ON THE CONVOLUTION ALGEBRAS OF *H*-INVARIANT MEASURES

JOHN YUAN

The totality M(eSe/H) of bounded regular Borel measures on the orbit space eSe/H, where S is a locally compact semigroup and H is a compact subgroup with the identity e, forms a Banach space; however, its closed subspace $M_H(ESe/H)$ of H-invariant measures forms even a Banach algebra under a suitable convolution. Furthermore, if w is an idempotent probability measure with compact support on S, then $w*M(S)*w \cong w_H*M(S)*w_H\cong M_H(eSe/H)$ algebraically and in various topologies, where w_H is the normalized Haar measure on some compact subgroup H.

1. Introduction. We denote the Banach space of bounded regular Borel measures and the totality of probability measures on a locally compact (Hausdorff) space X by M(X) and P(X), respectively. Beside the norm topology, M(X) may be equipped with the weak, weak* and vague topologies, which are the topologies of pointwise convergence on $C^b(X)$, $C_0(X)$ and K(X), respectively, where $C^b(X)$ denotes the totality of bounded continuous functions on X, $C_0(X)$ and K(X) the subspaces of functions vanishing at ∞ and functions with compact supports, respectively. In P(X), the weak, weak* and vague topologies coincide (p. 59, [2]; [7]). Let S be a locally compact semigroup, then M(S) is a Banach algebra and P(S) a topological (Hausdorff) semigroup under the convolution *. We refer to [7] for the continuity of * in the weak, weak* and vague topologies.

LEMMA 1.1. Let S be a locally compact semigroup. Then $\operatorname{supp}(\mu * \nu) \subseteq (\operatorname{supp}(\mu)\operatorname{supp}(\nu))^-$ for $\mu, \nu \in M(S)$, and equality holds for $\mu, \nu \geq 0$, where $\operatorname{supp}(\mu)$ denotes the support of μ .

Proof. (Cf. 1.1, p. 686, [5]).

LEMMA 1.2. Let $\alpha: X \to Y$ be a continuous map (resp. morphism) between locally compact spaces (resp. semigroups). Then $M(\alpha): M(X) \to M(Y)$ given by

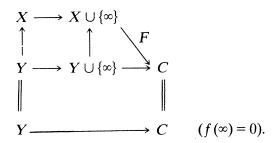
$$[M(\alpha)(\mu)][f] = \mu(f \circ \alpha), \qquad f \in C^b(Y)$$

is a norm-decreasing linear morphism (resp. algebra morphism) continuous in the weak topology. Moreover, if α is proper, then $M(\alpha)$ is also continuous in both weak* and vague topologies.

Proof. Straightforward.

LEMMA 1.3. Let Y be a closed subspace of a locally compact space X. Then every $f \in K(Y)$ (resp. $f \in C_0(Y)$) has an extension $F \in K(X)$ (resp. $F \in C_0(X)$).

Proof. This follows from (7.40, p. 99, [1]) and the following commutative diagram:



PROPOSITION 1.4. Let S be a locally compact semigroup and $e^2 = e \in S$. Then $\delta_e * M(S) * \delta_e = M(eSe)$ is a Banach subalgebra of M(S). In fact, if $i: eSe \to S$ is the inclusion map, then $M(i): M(eSe) \to M(S)$ is an embedding. (Note that, unless mentioned otherwise, our statements are to apply to each of the topologies mentioned before.)

Proof. We first observe from Lemma 1.1 that $\delta_e * M(S) * \delta_e \subseteq M(eSe)$ and that δ_e is the identity for M(eSe), whence $M(eSe) = \delta_e * M(eSe) * \delta_e \subseteq \delta_e * M(S) * \delta_e$ and thus $\delta_e * M(S) * \delta_e = M(eSe)$. Since $\mu \mapsto \delta_e * \mu * \delta_e$ is a Banach space linear retraction, M(eSe) is a linear closed norm retract of M(S). As to the others, we will show the weak embedding only. Let $M(i)(\mu_\alpha) \xrightarrow{\sim} M(i)(\mu)$ in M(S) and $f \in C^b(eSe)$; then f has an extension $F \in C^b(S)$ given by F(s) = f(ese) and thus $\mu_\alpha(f) = [M(i)(\mu_\alpha)](F) \rightarrow [M(i)(\mu)](F) = \mu(f)$. Hence M(i) is an embedding.

For the purpose of this paper it is therefore no loss of generality to assume that S is a monoid with the identity e.

PROPOSITION 1.5. Suppose that S acts on the left on a locally compact space X. If $\mu \in M(X)$ and $f \in C^b(X)$, then $f_{\mu} \in C^b(S)$ is well defined by $f_{\mu}(s) = \int f(sx)\mu(dx)$.

