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SUBSTITUTION IN NASH FUNCTIONS

GUSTAVE EFROYMSON

Let D be a domain in Rn. In this paper D is assumed
to be defined by a finite number of strict polynomial inequali-
ties. A Nash function on D is a real valued analytic function
f{x) such that there exists a polynomial p(z, xlf ••-,#„) in
R[z, xlf - -, xn] such that p(f(x), x) = 0 for all x in D. Let
AD be the ring of such functions on D. For any real closed
field L containing R, use the Tarski-Seidenberg theorem to
extend / to a function from a domain DL (defined by the same
inequalities as D), DL £i L(n\ to L. Now let φ: AD-+ L be a
homomorphism. Since R[xi, , xn] c AD, ^ = (^#i, , â?n)
is a well defined point in L(7° and is in DL. So f{φx) is defined
for any / i n -Az). In this paper it is shown that f(φx) ~ φf.
From this result one can deduce Mostowski's version of the
Hubert Nullstellensatz for AD.

As for the Nullstellensatz, since D. Dubois [2], and J. J. Risler

[8], independently proved the real Nullstellensatz for polynomial rings,
there have been various successful attempts to extend the result to
other types of rings, for example, [4], [9]. In [5], a partial result
was obtained for Nash rings and then, in [7], T. Mostowski proved
the Nullstellensatz for Nash rings. There is still a question as to
whether the result holds for Nash rings on more general domains than
those considered here.

!• Mostowski's theorem* We first recall some definitions.

DEFINITION 1. A set C contained in Rn is said to be semi-
algebraic if it is defined by Boolean operations (finite union, finite
intersection, complement) on sets of the form {a e Rn \ p(a) > 0, for
p(x) in R[xu •••, xn]}. That is, C is defined by a finite number of
polynomial inequalities.

DEFINITION 2. Let D be a set defined by a finite intersection of
sets of the form {a eRn \ p(a) > 0}. Then AD = {/: D~> R such that
/ is analytic on D and there exists a polynomial p{z, x) in
R[zy xu , xn] such that for all x in D, p(f(x), x) = 0}. This ring is
called the ring of Nash functions on D.

DEFINITION 3. We wish to define certain subrings of AD = A.
Namely, let BQ = R(xί9 - -, xn) n AD. Let B, = \f B«{VJ) for / in
J50 and / > 0 on D. Let B2 = V B,{VT) for / in B, and / > 0 on D.
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MOSTOWSKI'S THEOREM. Let D be as above and let Cι and C2 be
two disjoint closed semi-algebraic sets contained in D. Then there
exists a function g in B2 such that <7(CΊ) > 0 and g{C2) < 0.

We will give a proof of this result in this section which is
similar to Mostowski's proof, but, by proving a stronger version of
Thorn's lemma (the Separation Lemma below), we are able to simplify
the finish of the proof of Mostowski's theorem.

SEPARATION LEMMA. We start with a finite number of poly-
nomials f(xlf , xn), , fa(xlf •••,»») in R[xlf - -, xn\. Then the
roots of the ft divide up Rn into α union of semi-αlgebrαic sets. By
Theorem 2.1 in [5], we can further divide up the sets so Rn — \J Ti9

a finite disjoint union of connected semi-algebraic sets bounded by
the zeros of the //s. We now claim we can find:

( a ) a further finite subdivision of each Tt = \J Ttj a disjoint
union of semi-algebraic sets,

(b) a finite number of polynomials fu •/„ f8+ι, , fm derivable
from the original polynomials, so that

(1) Signfk(Ttj) is constant where Sign(/) = +, —, or 0.
(2) Given ilf i2 so that TH Π Ti2 = 0 , then for all jlf j2 there

exists some fk with either

fk(Tilh)^0 and

or

)^0 and -

Proof. We consider the polynomials f, •••,/, as polynomials in
xn with coefficients in R[x19 •••, x%_J. We can divide up R"'1 into a
disjoint union U S, of a finite number of connected semi-algebraic
sets so that above each S, , the polynomials dkfjdxt have a constant
number of real roots and none intersect. We let the T/s be the
regions above the St either defined as a root of one of the dhfi\dx\
or a connected region bounded by adjacent roots. We first check
Thorn's lemma which asserts that regions above a fixed St are
separated by the partials of the fά. It is clearly enough to check
this for one fd = /.

