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THE SPLITTING OF EXTENSIONS OF SL(3, 3)
BY THE VECTOR SPACE F>

ROBERT L. GRIESS, JR.

We give two proofs that H2(SL (3, 3), FD = 0. This result
has appeared in a paper by Sah, [6], but our methods are
relatively elementary, i.e., we require only elementary homo-
logical algebra and do a group-theoretic analysis of an
extension of SL (3, 3) by Fl to show that the extension splits.
The starting point is to notice that the vector space is a
free module for J F 3 « # » , where x has Jordan canonical form

1 1 0\
0 1 1 . We then can exploit the vanishing of #*(<#>, Fl) i=
,0 0 1/

1,2.

For elementary linear algebra, we refer to [2] and for cohomology
of groups, we refer to [1], [4], [5] or [6]. Group theoretic notation
is standard and follows [3]. Let 7 be a 3-dimensional Frvector
space and let SL(3, 3) be the associated special linear group. Let
î, v29 v3 be a basis for V. Define, for i, j e {1, 2, 3}, i Φ j , and t e F3,

xi3(t) e SL(3, 3) by

Vi + tvj, k — % .

Inspection of the Jordan canonical form shows that all xi3 (t), t Φ 0,
are conjugate in GL(3, 3) = {±1} x SL(3, 3), hence in SL(3, 3).

Set G = SL(3, 3). We let

(*) 1 >V >G*-^-*G >1

be an arbitrary extension of G by V with the above action. We
will show (*) is split. We use the convention that w* e (?* is a
representative (arbitrary, unless otherwise specified) for ueG.

The alternate proof of splitting (given later) is much neater
than the first version. The methods are quite different, however,
and it seems worthwhile to give two proofs.

LEMMA 1. Let x = ^1 2(l)x2 3(l)^1 3( — 1). Then CG(x) = (%, &18(1)>. / /

t e G is an involution which inverts x, then t centralizes

Proof. The first statement is elementary linear algebra. Namely,
x has a cyclic vector in V, so that any transformation which commutes
with x is a polynomial in x. Since x has minimal polynomial of
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degree 3, its full commuting algebra is all matrices of the shape

( a b c\

0 a b I , a,b,ceF3.

0 0 a!

The first statement is now clear. As for the second, it suffices to
display an element t with the required properties, e.g.

The lemma is proven.

LEMMA 2. #12(1)#23(1)#13( —1) and all its conjugates are represented
in G* by elements of order 3. Any two such representatives are
conjugate by an element of V.

Proof. The Jordan canonical form for x = x12(l)x23(l)x13( — 1)
indicates that V is a free F3<£>-module. So H\(x), V) = 0 for i ^ 1.
Both statements follow.

LEMMA 3. Each xtj(t) is represented in G* by an element of
order 3, which commutes with an involution of G*.

Proof. We may assume i — 1, j — 3, t = 1. Let

x = x12(l)x2,(l)xiz(-l) ,

and let x* e G* represent x, \x* | — 3. Again by Lemma 2, a Frattini—
like argument shows that NG((x))* = F iV^<>*>). Choose y e NG*((x*))
with 0* = x13(l). Then ( .̂(α?*) - <α?*, #, v3> is abelian. Let £ e JSΓβ.(<a?*>)
be an involution inverting a;*. Then by Lemma 1, tz centralizes xιz(ΐ)
and inverts vz. By Fittings theorem.

x <a?, v3>

where <^> - CG*«^*, t » . Clearly IT/J = 3 and 1 Φ y\ e <x13(l)>. This
proves the lemma.

LEMMA 4. // t is an involution of G*, Ca*(t) has a Sylow 3-
subgroup isomorphic to Zz x Z3.

Proof. Since G has one class of involutions, so does G*. So,
we apply Lemma 3 to see that t centralizes an element of order 3
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outside V. Since \Cv(t)\ = 3 and CG(tπ) ^ GL(2, 3), we are done by
the Frattini argument namely, (t) e Syl2 (V(t)) and V(t) <j H, where
H is the preimage in G* of CG(ίr).

In what follows, let R = NG*((vB}) and Q - O3(i2). Then

e GL(2, 3), α, δ 6 F3, c = (det .A)"1

Let

1
0

0

0
- 1

0

0
0

1

and let—denote images under R —> R/(vs}. Let h* e R be an involution
representing h.

LEMMA 5. Q is inverted by h*. Also, Q is elementary abelian
and Q is extra special of order 35, exponent 3, with center (vB).

Proof. The first statement is clear since h inverts Qπ and (vlf v2).
Therefore, Q is abelian. From Lemma 3, we get that Q is elementary
and the action of members of Qπ on V implies that Q is extra special.
Since Qπ is generated by elements of order 3, by Lemma 3 again,
Q has exponent 3.

We now require a technical result for studying automorphisms
of Q. Since automorphisms commute with commutation, we have a
homorphism (which is actually onto) Aut (Q) —> Sp0 (4, 3), the group of
similitudes of a nondegenerate alternating bilinear form from F3

4 to
Fz (a similitude preserves the form up to a scalar multiple; we have
I Sp0 (4, 3): Sp (4, 3) = | JP3

XI = 2, where Sp (4, 3) is the symplectic group,
i.e. the group preserving the form).