Proof. Let $\epsilon > 0$ be given. By the regularity of $|\mu|$, there exists a compact subset $K \subseteq X$ so that $|\mu|(X \setminus K) < \epsilon$. For this K and a given $s \in S$, let

$$\varphi(t) = \sup\{|f(tx) - f(sx)| : x \in K\}.$$

Then $\varphi(t) \to 0$ as $t \to s$; otherwise, there exist nets $t_{\alpha} \to s$, and $x_{\alpha} \to x_0$ in K so that $|f(t_{\alpha}x_{\alpha}) - f(sx_{\alpha})| > \epsilon$ which contradicts to the continuity of f at sx_0 . Hence

$$|f_{\mu}(t) - f_{\mu}(s)| \leq \int_{K} \varphi(t) |\mu| (dx) + \int_{X \setminus K} 2||f|| |\mu| (dx)$$

$$\leq \varphi(t) |\mu| (K) + 2||f|| \epsilon \leq 3||f|| \epsilon$$

whenever t is close enough to s. Hence $f_{\mu} \in C^b(S)$.

2. **H-invariant measures.** Let H be any compact group acting on the left on a locally compact space X. A $\mu \in M(X)$ is called H-invariant if $\int f(hx)\mu(dx) = \int f(x)\mu(dx)$ for all $f \in C^b(X)$, $h \in H$. For convenience, we will denote by $M_H(X)$ the Banach subspace of all H-invariant measures in M(X). We now assume that S acts on the left on X and H is a compact subgroup of units in S. Suppose now that $f \in C^b(X)$ and $\mu \in M_H(X)$. By Proposition 1.4, $f_\mu \in C^b(S)$ is well defined by $f_{\mu}(s) = \int f(sx)\mu(dx)$. If we set (fs)(x) = f(sx), then we note that $f_{\mu}(sh) = \int (fs)(hx)\mu(dx) = \mu(fs) = \int f(sx)\mu(dx) = f_{\mu}(s)$ for all $h \in H$. Hence f_{μ} is constant on left cosets sH in S. If S/H = $\{sH: s \in S\}$ and $p: S \rightarrow S/H$ is given by p(s) = sH, then $F \mapsto F \circ p \colon C^b(S/H) \to C^b(S)$ is an isometry onto $C_H^b(S)$ of all functions which are constant on orbits sH. Hence there is a unique function $\widetilde{f_{\mu}} \in C^b(S/H)$ such that $\widetilde{f_{\mu}} \circ p = f_{\mu}$. If now $\mu \in M_H(S/H)$ and $\nu \in M_H(X)$, then we define

$$\mu * \nu(f) = \mu(\widetilde{f_{\nu}})$$

on $C^b(X)$, which we will write

$$\mu * \nu(f) = \int f(sx)\mu(ds)\nu(dx), \qquad \dot{s} = p(s).$$

As $(\widetilde{fh})_{\nu} = (\widetilde{f_{\nu}})h$, we have $\mu * \nu(fh) = \mu((\widetilde{fh})_{\nu}) = \mu(\widetilde{f_{\nu}}h) = \mu(\widetilde{f_{\nu}}$

LEMMA 2.1. $M(p): M(S) \rightarrow M(S/H)$ is a norm-decreasing continuous linear morphism mapping $w_H * M(S)$ into $M_H(S/H)$ where w_H is the normalized Haar measure on H.

Proof. We observe first that $w_H * M(S) \subseteq M_H(S)$ by invariance of w_H , and that M(p) maps $M_H(S)$ into $M_H(S/H)$. And since M(p) is continuous in various topologies, then so is any restriction and corestriction of M(p).

LEMMA 2.2. M(p) induces norm-preserving bijections $M(S)*w_H \rightarrow M(S/H)$ and $w_H*M(S)*w_H \rightarrow M_H(S/H)$.

Proof. It suffices to show bijections only (cf. 2.45, p. 20, [6]).

(1) Surjectivity: Let $f \in C^b(S)$ and set $f_H = \int f(sh)w_H(dh)$. Then

 $f_H \in C_H^b(S)$ and hence defines a unique $\widetilde{f_H} \in C^b(S/H)$ such that $\widetilde{f_H} \circ p = f_H$. If now $\nu' \in M(S/H)$, then $f \mapsto \nu'(f_H)$ is a bounded linear functional. Hence there is a $\nu \in M(S)$ with $\nu(f) = \nu'(\widetilde{f_H})$. Now $\nu * w_H(f) = \nu(f_H) = \nu'((\widetilde{f_H})_H) = \nu'(\widetilde{f_H}) = \nu(f)$. Thus $\nu * w_H = \nu$, i.e. $\nu \in M(S) * w_H$. Now suppose that even $\nu' \in M_H(S/H)$. Then

$$w_{H} * \nu(f) = \int f(hx)w_{H}(dh)\nu(dx) = \int \nu(fh)w_{H}(dh)$$
$$= \int \nu'((\widetilde{fh})_{H})w_{H}(dh) = \int \nu'(\widetilde{f_{H}}h)w_{H}(dh) = \nu'(\widetilde{f_{H}}h)$$

since $\nu' \in M_H(S/H)$. The last term equals $\nu(f_H) = \nu(f)$. Thus $w_H * \nu = \nu$, i.e. $\nu \in w_H * M(S) * w_H$. Now, for $f \in C^b(S/H)$, $[M(p)(\nu)](f) = \nu(f \circ p) = \nu'((f \circ p)_H)$. But $(f \circ p)_H \circ p = (f \circ p)_H = f \circ p$, whence $f = (f \circ p)_H$; thus $\nu'((f \circ p)_H) = \nu'(f)$. This shows $M(p)(\nu) = \nu'$ in both cases, i.e. M(S/H) is in the image of $M(S) * w_H$ and $M_H(S/H)$ is in the image of $w_H * M(S) * w_H$ under M(p). (2) Injectivity: For $\mu, \nu \in M(S) * w_H$, we note that $M(p)(\mu) = M(p)(\nu)$ implies $\mu(f) = [M(p)(\mu)](f_H) = [M(p)(\nu)](f_H) = \nu(f)$ for $f \in C^b(S)$, hence $\mu = \nu$.