Note, if the regions have a simple root of / between them, then
/ itself will separate unless there is more than one root of / in
between, in which case df/dxn will have a root in between and
induction on degree /will handle it. Similarly, a multiple root of /
will also be a root of df/dxn. If the regions are (1) a simple root
of / and (2) a root of one of its derivatives, and they are adjacent,
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then / separates one way and the corresponding okfjdxl the other
way, etc.

The Si are semi-algebraic sets in i?""1 and so they can be sepa-
rated by induction on n {n = 1 is trivial). So if Tt and Ts have
projections S< and Sd which have disjoint closures, the polynomials
separating Si and Ss will also separate Tt and T3 . So the only case
left to handle is where St Γί S3- Φ 0 but T< Π T, = 0 . Since we can
assume / = Σ<=o dtxί and Sign ad constant on S% and on Sj, we may
as well assume Sign ad Φ 0 on S^ We have to consider various
cases.

Case 1. S, £ S,. Let π: Rn~^Rn~ι be the projection (xί9 , #„) —>
(a?!, •• ,xn_1). Let /Q denote the polynomial Σ?=o a*(Q)a£ for Q in
U*-1. Choose P in T3 and we wish to find a polynomial which will
be Φ 0 at P and of opposite sign or 0 on TV We have several sub-
cases.

( i ) Assume frΛP) is not the zero polynomial and that xn(P) is
not a root of / f f ( P ). Then, since Tt either is, or is bounded by, a
root xn = ^ife, •••, V i ) above Si9 one sees that respectively, either
/ itself separates P from Tjy or else there is a root of / above St

between P and 2V In the second case, if this is a simple root of
/ and there are not others in between, then / separates. If the root
is a multiple root, or if there is more than one in between, then df/dxn

will have a root between P and Tt and induction will work.

(ii) Assume fπ{P) is not the zero polynomial and that xn{P) is
a root of fπiP). Note that either fπ{P) or (df/dxn)π{P) changes sign in
an interval (xn(P) - δ, xn(P) + δ) about xn(P). Thus, for Q near
π(P) {Q in Si), fQ or (df/dxn)Q will also change sign on this interval.
In the first instance, /wi l l have a root ai+1(xl9 •• , ^ _ 1 ) above Sz

which will have P in its closure. There will then be a root of df/dxn

which will be in between these roots and so separate T{ from P.
If df/dxn(π{P)) changes sign on the interval about xn(P), then looking
at the graph of y = fπ(P)(xn) and the graph of y = fQ(xn) for Q near
π(P), one sees that dfβxn again has a root between T% and P.
Proceed by induction.

r\
(iii) Assume that frΛP) is the zero polynomial, i.e., that all



140 GUSTAVE EFROYMSON

di(n(P)) — 0. Then if some irreducible factor of ad divides all at

and vanishes at π(P), one can divide this factor out. Otherwise,
π(P) lies in the intersection of the zeros of two relatively prime
polynomials in R[xu -- ,xn-i] derivable from the α/s. For, either
two α/s have relatively prime factors which vanish at P, or else
one of the at has an irreducible factor which vanishes at P and is
not real. Not real means that the factor does not generate the ideal
of its real zeros. This follows from the real nullstellensatz for
polynomials (see Theorem 2.1, in [4]). In the factor of α* which we
also call at is not real, then its real locus is contained in its singular
locus (see Theorem 2.1, in [3]), and so is in the zero set of all the
dajdxj. In this way eventually one will obtain two relatively prime
polynomials u(xu , xn^) and v(xu , xn^) which vanish at P. By
elimination theory, one can assume that u doesn't involve xn__x and
v doesn't involve xn_2. Then, using u, v, u — v and u + v, one can
define new regions subdividing St so that in these regions, which we
also call Si9 we have π(P) = lim Q for Q in St and x^Q) —»Xi(P)
i — 1, 2, , n — 2. Now let β(xu , xn_2) = min a(xίt , xn^) for
(xlf •••, x^) is St and where a is a boundary of Tt. And do the
same thing for max a. Then, since f(xu , xn-lf a(xlf , xn-^) = 0,
we derive

