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SUBSTITUTION IN NASH FUNCTIONS

GUSTAVE EFROYMSON

Let D be a domain in R*. In this paper D is assumed
to be defined by a finite number of strict polynomial inequali-
ties. A Nash function on D is a real valued analytic function
f(z) such that there exists a polynomial »(z, z;, ---,2,) in
R[z, x,, -+, x,] such that p(f(z), x) =0 for all z in D. Let
Ap be the ring of such functions on D. For any real closed
field L containing R, use the Tarski-Seidenberg theorem to
extend f to a function from a domain D, (defined by the same
inequalities as D), D, & L™, to L. Now let ¢: A, > L be a
homomorphism. Since R[z:, ---, x,] C Ap, 0x = (¢x1, - -+, OX,)
is a well defined point in L™ and is in D;. So f(¢x) is defined
for any f in A,. In this paper it is shown that f(pz) = of.
From this result one can deduce Mostowski’s version of the
Hilbert Nullstellensatz for A,.

As for the Nullstellensatz, since D. Dubois [2], and J. J. Risler
[8], independently proved the real Nullstellensatz for polynomial rings,
there have been various successful attempts to extend the result to
other types of rings, for example, [4],[9]. In [5], a partial result
was obtained for Nash rings and then, in [7], T. Mostowski proved
the Nullstellensatz for Nash rings. There is still a question as to
whether the result holds for Nash rings on more general domains than
those considered here.

1. Mostowski’s theorem. We first recall some definitions.

DEFINITION 1. A set C contained in R" is said to be semi-
algebraic if it is defined by Boolean operations (finite union, finite
intersection, complement) on sets of the form {a € R"| p(a) > 0, for
p(x) in R[x, ---, x,]}. That is, C is defined by a finite number of
polynomial inequalities.

DEFINITION 2. Let D be a set defined by a finite intersection of
sets of the form {a € R*|p(a) > 0}. Then A, = {f: D— R such that
f is analytic on D and there exists a polynomial p(z, x) in
Rlz, z, ---, x,] such that for all z in D, p(f(x), ) = 0}. This ring is
called the ring of Nash functions on D.

DEeFINITION 3. We wish to define certain subrings of 4, = A.
Namely, let B, = R(x,, ---, 2,) N Ap. Let B,= VB f) for f in
B,and f>0on D. Let B,=YVY B(1/f) for fin B, and f> 0 on D.
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MosTtowskl’s THEOREM. Let D be as above and let C, and C, be
two disjoint closed semi-algebraic sets contained in D. Then there
exists a function g in B, such that g(C)) > 0 and 9(C,) < 0.

We will give a proof of this result in this section which is
similar to Mostowski’s proof, but, by proving a stronger version of
Thom’s lemma (the Separation Lemma below), we are able to simplify
the finish of the proof of Mostowski’s theorem.

SEPARATION LEMMA. We start with a finite number of poly-
nomials fx, <+, x,), -, filx, -+, x,) in Rlx, ---, x,]. Then the
roots of the f, divide up R" into a union of semi-algebraic sets. By
Theorem 2.1 in [5], we can further divide up the sets so R*=U T,,
a finite disjoint union of connected semi-algebraic sets bounded by
the zeros of the f.’s. We now claim we can find:

(a) a further finite subdivision of each T, = T,; a disjoint
union of semi-algebraic sets,

(b) a finite number of polynomials f, ««+fo, fors, ***, fu derivable
from the original polynomials, so that

(1) Sign fi(T;;) is constant where Sign(f) = +, —, or 0.

(2) Given 14, %, so that T, N T,, = @, then for all j, j, there
exists some f, with either

fk(Tiljl) 2 0 and fk(Ti2.7'2) < 0 ;

or
—flTi5) =20 and —fuT.,;,) <0.

