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AN INVERSION OF THE S2 TRANSFORM
FOR GENERALIZED FUNCTIONS

L. S. DUBE

Define S2 transform of a member / of a certain space
of generalized functions as

• = <f(t),K(t,x)>

where

log x/t

K{t, x) = 1

, xΦt

(0 <t < oo,0 <X < oo).
It is shown that

UmHn,ΛF(x)]=f(x)
n-*oo

in the weak distributional sence. Here Hn,x is a certain
linear generalized differential operator.

1* Introduction* Schwartz [6, p. 248] first introduced the Fourier
transform of distributions in 1947. Since then, extensions of the
classical integral transformations to generalized functions have become
of continuing interest. Some references to this effect are [2], [3], [4],
[5], [8], [9] and [10]. The Stieltjes and iterated Stieltjes transforms
of a function f(t) have been defined respectively as

f(u) = \ -IW^dt , u > 0

and

u , *>o.
o X + U Jo U + t

If it is permissible to change the order of integration in the above
integral, one gets

(1) /(x) =
J θ+ X — t

where log x/t/(x — t) is defined by its limiting value 1/x at t = x. (1)
is referred to as the S2 transform of the function f(t) (see [1, p. 4]).
The inversion formula for (1) due to Boas and Widder [1, p. 30] is
given by
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( 2 ) limfl.,.[/(aj)] = /(*),
n~*co

for almost all x > 0, where

n = 1, 2, .
Pandey [4] has defined the Stieltjes transform of an arbitrary

element / of a generalized function space S'a{I) as

( 3 )
8 + t

for s lying in the complex plane with a cut along the negative real
axis. He has also proved both complex and real (for s > 0) inversion
formulae for the transform (3).

It is natural to ask whether one can extend the classical iterated
Stieltjes transform to a space of generalized functions. If G(u) is
the Stieltjes transform of / e S'a(I) for u > 0, as defined by (3), it
seems reasonable to define the iterated Stieltjes transform of / as

(4) F(x) = (G(u)9—±—), x>0.
\ x + uί

In order that the above definition be meaningful, G(u) must belong
to the space S'a(I) as a regular generalized function. This we have

S CO

G(u)/(x + u) du ceases to exist in
0

a neighborhood of zero, as G(u) = 0(1/%), when u —>Ό 4- ([4, Corollary
to Lemma 2a]). In this paper, we provide a partial solution to the
present problem by defining the S2 transform of generalized functions
as in §3. In our definition of S2 transform, the difficulty that occurs
in justifying (4) does not arise. The inversion formula (2) is extended
to a space of generalized functions in the sense of weak distributional
convergence.

The notation and terminology will follow that of [3] and [11].
" / " denotes the open interval (0, <χ>) and t,x and u are real variables
in /. If / is a generalized function, then f(t) is used to indicate
that the testing functions on which / is defined have t as their variable.
The space of C°°-funtions on I having compact support is denoted
by D(I) and its dual D'(I) is the Schwartz distribution space.

2. The testing function space Sa(I). Let a be a fixed real
number satisfying 0 < a < 1. Sa(I) is defined as the collection of all



for each k = 0, 1, 2, .
The topology of Sα(J) is generated by the seminorms {7k} [11, p

8]. A sequence {φn} converges to a function ^ in the topology of Sa(I)
if and only if
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CM unctions φ(t) on I = (0, oo) such that

as n —> oo, uniformly in t, for each k = 0, 1, 2, . It turns out that
Sα(i) is a locally convex, sequentially complete Hausdorff topological
vector space. The dual space S'JJ) consists of all linear continuous
functional on Sa(I). The space D{I) is contained in SJJ) and the
topology of D(I) is stronger than that induced on it by Sa(I). Hence
the restriction of any / e S'JI) to D(I) is in D\I).

Regular generalized functions in S'JJ). The regular generalized
functions in S'JJ) are characterized as follows:

If f{t) is a locally integrable function such that Γ(\f(t)\/ta)dt <
Jo

oo, then f(t) generates a regular generalized function in S'a(I) through
the definition:

, φeSJI).

The proof of the above statement follows easily in the lines of [11,
V, p. 53].

Now define a function K(t, x) on (0 < t < oo; 0 < x < oo) as

( 5 ) x - t

1/. , * =

For each fixed a? > 0, if(£, #) as a function of £ belongs to Sa(I). In
fact, taking the substitution t — x — uf the function K{t, x) can be
written as a power series in u with the centre £ = x and the radius
of convergence x, which will imply that K(t, x) is infinitely differen-
tiate at t = x. That !£(£, #) is infinitely differentiate at t Φ x is
obvious. It follows now by a simple computation that Ύk(K(tf x)) <
oo for a fixed x > 0 and for each k = 0, 1, 2, .

3, The generalized S2 transform* For /eS«(I), we define the
S2 transform of / as a function F(x) obtained by applying / on the
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kernel K(t, x), i.e.

(6) F(x) = < / ( * ) , K ( t , x ) ) , x > 0 ,

where K(t, x) is defined by (5).
The right hand side of (6) has a sense as K(t, x) belongs to the

testing function space SJJ).
Following the technique used in [3, Th. 1] and applying the

mathematical induction, one can show that F{x) is an infinitely differ-
entiable function and that

F™(x) = (f(t), -^—K{t, x)) for each x > 0
\ dxn I

and n = 1, 2, .

4* Inversion and uniqueness* Now we prove an inversion
theorem for our generalized S2 transform as follows:

THEOREM 1. Let f e S'a(I) for 0 < a < 1 and let F(x) be the
Sz transform of f as defined by (5). Then for an arbitrary φ(x) e
D(I) one has

(Hn>xF{x), φ(x)) ></, φ) as n

where the operator Hn>x is defined by (3) and the differentiation
therein is understood in the distributional sense.

