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SOLVABILITY OF CONVOLUTION EQUATIONS
IN 27, p>1

S. SZNAJDER AND Z. ZIELEZNY

Let S be a convolution operator in the space -7}, p > 1,
of distributions in R" growing no faster than exp(k|z|?
for some k. A condition on S introduced by I. Cioranescu
is proved to be equivalent to Sx. 77 = 7.

We denote by 2¢;, » > 1, the space introduced in [4] and con-
sisting of distributions in R™ which “grow” no faster than exp (k|x|?),
for some k.

I. Cioranescu [1] characterized distributions with compact support,
i.e. in the space &’, having fundamental solutions in 57;. We
recall that a distribution E is a fundamental solution for Se&’ if

SxE =9,

where ¢ is the Dirac measure and * denotes the convolution. Cioranescu
proved that, if S is a distribution in &’ and S its Fourier transform,
the following conditions are equivalent:

(a) There exist positive constants A4, N, C such that

sup I§(E + x ¢

Z —_— GR” ’
,eRn,|zq§A[log<z+|e|))]'1’q @4+ Ep” :

where 1/p + 1/g = 1.

(b) S has a fundamental solution in °77'.

In this paper we study the solvability of convolution equations in
%, If )22, 2¢7) is the space of convolution operators in 277,
we ask the question: Under what condition on Se Z(5%;: 5%;) is
Sx2¢7 = 2#7? The last equation means that the mapping u — S*u
of 97 into 2% is surjective.

We prove the following theorem which extends the results of
Cioranescu mentioned above.

THEOREM. If S is a distribution in 2%, 2%2,) then each of
the conditions (a) and (b) is equivalent to each of the following ones:
(@") There exist positive constants A’, N’', C' such that

sup |§(E +z ¢

> ____Z - eR"
,ecn,1z|§.4'[1og(z+1e)ni]1"1 @+ En : ’

where 1/p + 1/g = 1.
(c) Sz =227,
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REMARK. For p =1 a similar theorem was proved in [5].

Before presenting the proof we state the basic facts about the

spaces .27, and 2N 7%, 2%5); for the proofs we refer to [4].
We denote by 9%, the space of all functions @ € C~(R") such that
v(P) = sup | Dp(x)| < o, k=0,1,--.,

z€R™,|a| sk

where a = (@, &, -+-, @), || =a, + @, + --+ + a, and

D = (i JZ_)"“ l_a_)“z (l 0 )
7; axl 7: axz 7; 3:12,, )
The topology in 9%, is defined by the family of semi-norms v,. Then
%, becomes a Frechet space.
The dual 2%, of 9%, is a space of distributions. A distribution

u is in 97, if and only if there exists a multi-index «, an integer
k = 0 and a bounded, continuous function f on R" such that

u = D*[e*”! f*(x)] .

If we 2% and @€ 5%, then the convolution uwx® is a function
in C(R") defined by

wrP(x) = {uy, P& — ¥)) ,
where {(u, ¥, = u(®).
The space &%, : 9%, ) of convolution operators in .7, consists
of distributions Se.%; satisfying one of the equivalent conditions:
(i) The products S,exp[k(l + |2P)*?), k=01, ..., are tem-
pered distributions
(ii) For every k = 0 there exists an integer m = 0 such that

S= 3. D,

jaj=m

where f,, |@| < m, are continuous functions in R* whose products
with exp (k|x|?) are bounded

(iii) For every @ e .¢;, the convolution S*@ is in .5%;; moreover,
the mapping @ — Sx® of ¢, into .2, is continuous.

If Se Z)(5%;: %) and 8 is the distribution in .%; defined by
(8, 9> = (8., p(—2)), Pe.%,, then S is also in Y 2%;). The
convolution of S with u € 2} is then defined by

(1) (Sxu, Py = (uxS, Py = (u, Sx@), Pe.%, .

For a function @ €.%;, the Fourier transform

(&) = Sme‘i“ Wp(x)da
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can be continued in C* as an entire function such that

wi(@) = sup (1 + [E])' e PQ)| < ooy k=1,2 -,
feCc?

where { = & + 47. We denote by K, the space of Fourier transforms
of funetions in .2%,. If the topology in K, is defined by the family of
semi-norms w,, then the Fourier transformation is an isomorphism
of 9, onto K,.