Proof. We consider the polynomials f, ---, f, as polynomials in

x, with coefficients in R[x,, ---, 2,_,]. We can divide up R"* into a

disjoint union {J S; of a finite number of connected semi-algebraic
sets so that above each S;, the polynomials 0*f;/oxf have a constant
number of real roots and none intersect. We let the T,;’s be the
regions above the S; either defined as a root of one of the 0*f;/dxk
or a connected region bounded by adjacent roots. We first check
Thom’s lemma which asserts that regions above a fixed S; are
separated by the partials of the f;. It is clearly enough to check
this for one f; = f.

Note, if the regions have a simple root of f between them, then
f itself will separate unless there is more than one root of f in
between, in which case df/ox, will have a root in between and
induction on degree f will handle it. Similarly, a multiple root of f
will also be a root of df/ox,. If the regions are (1) a simple root
of f and (2) a root of one of its derivatives, and they are adjacent,
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then f separates one way and the corresponding o*f/oxf the other
way, ete.

The S, are semi-algebraic sets in R** and so they can be sepa-
rated by induction on n (n =1 is trivial). So if T, and T; have
projections S; and S; which have disjoint closures, the polynomials
separating S; and S; will also separate 7, and T;. So the only case
left to handle is where S;NS; = @ but T.N T; = @. Since we can
assume f = >+, ax, and Sign a, constant on S, and on S;, we may
as well assume Signa;, =0 on S;. We have to consider various
cases.

Case 1. S;=S,. Let m: R*— R"* be the projection (x, - -, #,)—
(2, +++, ®,—). Let fo, denote the polynomial 3\°,a/(Q)x; for @ in
R, Choose P in T; and we wish to find a polynomial which will
be = 0 at P and of opposite sign or 0 on T,. We have several sub-
cases.

(i) Assume f;;, is not the zero polynomial and that z,(P) is
not a root of fr.p. Then, since T, either is, or is bounded by, a
root x, = «,;(x, ++*, ©,_,) above S;, one sees that respectively, either
f itself separates P from T;, or else there is a root of f above S,
between P and T,. In the second case, if this is a simple root of
f and there are not others in between, then f separates. If the root
is a multiple root, or if there is more than one in between, then of/dx,
will have a root between P and T, and induction will work.

(ii) Assume f,, is not the zero polynomial and that x,(P) is
a root of f.». Note that either f. or (0f/0x,).» changes sign in
an interval (x,(P)— ¢, z,(P) + 0) about z,P). Thus, for @ near
(P) (Q in S,), fq or (0f/ox,) Will also change sign on this interval.
In the first instance, f will have a root a,, (x, ---, 2,_,) above S,
which will have P in its closure. There will then be a root of df/ox,
which will be in between these roots and so separate T, from P.
If 0f/0%,») changes sign on the interval about x,(P), then looking
at the graph of y = f.»(x,) and the graph of y = fy(x,) for @ near
7(P), one sees that of/ox, again has a root between 7, and P.
Proceed by induction.

y:fﬂ'(P)(xn) v :fQ(x") ’ y‘:fQ(xn)
9}"(}’) T Te @,.(IP) Ly T; xn(\;)

(iii) Assume that f,., is the zero polynomial, i.e., that all
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a(m(P)) = 0. Then if some irreducible factor of a, divides all a,
and vanishes at w(P), one can divide this factor out. Otherwise,
7(P) lies in the intersection of the zeros of two relatively prime
polynomials in Rz, :--, ®,_,] derivable from the a,’s. For, either
two a;’s have relatively prime factors which vanish at P, or else
one of the a; has an irreducible factor which vanishes at P and is
not real. Not real means that the factor does not generate the ideal
of its real zeros. This follows from the real nullstellensatz for
polynomials (see Theorem 2.1, in [4]). In the factor of a; which we
also call @, is not real, then its real locus is contained in its singular
locus (see Theorem 2.1, in [3]), and so is in the zero set of all the
0a,/0x;. In this way eventually one will obtain two relatively prime
polynomials u(x,, ---, x,_,) and »(x,, ---, x,_,) Which vanish at P. By
elimination theory, one can assume that u doesn’t involve z,_, and
v doesn’t involve x,_,. Then, using , v, u — v and % + v, one can
define new regions subdividing S; so that in these regions, which we
also call S;,, we have n(P)=1lm @ for @ in S; and x,(Q)— x,(P)
1=12 +---,n—2. Now let Bz, -++, ,_,) = mina(x,, +--, x,_,) for
(x, ++-, ¢,_,) is S; and where « is a boundary of T,. And do the
same thing for max a. Then, since f(x, -, x,_,, @(x;, <+, ,-,)) =0,
we derive