Proof. By a simple computation, the operator Hn,x can be ex-
pressed as a polynomial in (x(d/dx)) of degree in - 2. Let us denote
this polynomial by P(x(d/dx)). The theorem will be proved by justify-
ing steps:

<HMF(x),φ(x)y = (p(χJL

(8) = t~F(X)P(-x-f- - l)φ(x)dx

( 8 )' = Γ</(ί), K(t, x)}p(-χjL - 1 )φ(χ)dx

(9) = (f(t), \ K(t, x)P(-:

(10) > (f(t), Φ(t)) , as n > - ,
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where (4n — 2) is the degree of the polynomial P.
The step (7) is obvious due to the fact that the function

generates a regular distribution in D'(I). The step (8) is obtained
by applying integration by parts in (7) successively and using the
fact that the support of φ(x) is contained in some open interval (α, &),
0 < a < b < oo, so that the limit terms in the integration vanish. The
limits of integration in both (8)' and (9) are essentially from a to 6

as the support of Pi — x—- — 1 )φ{x) is contained in (α, 6). Hence follow-
\ dx J

ing the Riemann sum technique as used in [5, Th. 2] one can easily show
that (8)' equals (9). In order to show that (9)—>(10), we need prove that

t*(t jL)k[Fκ(t, x)p(-χA- - l)φ(x)dx - 0(ί)l > 0 as w > oo
\ at / LJo \ dx I J

uniformly for all t e (0, °°), for each ft = 0, 1, 2, .
Now

(11)

(12) = y(t—^[K(t, aθ]p(-α— - l\φ(x)dx .

It can easily be checked that

( — x 1 ]K(t, x), when t Φ x
\ dx /

(x—}K(t, x) , when t — x .
\ dxj

x) -

Therefore (12) can be written without any change in the value of
the integral as

~ a ; ' έ ~ ήφ(x)dx

= \b κ(t,

(by integration by parts)

i)(χL)φ(X)dx
dx A dx/

^x

(by integration by parts).
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Hence applying (t(d/dt)) successively on the integral in (11) we get
for any non-negative integer k

where

F,(t, x) = dia —'ί (" ^ — du ,
Jo (X + tt)2"(ί + Ufn

([1, Cor. 6.1.1, p . 20])

d. = (2n - 1)! cn; β l = 1 and c n =
 X , w ^ 2 .

%!(» — 2)!

Also in view of [1, Lemma 7.2, p . 21], for n S: 2

n

Hence as n —> oo

as n

(*i )"[ί>

here (x(d/dx))kφ(x)e D(I).
Now it suffices to show that

(13) ta \ Fn(t, x)[ψ(x) — ψ(t)]dx • 0 a s n • °°
Jo

uniformly for all t > 0 for any ψ(x) e D{I).
Taking the substitution x — ty and using the fact that Fn(t, x)

is homogeneous of degree-1 we get

%(t9 x)[ψ(x) - ψ(t)]dx - ( > Λ ( 1 , x)[ψ(xt) - f(t)\dx
Jo

= ( P + Γ ' + Γ )FJX, X)[f(xt) - ir(t)]dx
\Jo Ji-? Ji+'?/
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where η is taken be be a positive number less than 1/2.
In view of [1, Lemmas 7.2 and 8.2] it follows that

Γ VΛ(1, x)dx > 0 as

Jo

Fn(l, x)dx > 1 as

(14)

(15)

and

(16) Γ Fn{l,x)dx >0 as
Jl+V

Let sup0<ί<Oo taψ(t) = Mf which clearly exists. Then

n

n

(17) t*[ V»(l, x)[ψ(xt) - ψ(t)]dx ^ 2MΓ V.(l, x)dx > 0
Jo Jo

as n—> oo uniformly for all ί > 0 in view of (14).
Similarly, using (16) we get

(18) t* JX, x) [ψ(xt) - ψ(t)]dx 0

as n —> co uniformly for all t > 0.
Finally, in view of [7, Lemma 5, p. 287], and the fact that ψ

has a compact support on /, for a given ε > 0 there exists a positive
η < 1/2 such that

\t"[ψ(xt) - f { t ) ] \ < ε ,

uniformly for all t > 0 and for all x e (1 — η, 1 + η). Hence the
application of (15) leads to

(19) t"FΛ{l, x)[ψ(xt) - ψ(t)]dx < ε \ Fn(l, x)dx > ε
1- η Jl-3?

as n -~+ oo uniformly for all t > 0.
Combining (17), (18) and (19) in which ε is arbitrary, (13) is

established. This completes the proof of the theorem.

THEOREM 2 (Uniqueness). Let f and g be two members of Sr

a(I)
and let F(x) and G{x) be their S2 transforms respectively as defined
by (5). If F(x) = G(x) for all x > 0 then f = g in the sense of equality
in D'(I).

Proof. For an arbitrary φeD(I),
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</ - g, φ) = lim (Hn,x(F(x) - G(x)), φ(x)) ,

(by Theorem 1).

= 0 , since F(x) = (?(#) for all x > 0 .

Hence / = # in D'{I).

An open problem. We state the following open problem related
to the present work:

Can one justify the definition of the iterated Stieltjes transform
of generalized functions as given by (4)? In order to do this, some
modifications in the asymptotic order of G{u), and in the characteriza-
tion of regular generalized functions of S'a(I) as given in §2, might
be needed.

Granted that (4) is well defined, can one prove the equivalence
of the S2 and iterated Stieltjes transforms of generalized functions?

Acknowledgement. The author is thankful to the referee for his
suggestions.
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