dfβXn-ifau , α»-i, «(»i, , a—i))

+ df/dxn(xlf , aj»_lf «(»!, , ^_x) - ^ - = 0 .
9&—i

So either β(xl9 , #u_2) is a root of the polynomial obtained from
df/d%n-i and / by eliminating xn_x or else the minimum occurs on
the boundary, in which case one can use elimination theory on / and
one of the u, v, u + v, or u — v to get a polynomial with root β.
In any case, we get a new polynomial involving one less variable
than / which will have a root β between 2\ and P, at least near P,
in S^ By subdividing St again, one can assume that the new poly-
nomial does have a root between Tt and P above St. Then the
induction can proceed.

Case 2. S3- £ Sx. One must consider the various Sk £ S4 Π Ŝ
and see what happens to the roots of / above Sk. If ad = 0 on S*,
then one can use the minimizing techniques of Case 1, (iii) to reduce
to the two variable case where ad or one of its irreducible factors
will separate T* and Tά. When ad Φ 0 on Sk, let T\ = Tt Π ̂ "'(Sfe)
and T̂  = Tj Π ^""X^). As long as T and T̂  are not adjacent roots,
one can find some dιf/dxι

n which is >0 on T and <0 on T) and
by continuity the same holds on Tt and TV If these are adjacent
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roots, then one chooses the polynomial so it vanishes on Tt and is
< 0 on ΓJ, etc.

One must subdivide the regions T, so that the new polynomials
have constant sign on these pieces.

MOSTOWSKI'S THEOREM. Let D be defined by Pi(xu •--,xn)>0,
i = 1, •••,$. Then, if Cι and C2 are semi-algebraic closed disjoint
subsets of D, there exists g in B2 with g{C^ > 0 and g(C2) < 0.

Proof. First a remark. Mostowski's proof would show that one
could choose g in Bίf but this seems to have no advantage in the
applications.

Let flt , ft be the polynomials defining Cx and C2. By the
Separation Lemma, we can find more polynomials including the /'s
and p% say, Λ, , / . and a subdivision Rn = (J*,; Tih Tt = U; Tti

so that C, = U Γ< for i in £ and C2 = U Γt for i in /2. Moreover
Sign/jfeίTiy) is constant and for all fh f) Th= 0, and all jlf j2; there
exists Λ with ±MTiιh) ^ 0 and ±/*(T,lia) < 0.

So choose Tn £ CΊ and choose each ±fk with ±fk(Tn) ^ 0. We
consider the chosen ±/fc's as our /λ

?s. Then, for each TtS Q C2, there
exists fk with fk(Tiό) < 0.

Let fe = Σ* (IΛ I - /*)• T h e n h = 0 on Tn and h > 0 on C2. Let

e(») = ΠΠ

for L = Σi=id.eg2>i + 1 and if no pi9 then let the numerator =1. Since
h > 0 on C2, we can let τ(r) = min {fe(cc) | s(#) = r, x 6 Q . Then τ(r) > 0
for 0 < r < 1 and Ύ(r) is an algebraic function. Thus there exists N
so that 7(r) > r^ for all r for which 7(r) is defined. It follows that
h(x) > ε(x)N on C2. We let

+ ε(^Γ/(έ + I)2 - /,)

Moreover, gn(x) < λ(a ) + e(x)N, so on Γ n, we have gL1(x) < ε(cc)̂ . Thus
gn(x) - 6(0?)̂  is < 0 on Tn and > 0 on C2.