LEMMA 2.3. M(p): $w_H * M(S) * w_H \rightarrow M_H(S/H)$ is an algebra morphism.

Proof. First of all, we observe the following facts: (1) For $\mu \in w_H * M(S) * w_H$ and $f \in C^b(S)$, $\mu(f) = [M(p)(\mu)](f_H)$. (2) For $\nu \in w_H * M(S) * w_H$ and $f \in C^b(S/H)$, $f_{\nu} \in C_H^b(S)$ is well defined by

$$f_{\nu}(x) = \int f(x\dot{y})[M(p)(\nu)](dy) = \int f(x\dot{y})\dot{\nu}(dy)$$
$$= \int f \circ p(xy)\nu(dy), \text{ with } \dot{\nu} = M(p)(\nu).$$

Then, if μ , $\nu \in w_H * M(S) * w_H$ and $f \in C^b(S/H)$, we have

$$[M(p)(\mu * \nu)](f) = \mu * \nu(f \circ p) = \int f \circ p(xy)\mu(dx)\nu(dy)$$

$$= \int f(x\dot{y})\mu(dx)[M(p)(\nu)](dy)$$

$$= \mu(f_{\dot{\nu}}) = [M(p)(\mu)](\widetilde{f_{\dot{\nu}}})_{H}$$

$$= [M(p)(\mu)](\widetilde{f_{\nu}}) = [M(p)(\mu) * M(p)(\nu)](f).$$

PROPOSITION 2.4. M(p): $w_H * M(S) * w_H \rightarrow M_H(S/H)$ is a norm-preserving algebra isomorphism.

Proof. It remains to show that $M(p)|w_H * M(S) * w_H$ is open which follows from the facts that $\mu(f) = [M(p)(\mu)](f_H)$ for all $\mu \in w_H * M(S) * w_H$, and that $f \in K(S)$ (resp. $f \in C_0(S)$) implies $f_H \in K(S)$ (resp. $f_H \in C_0(S)$) and thus $\widetilde{f}_H \in K(S/H)$ (resp. $\widetilde{f}_H \in C_0(S/H)$).

COROLLARY 2.5. Let H be normal in S (2.1, p. 17, [3]). Then $M(p): M(S) \rightarrow M(S/H)$ is a continuous algebra morphism mapping $w_H * M(S) * w_H$ isomorphically onto $M_H(S/H)$.

COROLLARY 2.6. Let $P_H(S/H)$ denote the totality of H-invariant probability measures in P(S/H). Then M(p): $w_H * P(S) * w_H \rightarrow P_H(S/H)$ is an isomorphism.

In the remainder, we assume that w is an idempotent probability measure with compact support on S; then $w = \mu_E * w_H * \mu_F$ [4].

LEMMA 2.7. The maps $w * M(S) * w \underset{\beta}{\rightleftharpoons} w_H * M(S) * w_H$ defined via $\alpha(\mu) = w_H * \mu * w_H$ and $\beta(\nu) = w * \nu * w$ are mutually inverse normpreserving continuous algebra morphisms so that $\alpha(w) = w_H$ and $\beta(w_H) = w$.

Proof. The proof in (3.1–2, [8]) yields this.

Proposition 2.8.

$$w * M(S) * w \cong w_H * M(S) * w_H \cong M_H(S/H)$$

algebraically and topologically.

ACKNOWLEDGEMENT. The author wishes to thank the referee for many helpful suggestions.

REFERENCES

- 1. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag (1971).
- 2. H. Heyer, *Infinitely divisible probability measures on compact groups*, Lecture Notes in Mathematics 247, Springer-Verlag (1972), 55-247.
- 3. K. H. Hofmann and P. S. Mostert, *Elements of Compact Semigroups*, Charles E. Merrill Books, Columbus, Ohio (1966).
- 4. J. S. Pym, Idempotent measures on semigroups, Pacific J. Math., 12 (1962), 685-698.
- 5. ——, Idempotent probability measures on compact semi-topological semigroups, Proc. Amer. Math. Soc., 21 (1969), 499-501.
- 6. J. L. Taylor, Measure Algebras, Regional Conference Series in Mathematics, Number 16 (1972).
- 7. J. Yuan, On the continuity of convolution, Semigroup Forum 10 (1975), 367-372.
- 8. ——, On the groups of units in semigroups of probability measures, Pacific J. Math., (to appear).

Received May 12, 1975 and in revised form October 7, 1975.

NATIONAL TSING HUA UNIVERSITY, TAIWAN