LEMMA 6. Let M be a ^-dimensional F3-vector space supporting
a nondegenerate alternating form (,) and let Spo(4, 3), Sp(4, 3) be
the associated group of similitudes, resp. symplectic group. Let I
be a maximal totally isotropic subspace and let K be its (global)
stabilizer in Spo(4, 3). Then

( i ) dim I - 2
(ii) If J is a maximal totally isotropic subspace complementing
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I in M we may choose a basis alf bt for I, a2f b2 for J so that (ai9 bj) = δί3-
and {au a^) = (bi9 bj) = 0. With respect to the basis {aίf a2, blf b2} for
V, elements of K have the shape

A

0

B

AeGL(2, 3), B a symmetric 2 x 2 matrix, ceF 3

x ;c = l if and only
if the matrix lies in Sp(4, 3). In this notation, %{K) consists of

those matrices with A = ( Q -. J and if L is the set of matrices with

B = 0, L complements 03(K) in K.
(iii) If Ye Syl3(L), 08(JKΓ) is a free FZY - module.
(iv) Any subgroup of K meeting 03(K) trivially stabilizes a

maximal totally isotropic subspace which complements /, and is in
fact conjugate to a subgroup of L.

Proof. Statements (i) and (ii) are straightforward. To prove
(iii), we may assume Y= (y},

y =

1 1

0 1

0 0

\0 0

0 0\

0 0

1 0

- 1 1/

Take

k(a, β, 7) -

jί 0 a β\

0 1 / 3 7

0 0 1 0

\0 0 0 1/

a typical element of O3(1Γ). A matrix calculation show that y~ιk(a,
β, Ύ)y = k(a - 2/3 + 7, β - 7, 7). To show 03(K) is a free Γ-module,
it suffices, since 03(ίΓ) = Z3 x Z3 x Z3, to find a triple (a, β, 7) such
that the three elements y~lk{af β, Ύ)y\ i = 0, 1, 2 are linearly inde-
pendent. Any (a, β, 7) with β Φ 0 does the trick.

We now prove statement (iv). First (iii) implies that H\Y,
03(if)) = 0 for i ^ 1. Secondly, if X ^ K, Xf] 03(iΓ) = 1, then a Sylow
3-subgroup X3 of X is conjugate to a subgroup of Y, and so Hι(Xz,
03(JK")) = 0 for i ^ 1. Finally, we quote the injectiveness of the
restriction H\X, 03(UL )) —• H\X3y 0z(K)). A consequence is that X is
conjugate in 03(K)X to L Π 03(K)X, whence X stabilizes a maximal
totally isotropic subspace complementing I.
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THEOREM. The extension (*) is split. Consequently, JΪ2(SL(3, 3),
Fi) = 0.

Proof. Let S = GL(2, 3) complement <>3> in Cβ*(h*) (use Lemma
4 and Gaschiitz' theorem). Easily, we see that S is faithful on Q
and the map Aut (Q) —• Sp0 (4, 3) embeds S as a sugroup So of K,
where, in the notation of Lemma 6, M = Q, I — V. Also, 08(S) = 1
implies 03(iΓ) Π So = 1. Hence, by Lemma 6 (iv), SQ stabilizes a
complement J to V in <2, where / is totally singular. Letting J be
the preimage of J in Q, J is elementary abelian. Since fe* inverts
/ a n d centralizes vZ9 w e / = <v3> x [J, h*]. Then [J, fe*]S complements
V in it?. Since (\G:R*\, 3) = 1, Gaschiitz theorem implies that G*
splits over V, as required.

An alternate proof was suggested by V. Landazuri in a con-
versation. We sketch the argument. Using Lemmas 2 and 3, we get

( i ) every element of order 3 in G is represented in G* by an
element of order 3.

Let yeG* represent #^(1), \y\ — 3. Since [V, y, y] — 1, a simple
calculation shows

(ii) every element of the coset Vxi3 (ΐ)* —Vy has order 3.
Now take a, b e U*, aπ = xί2(l), bπ = x 1 2(-l)x 2 3(l), | δ | = 3 (using

(i)). By (ii), \a\ = \ab\ — \ba\ — 3. An elementary argument shows
that, if ξlf ζ2 are elements in any group such that IfJ = \ζ2 =
If if 21 = 3, then (fjfί"1, fΓ1^) is a normal abelian subgroup of index 3
in <fi, f2> Applying this to ζ1 = α&, f2 = δα we see that (a, b) has
a normal abelian subgroup fl" = ([a~\ 6""1], [α, 6]> of index 3. By (ii),
H is elementary abelian. Therefore, | (a, b) \ = 33. It is easily seen
that (aπ, bπ) = Ϊ7, and this means <α, J ) Π 7 = 1 . Our theorem now
follows from Gaschiitz' theorem.
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