In a similar way, one can find some giά for each Tti Q Ct so that
giό > 0 on C2 and ^ , < 0 on Ti3 . Each ^ , e JBle Now note that
Σ (19ij I — 9ίd) = 0 on C2 and > 0 on Cx. Then as above by modifying
this function one can obtain

g = Σ (Vgh + ε(x)«/M2 - gti) - ε(xy

for some large integer M which will have the desired properties.
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2* Substitution in Nash functions* Recall the situation. We
have D as in § 1 to be {a in Rn with ^(α) > 0, i — 1, ••-,§}. And
A = {f:D—>R w i th/ algebraic and analytic}. Let φ:A-+L be a
homomorphism of A into a real closed field. Since 4 D R[XU , xn],
φXi is defined for ί = l," ,n. In [5], §2, it was shown that
fix) = z is equivalent to some elementary statement A(x, z), so one
can define a new function / z : DL —• L, where D£ = {{aίf , an) in L*
with all pt(al9 , an) > 0} by setting /L(α) — δ if and only if A(α, 6).
In [5], loc. cit., it was shown that fL is a well defined function, and
that φxeDL.

THEOREM 2.1. With the notation as above, fL(φxl9 , <pxn) = Φf

Proof. This goes in several steps and occupies most of this
section.

LEMMA 2.2. We can assume that if Pf — ̂ J

d

i=Qai{x)zί is the irre-
ducible polynomial for f over R{xu •••,#«); then ad(φx) Φ 0, and
dpf/dz(φf, φx) Φ 0.

Proof. Let a be any point of D. For our original /,

is a local ring and is etale over i2[#](a). But by [6], Corollary 7.5,
p. 11, this implies that there exists g in R[x, f]u,fu)) with pq(z, x)
irreducible and dpg/dz(g(a), a) Φ 0. Let a(x) be the leading coefficient
of pg(z). So f{x) = qλ{gy x)/q2(g, x) with g£g{a\ a) Φ 0. Let

ha = (dpjdz(g(x), x)qt(g(x)f x)a{x)f .

Then ha Φ 0 near a, and we can construct such an ha for every a
in D. Let Va = V(ha) = zero set of ha in D. It is clear that f[Va= 0
taking the intersection over all a in D. We claim that there exists
a finite number of Va whose intersection is empty. To prove this
we argue as in [5], Lemma 3.1. First choose some hai and let W
be a connected non-singular piece of V(hai). Let a2e W and then h
can vanish only on a smaller dimensional piece of W. By continuing
this process one gets the result.

Let h be the sum of these ha's. Then h — ε(x)N > 0 on D for
N large enough. So Vh — εN e A and so φ(Vh — ε^)2 = φ(h — eN) > 0.
This implies that φha > 0 for some a. Take the corresponding g for
this ha. Then dpg/dz(φg, φx) Φ 0, q2(φg, φx) Φ 0, and a(φx) Φ 0.

So suppose we have proved our theorem for g. Then since
/ = Qi(9, x)/qJίg, α), we have

%
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Ψf = Qi(<P9,

But f(b) = qMb), b)/q2(gφ), δ) f o r all 6 in Bn with g2(<?(ί>)) ̂  0 so, by
the Tarski-Seidenberg principle: [1] or [5], Theorem 1.8, the same
holds for all b in IΛ In particular f(φx) = q&giφx), ψx)lq%{g(φx\ φx)
and this implies that φf = f(φx).

So we now assume that dpf/dz(φf, φx) Φ 0. Consider R[x, z]/(pf)
and normalize this ring. Let tx(z, x), , tu(z, x) generate the nor-
malization (considered mod pf). So, as usual, R[z, x, t]/(pf, • ••)<—=>
R[x, z]/(pf) induces π: Cn+S+1 -> Cn+1, with the branches of V(pf)
separated in Cn+S+1. Of course C = complex numbers.