The dual K, of K, is the space of Fourier transforms of distri-
butions in .9;. The Fourier transform #% of a distribution e 2}
is defined by the Parseval formula

{#, ) = (21)" s, P(—2)) «

For Se 7.9 9, the Fourier transform S is a function
which can be continued in C” as an entire function having the following
property: For every k& > 0 there exist constants C”’ and N such that

(2) lg(é +i)| S C"A + &)Y e,

Furthermore, if Se &2 97;) and u e 2%, we have the formula
P A
(3) Sxu = Sa ,

where the product on the right-hand side is defined in K, by (S@, 4> =
(@, S¥), ¥ € K,.

In the proof of our theorem we shall make use of the following
lemma of L. Hormander (see [3], Lemma 3.2):

If F,G and F/G are entire functions and p is an arbitrary
positive number, then

FQIGE)| = sup 7o) sup €@ sup 66e) )
where {, zeC".

Proof of the theorem. It is obvious that (a) = (¢') and (¢) = (b).
The implication (b)= (a) was proved in [1] for Se&’'. If Se
U 2%,) the proof is the same and therefore we omit it. Our
only task is to prove that (a’) = (c).

Let S be a distribution in ¢%(27;": 2¢;") whose Fourier transform
satisfies condition (a'), and let T = S. Then the Fourier transform
of T also satisfies condition (a’). We consider the mapping S*: u —
Sxu of 2¢; into 2¢;. By (1), it is the transpose of the mapping
T*: 9 —T+p of 97, into 9%,. In order to prove (c) it suffices to
show that T* is an isomorphism of .97, onto T* .27, (see [2], Corollary
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on p. 92).

Since T is in &U(2%;: 2¢;), the mapping T* is continuous, by
(iii). Also, using Fourier transforms and formula (3), it is easy to
see that T* is injective. We now prove that the inverse of T, i.e.
the mapping T*®— @, is continuous. Since the Fourier transformation
is an isomorphism from .9, onto K, it suffices to prove the equivalent
statement that the mapping T@—»@ is continuous.

Suppose that

T@ =4,
where @, 4 € K,. We recall that T is an entire function satisfying

condition (a’) and estimates of the form (2). Given an arbitrary
integer & > 0, we pick an integer k' such that

(4) kE > (107 + 1)k .
In view of (2), for &’ there exist constants N”, C” > 0 such that
| T@)] < C"(L + [E)™e""™, L = ¢ + ineC™.
Hence, setting
(5) o= (7] + Aflog (2 + [£N]""
and making use of the inequality
(¢ +0)? < 2%a + b%,0a,b6=0,
we obtain

sup |T(z)| = sup | 7€ + 2)]|

1{—2|<4p
= C"(L + [€] + 4p)y"elniHiotr
< CUL+ [E)V/(L + [ gt rosmiont ey
< C{(l + lE‘)N"+(8A')q/k’6(104+1)ml"/k'

(6)

where ze C* and C, C; are constants.
On the other hand

sup |T@)| =sup|T¢ +2)= sup |TE+2)]
1g—z]<p lzl<p l2l<A’[log(2+]&1) 11/
(7) c

Z
@+ epm

by condition (a'). ~

Applying now to the functions +, 7 and /T = & Hormander’s
lemma with o given by (5) and making use _of the estimates (6)
and (7), we obtain
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20| = sup )] sup |7 [( sup 7))
[§—z| <40 |{—~z| <40 1L—zl<p
< C(L + |y gt sup |5(C + 2)]
z|<4p0

(8)

where C, is another constant. But, for any integer I > 0 and all
z =2+ weC" with |z| < 4p, we have

[v(C + 2)| £ w(P)A + |& + x|)lelrriit
< w(P)A + 2L + | &) tetniHivnist
(9) < wi(F)(L + 40)'(L + |gl) et
= Caw, (V) + [))(A + |g])tetormnireantioserizniit
= Cowy(P)(1 + |g])rHreantigutromitt

where C; and C; depend only on I and q. We choose the integer [
so that

1> max {k+ 1+ 2N + N + 284y, (10° + 1)/<71§ _ 10«]: Db,

which is possible because of (4). Then
k+1+2N'+N"+(8A')«<i,+l>—z<o
k l
and

(10q+1)(%+%>—%<0.

Consequently from (8) and (9) it follows that
w@) = Caw(§) = Caw(T9) ,

for some C, independent of &. This proves the continuity of the
mapping 7% — @ and thus completes the proof of the implication

(@) = (o).
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