0f 100 (2yy * ¢y Lpey, @y, * ¢+, Lpey))

+ af/axn(xu *r 0y Xpoyy a(xu "t xn—l) aia =0.

n—1

So either B(zx, +--, ®,_,) is a root of the polynomial obtained from
of[ox,-, and f by eliminating x,_, or else the minimum occurs on
the boundary, in which case one can use elimination theory on f and
one of the w,v,u + v, or w — v to get a polynomial with root B.
In any case, we get a new polynomial involving one less variable
than f which will have a root 8 between T, and P, at least near P,
in S;. By subdividing S; again, one can assume that the new poly-
nomial does have a root between T, and P above S, Then the
induction can proceed.

Case 2. S; £ S,. One must consider the various S, S S, N S;
and see what happens to the roots of f above S,. If ¢, =0 on S,
then one can use the minimizing techniques of Case 1, (iii) to reduce
to the two variable case where a, or one of its irreducible factors
will separate T, and T;, When a;,% 0 on S, let T;=T,n 7S,
and T = T;Nz"%S,). As long as T} and T} are not adjacent roots,
one can find some ¢'f/dx, which is >0 on T; and <0 on T and
by continuity the same holds on T; and T;. If these are adjacent
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roots, then one chooses the polynomial so it vanishes on 7T, and is
<0 on T ete.

One must subdivide the regions 7T, so that the new polynomials
have constant sign on these pieces.

MosTOWSKI’S THEOREM. Let D be defined by p(x, ---, z,) > 0,
1=1,++-,8. Then, if C, and C, are semi-algebraic closed disjoint
subsets of D, there exists g in B, with g(C)) > 0 and g(C,) < 0.

Proof. First a remark. Mostowski’s proof would show that one
could choose ¢ in B,, but this seems to have no advantage in the
applications.

Let f,, ---, f; be the polynomials defining C, and C,. By the
Separation Lemma, we can find more polynomials including the f’s
and p’s, say, f, +--, f. and a subdivision BR*" = U, ; Ty, T: = U; Ts;
sothat C,=UT, for ¢ in I, and C,=U T, for ¢ in I,, Moreover
Sign fi(T;;) is constant and for all T, N T;, = @, and all j, j,; there
exists f, with =7(T:;) = 0 and =f(T,,;,) <O.

So choose T, £ C, and choose each =f, with £f(T,) =0. We
consider the chosen =*f.’s as our f;’s. Then, for each T,; < C,, there
exists f, with f(T,;) <O.

Let o = 3, (Ifel — fx)- Thenh =0o0n T, and 2~ >0 on C,. Let

(@) = I P@/@ + || 2]

for L = 3\:_,deg p, + 1 and if no p,, then let the numerator =1. Since
k>0 on C,, we can let ¥Y(r) = min {h(x) | e(x) = r,x € C,}. Then v(r)>0
for 0 < r <1 and 7(r) is an algebraic function. Thus there exists N
so that v(r) > ¥ for all » for which ¥(r) is defined. It follows that
h(z) > e(x)¥ on C,. We let

0u(0) = 5, (VT T S@TE T 1 — /i) > hi@) .