Note that t^φf, φx) is defined since dpf/dz(φf, φx) Φ 0.
Let

Cx = {(x, fix), ttfW, »),•••, Uf(x\ x)) \x e D)

and

C2 = {(x, z, tx(z, x), , tu(z, x)) I pf(z, x)} = 0 , xeD, ZΦ f(x).

Then Cj and C2 are closed disjoint semi-algebraic sets in D x iϋs+1,
so by Mostowski's theorem, there exists g(x, z, t) in B2,DxBs+i with
g{C,) > 0 and g(C2) < 0.

Now let h(x) = g(x, f{x), Uf(x), x\ , tu(f(x), x)). We have to
show that h(x) e A and that φh = g{φx, φf, t^φf, φx), , tu(φf, φx)).
But since each ti{f{x), x) is integral over R[x]U)Va e D and analytic on
D except for a thin set, ti(f(x)9 x) is in fact analytic on D. The
rest follows from

L E M M A 2 .3 . Let geB2 and hlf ••-, hreAD so that g(hlf •••, hr)
is defined and in A D . Then φg — g(φhl9 , φ h r ) .

Proof. It is enough to show this for g in B19 as a repeat of the
same argument will finish the proof. So let g = a(x) + b(x)λ/f(x)
where f, a, b eBQ and / > 0 on ΰ . Now f(hίy , hr) has

φ(f(K Ar)) = f(ΨK , ^Λr) as / e Bo .

Since φiVfih,, , Λs)
2) = ^/(Λi, •••, feβ), it follows that

, h.) .

But

φ( Vf(K , Λs)
2) - φVf(K , Ar) > o

and so Lemma 2.3 follows.
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To finish the proof of Theorem 2.1, note that

( * ) Given (x, z) in D x R if pf(z, x) = 0 and g(x, z, t&z, x), , tu(z, x))

is defined and > 0; then f(x) = z.

By Tarski-Seidenberg, this statement also holds in DL x L and since
we have pf(φf, ψx) = 0 and sr(̂ »a;, <?/, tx{φf φ(x\ , £„(<?/, ?>(&)) > 0,
it follows that f(φx) = 9>/.

We now show that the Nullstellensatz proved by Mostowski is
an easy corollary of Theorem 2.1.

THEOREM 2.4 (Mostowski). Let ^ be an ideal of A. Then
I{VD{^)) — ̂  iff ^ is a real ideal (i.e. Σλ*e<_^ implies each

Proof. First note that A is Noetherian by [5], Theorem 3.4,
and so ^— &x Π Π 0*s where each ^ is a real prime. It will
be sufficient then to show that for each ΐ, I(VD(^t)) = ̂ . So con-
sider & a real prime in A and by the Noetherian property of A,
we have & — (flf •••,/«) for some fl9 , ft in A. Let L be a real
closure of the quotient field of A/^. Then we have φ: A-^Aj^^—>L
where φ = the total map.

Now geI(VD(^)) iff; (*) For all xeD, f(x) = 0, ••-,/«(«) = 0;
implies g(x) = 0. By Tarski-Seidenberg, (*) holds for L. But φft — 0
for all i so by Theorem 2.1, flφx) = 0. This implies, by (*) that

= 0. Again applying Theorem 2.1, we see that φg — 0. So

THEOREM 2.5 (Mostowski). Let feA, /:> 0 o^ D. ΓAβ^ f is a
sum of squares in K, the quotient field of A.

Proof. If / is not a sum of squares, order K so that —/ > 0.
Then, if L is a real closure of K, one has φ : A <=—> L. Since for
all x in Rn, f(x) ^ 0; by Tarski-Seidenberg, the same holds for x e ZΛ
Thus /(9>α) ̂  0. By Theorem 2.1, ψf = / ( ^ ) ̂  0, but as φf = the
image of / in L and L is ordered so / < 0, we have a contradiction.
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