ, Γdenote
the vectors (Xl9 , Xn) and (Yi, , Yn); J, K vectors in Rn and Sn

respectively such that Y= J + XU, X = K + YV where U and V
are nxn matrices with entries in W. Since J(R) is nil, each com-
ponent of the vector J is nilpotent. The key point is that if j is a
nilpotent element of R9 every coefficient in its expression as an element
of S[[Y]] is also nilpotent. Now, careful examination of Y= J +
KU + YVU yields (1, . , 1) = J, + KU, + diag V0UQ by taking the
Yi coefficient of the ith component of each side. Here Jx denotes
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the result of this application to J; U1 is the nxn matrix whose ith
column consists of the Yi coefficients of the ίth column of U; and
Ϊ7O( Vo) is the nxn matrix of constant terms of U(V). Since Jλ and K
have entries in J(S), (the elements of Jx being nilpotent) the elements
of the diagonal of V0U0 are invertible. The same is, of course, then
true for VU. By a similar scrutiny of the same, i.e., Y — J + KU +
YVU, this time taking the Y3 coefficient of the iih component of
both sides with i Φ j , we get the entries of VU which are off the
diagonal to be in J(W). Thus, VU has an invertible determinant,
whence both V and U do, and both are invertible matrices. Thus,
if the maps from R[X] to R[[X]] which take R to R and X to
J + XU or (X — J) U'1 can be extended to R[X]] in the natural way,
they are clearly inverse maps, and thus J?-automorphisms. In order for
the extensions to be made i2[[X]] needs to be complete and Hausdorff
with respect to the ideal generated by the images of the {Xt}. This
is clear in the case that X maps to J + XU = Y. R[[X]\ is certainly
complete with respect to (jl9 •• ,jn,Xlf •• , X J . Since the j t are
nilpotent and pϊU (-XΊ, , Xn)

k = 0, Π?=i OΊ, , L, Xu , -ΪJ* = 0
which is equivalent to i2[[X]] being Hausdorff with respect to
(Jif "-, 3n, Xu - , Xn)- Thus, the map taking X to (X — J)U^ can
also be extended. Thus, R[[X]] = R[[Y]] and R s U/(Y) = S.
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