Moreover, g,,(x) < h(z) + &), so on T,,, we have g,(x) < &«)". Thus
gu(x) — e(x) is <0 on T,, and > 0 on C,.

In a similar way, one can find some g,; for each T,; < C, so that
g,;>0 on C, and ¢,; <0 on T,;. Each g,;€B,. Now note that
(951 —9:5)=0on C, and >0 on C,. Then as above by modifying
this function one can obtain

g = (Vg% + e(xy"[M* — g,;) — e(x)”

for some large integer M which will have the desired properties.
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2. Substitution in Nash functions. Recall the situation. We
have D as in §1 to be {¢ in R" with p,(a)>0,i=1,.--,s}. And
A ={f: D— R with f algebraic and analytic}. Let ®: A— L be a
homomorphism of A into a real closed field. Since 4D R[x,, +--, x,],
px, is defined for =1, .-, n. In [5], §2, it was shown that
f(x) = z is equivalent to some elementary statement A(x, z), so one
can define a new function f;: D, — L, where D, = {(a,, -+, @,) in L"
with all p(a,, ---, @,) > 0} by setting fi(a) =0 if and only if A(a, b).
In [5], loc. cit., it was shown that f, is a well defined function, and
that @ox e D,.

THEOREM 2.1. With the notation as above, fi(Px, -, Px,) = Pf.

Proof. This goes in several steps and occupies most of this
section.

LEMMA 2.2. We can assume that if p; = D%, a,(x)2" is the irre-
ducible polynomial for f over R(x, ---, x,); then aipx) =0, and
0p;/02(Pf, px) # 0.

Proof. Let a be any point of D. For our original f,
R[xy f](a,f(a)) = (R[xr z]/(pf))(a,f(a))

is a local ring and is etale over R[xz].. But by [6], Corollary 7.5,
p. 11, this implies that there exists ¢ in R[x, flw sy With p,(z, x)
irreducible and 0p,/02(g(a), @) + 0. Let a(x) be the leading coefficient
of p,(2). So f(x) = q.9g, )/qg, ) with g(g(a), a) # 0. Let

b = (00,/02(9(x), )q9(x), x)a())* .

Then &, #+ 0 near @, and we can construct such an h, for every a
in D. Let V,= V(h,) = zero set of h,in D. Itis clear that V,= O
taking the intersection over all @ in D. We claim that there exists
a finite number of V, whose intersection is empty. To prove this
we argue as in [5], Lemma 3.1. TFirst choose some %, and let W
be a connected non-singular piece of V(h,). Let a,€ W and then 7,
can vanish only on a smaller dimensional piece of W. By continuing
this process one gets the result.

Let & be the sum of these A,’s. Then % — &(x) >0 on D for
N large enough. So V& —é¥ e A and so (V'h — e} = p(h — %) > 0.
This implies that @k, > 0 for some a. Take the corresponding g for
this h,. Then 0p,/02(pg, Px) = 0, g®g, Px) = 0, and a(px) = 0.

So suppose we have proved our theorem for g. Then since

f = a9, ©)/g,(9, ©), we have
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?f = q.(P9, Pr)/aPg, Pr) = q.(9(Px), Px)/q9(Px), Px) .

But f(b) = q.(g9(d), b)/qg(b), b) for all b in R" with g,(g(b)) # 0 so, by
the Tarski-Seidenberg principle: [1] or [5], Theorem 1.8, the same
holds for all b in L*. In particular f(@x) = ¢.(9(®2), Px)/q.(9(Px), Px)
and this implies that of = f(®x).

So we now assume that dp;/0z(@f, px) = 0. Consider Rz, z]/(py)
and normalize this ring. Let t.(z, x), ---, t.(?, ) generate the nor-
malization (considered mod p;). So, as usual, R|z, z, t]/(ps, +--) —
Rz, 2]/(ps) induces =:(C"***'— C"*', with the branches of V(p;)
separated in C"***, Of course C = complex numbers.

Note that t,(@f, ®x) is defined since 0p;/oz(@f, Px) = 0.

Let

C, = {(z, f(=), t.(f(2), ), -++, t.(f(2), x)) | x € D}
and
Cz - {(xy z, tl(z’ x)y Tty tu(zy x)) l pf(z; x)} =0 ’ re Dr R+ f(x)'

Then C, and C, are closed disjoint semi-algebraic sets in D x R,
so by Mostowski’s theorem, there exists g(x, z, t) in B, p.ps+: With
9(C) > 0 and ¢(C,) < 0.

Now let h(x) = g(z, f(x), t.(f(x), x), ---, t.(f(x), x)). We have to
show that h(z) e A and that ph = g(@z, @f, t(Pf, Px), - -, t.Pf, Px)).
But since each ¢,(f(x), ) is integral over R[x],,Ya € D and analytic on
D except for a thin set, ¢(f(x), ) is in fact analytic on D. The
rest follows from

LEMMA 2.3. Let ge B, and hy ---, h,€ Ay so that g(h, -+, h,)
1s defined and im Ap. Then P9 = 9(®h,, -+, Ph,).

Proof. It is enough to show this for g in B,, as a repeat of the
same argument will finish the proof. So let g = a(x) + b(x)V/ f(x)

where f,a,be B, and f >0 on D. Now f(k, +--, k,) has
@(f(hu ° 'hr)) = f(gjh/l’ ct Yy g)h/r) as f € BO .
Since (V' f(h,, -+, ho)*) = @f(h,, -+, h,), it follows that

PV f(hy -+, k) = VO f(hy, -+ -, k) .
But
P Vf(hy, -+, b)) =PV f(hy -+, h,) >0

and so Lemma 2.3 follows.
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To finish the proof of Theorem 2.1, note that

(=) Given (x,2)in D x R if ps(z, ) =0 and g(x, 2, t.(2, x), -+, t.(2, x))
is defined and > 0; then f(x) = 2.

By Tarski-Seidenberg, this statement also holds in D, X L and since
we have p(®f, px) = 0 and g(@zx, @f, t(Pf, P(), -+ -, tPf, P(x)) > 0,
it follows that f(®x) = @f.

We now show that the Nullstellensatz proved by Mostowski is
an easy corollary of Theorem 2.1.

THEOREM 2.4 (Mostowski). Let .# be an ideal of A. Then
I(Vy(A2) = F iff & is a real ideal (i.e. 3,\ie # implies each
A € ).

Proof. First note that A is Noetherian by [5], Theorem 3.4,
and so = %N ---N P where each &7 is a real prime. It will
be sufficient then to show that for each i, I(Vy(Z#)) = &. So con-
sider & a real prime in A and by the Noetherian property of A,
we have Z#=(f, +--, f;) for some f,, ---, f, in A. Let L be a real
closure of the quotient field of A/.&2. Then we have p: A— A/ P =L
where @ = the total map.

Now g€ I(Vp(P)) iff; (x) For all xe D, f(x)=0, ---, filx) = 0;
implies g(x) = 0. By Tarski-Seidenberg, () holds for L. But @f, =0
for all ¢ so by Theorem 2.1, f,(@x) =0. This implies, by (*) that
g(@x) = 0. Again applying Theorem 2.1, we see that @g =0. So
gEA

THEOREM 2.5 (Mostowski). Let feA, f=0 on D. Then f is a
sum of squares in K, the quotient field of A.

Proof. If fis not a sum of squares, order K so that —f > 0.
Then, if L is a real closure of K, one has : A=— L. Since for
all z in R*, f(x) = 0; by Tarski-Seidenberg, the same holds for x e L".
Thus f(®x) = 0. By Theorem 2.1, of = f(®x) = 0, but as @f = the
image of f in L and L is ordered so f <0, we have a contradiction.
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